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Acetylation is one of post-translational modification (PTM), which often reacts with acetic
acid and brings an acetyl radical to an organic compound. It is helpful to identify
acetylation protein correctly for understanding the mechanism of acetylation in biological
systems. Although many acetylation sites have been identified by high throughput
experimental studies via mass spectrometry, there still are lots of acetylation sites need
to be discovered. Computational methods have showed their power for identifying
acetylation sites with informatics techniques which usually reduce experiment cost and
improve the effectiveness and efficiency. In fact, if there is an approach can distinguish
the acetylated proteins from the non-acetylated ones, it is no doubt a very meaningful
and effective method for this issue. Here, we proposed a novel computational method for
identifying acetylation proteins by extracting features from the conservation information of
sequence via gray system model and KNN scores based on the information of functional
domain annotation and subcellular localization. The authors have performed the 5-fold
cross-validation on three datasets along with much analysis of features and the Relief
feature selection algorithm. The obtained accuracies are all satisfactory, as the mean
performance, the accuracy is 77.10%, the Matthew’s correlation coefficient is 0.5457,
and the AUC value is 0.8389. These works might provide useful insights for the related
experimental validation, and further studies of other PTM process. For the convenience of
related researchers, the web-server named “iIACetyP” was established and is accessible
at http://www.jci-bioinfo.cn/iAcetyP.

Keywords: acetylation, Random Forest, family and domain databases localization, post-translational modification,
identification

INTRODUCTION

To date, more than 450 unique protein modifications have been identified (Han et al., 2018),
including phosphorylation, acetylation, ubiquitination, and sumoylation, which are regulatory
mechanisms of cellular proteins with a number of biological functions, and also are very important
for regulating the function of many prokaryotic and eukaryotic proteins (Yang et al., 2017). Among
these post-translational modification (PTM), acetylation is a dynamic and highly conserved PTM
(Figure 1) that plays a vital role in the regulating processes of diverse cellular. The role of acetylation
in histones were first discovered in histones (Allfrey et al., 1964), and the first deacetylase activity
was identified back in 1969 (Inoue and Fujimoto, 1969). Owing to its important involvement
in some relevant biological processes, acetylation becomes one of the most important reversible
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FIGURE 1 | An illustration to show the acetylation protein.

An example of N, Acetyl-lysine

protein posttranslational modifications, hence, more and more
acetylated proteins are discovered with the help of high-
throughput technologies. Thus, it is a piece of very interesting
work to identify the potential acetylation sites for finding the
underlying molecular mechanisms, and is helpful for basic
bioresearch and drug development.

However, due to the importance and complexity of
acetylation, identifying acetylation sites is a great challenge
to fully understand the regulatory roles and the molecular
mechanism of acetylation regulation. Actually, it is a time-
consuming, expensive and labor-intensive process for purifying
acetylation sites due to that the acetylation process is dynamic,
rapid and reversible (Li et al., 2017; Yang et al., 2017). Fortunately,
some studies had showed that experimental methods and
computational models can be used to identify underlying PTMs
sites (Hershko and Ciechanover, 1998; Haglund and Dikic,
2005; Tung and Ho, 2008; Radivojac et al., 2010), such as
ubiquitination model of Radivojac et al. (2010), Zhao et al.
(2011), and Cai et al. (2012), phosphorylation model of Ingrell
et al. (2007), Yao et al. (2012, 2015), Chen et al. (2015), Li et al.
(2015), Trost et al. (2015), and Xu et al. (2015), sumoylation
model of Beauclair et al. (2015), Xu et al. (2016), and Han et al.
(2018), acetylation model of Zhao et al. (2010), Wang et al.
(2012), Hou et al. (2014), and Wuyun et al. (2016), and so on.
Although these researchers did make much contribution to this
issue, there is still a lot of room for improving the prediction
quality. However, most of these efforts are on identifying some
determinate PTMs sites for a given protein sequence, and few
of computational method was proposed for distinguishing the

acetylated proteins from the non-acetylated ones. This study was
an attempt for the issue.

For a given protein represented with amino acid sequence,
how to identify whether it may be one of some certain PTM
proteins or may not? This may be the first step for identifying
PTM sites and then is helpful and meaningful for basic research
and drug development. In fact, we have made some preliminary
exploration and attempt on identifying phosphorylated proteins.
In Qiu et al. (2017a,b), we presented a method for identifying
human phosphorylated proteins and a multi-label classifying
model for different type of phosphorylated proteins with the
help of the General PseAAC concept and gray system theory.
Although the results are not so perfect, we still argue that the
formulations and models can be applied to this issue, and it may
be more powerful when some structure, function or localization
information of proteins were added into the model. This site
may be a fruitful opportunity for bioinformatics. For example,
Gene Ontology (GO) (Ashburner et al., 2000) was proposed by
Ashburner to reposit the concepts denoted as GO Terms that are
associated to other gene products, and it has been widely used in
describing the attributes for gene products (Agapito et al., 2016;
Peng et al., 2016).

The dataset we used here was fully extracted from Uniprot
(The UniProt, 2017). The present study tried to construct a
classifying model for potential acetylation proteins by fusing the
digital features which are come from its evolution information,
Subcellular localization (noted as SL) (Nakai and Horton, 1999)
information and functional domain annotation (noted as FDA)
databases including GO (Harris et al., 2004), Pfam (Bateman
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et al, 1999), Smart (Letunic et al., 2004), InterPro (Hunter
et al,, 2009), PRINTS (Attwood et al., 2012), PROSITE (Sigrist
et al., 2010), SUPFAM (Pandit et al., 2004). As for subcellular
localization (Du et al,, 2012), it was retrieved from the original
UniProt database, which was reorganized by UniProt build-in
hierarchical subcellular localization table. This paper proposed
a new computational model for identifying potential acetylation
proteins only on the basis of a query amino acid sequence
by using its evolution information obtained with gray system
model (Gray-PSSM) (Kaur and Raghava, 2004; Jones, 2007) and
KNN scores calculated with the fuzzy distance by using its FDA
and subcellular localization information. There are 80 amino
acid sequence features extracted by incorporating the sequence
evolution information were fused into PseAAC feature set and
KNN scores, all of these features are combined according to
different coeflicients on the basis of its importance. To highlight
the advantages of the proposed model, the model was trained
and tested with three sub-datasets and cross-validations methods.
In addition to some discussion of protein abovementioned
features, some hypotheses for distinguishing acetylation proteins
from non-acetylation ones were also depicted with the aid of
training dataset.

MATERIALS AND METHODS

Benchmark Dataset

It is fundamental and important that a stringent benchmark
dataset be stablished for testing the proposed statistical predictor.
Luckily, the UniProtKB/Swiss-Prot database is accepted by most
of bioinformatics researchers, and has been using more and more
widely. The data used in the current study to support this work
are established on the basis of web http://www.uniprot.org.

In this study, we assume that our work is to identify whether
an uncharacterized amino acid sequence is acetylation protein.
As we known, the input sequence is comprised by amino acids
and can be expressed as

P=P,P,P;---P;---Pp (1)

where P; represents the i-th residue of amino acids sequence P, L
is the length of P.

Here, we separate a benchmark dataset into a training dataset
noted as S. Thus, the datasets can be formulated as:

Sall = Sposi U Snega Snega = S7 US; U Sy (2)

where Sposi is  composed of the acetylation proteins,
Snega is  composed of the non-acetylation proteins,
S N§ =0 (i # j;ij = 1,2,3). U and N represent the
symbol for “set union” and “set intersection,” respectively.

The version of protein data used in the current study
was released in May 2017. The positive dataset was
generated according to the following criteria: (1) The
potential acetylated proteins should be noted by anyone
keyword of the set, ie. {N_acetylcysteine, N_acetylserine,
N_acetylglutamate, N_acetylglycine, N_acetylproline,
N_acetylthreonine, N_acetylvaline, N_acetylmethionine,
N_acetyltyrosine, N2_acetylarginine, N6_acetyllysine,

O_acetylserine, O_acetylthreonine}. (2) The collected proteins
are labeled by “Evidence” for the item of “Any assertion method.”
(3) Only the proteins which consisting of 30 and more amino
acid residues can be included, and the redundant proteins were
removed with the threshold of 50% by using CD-HIT software.

The negative dataset was generated similar to the positive one
except that those proteins should not be labeled none member of
the mentioned above keyword-set. Since there are mass number
of candidates here, we randomly collected negative datasets
which have the balance samples size with positives.

Under the aforementioned standards, we obtained 2,925
protein samples, of which, the numbers of positive and negative
samples are 725 and 2,175, respectively. In terms of Equation (2),
we have 725 positive samples in Spos; and 2,175 negative samples
in Syegq. Here, we test the models with cross-validation on the
three datasets with 1,450 samples, i.e., Sposi U S7', Sposi U S5 and
Sposi U S5, of which, the positive and negative ones are equal, i.e.,
725 samples.

Feature Construction
General Pseudo Amino Acid Composition (PseAAC)
Most of traditional machine-learning algorithms, such as
Random Forest, SVM, and K nearest Neighbor, are not so
powerful, the input should be vectors instead of sequence samples
for biological issue. To overcome this problem, the researchers
trying their best to improve the discrete or vector model by
formulating the amino acids sequence into all kinds of pseudo
amino acid composition (PseAAC), encoding method (Zhang
et al., 2006; Chen et al., 2011; Shi et al., 2012; Jiao and Du, 2017)
or other approaches.

Here, the proposed model followed the idea of PseAAC (Chou,
2011), and formulated an amino acids sequence P as:

P=[p1 p» -+ pu o]t 3)
Here, the symbol T means the transpose operator for a matrix, N
is an integer representing the number of features which depend
on the method(s) used for extracting information from protein
P (cf. Equation 1). P is a vector for representing amino acids
sequence P and p; (i = 1,2,---,N) is the ith element of the
vector. Below, we will describe how to extract functional domain
annotation and subcellular localization information as well as
pseudo amino acid composition, which are used in this study,
from a query sequence to define the components for amino acids
sequence P.

Protein Sample Formulation With KNN Score Based
on FDA and Subcellular Localization (SL)

In addition to GO database, “Pfam,” “Smart,” “PROSITE,
“SUPFAM,” “InterPro,” and “PRINTS” are established according
to cellular component, molecular function, biological process
or some other characteristics. For example, the Pfam database
is a large collected protein families generated by using hidden
Markov models. SMART is abbreviation of Simple Modular
Architecture Research Tool which can be used for research on the
protein domains and architectures. PROSITE consists of entries
describing the protein families, domains and functional sites as
well as amino acid patterns and profiles. InterPro provides a
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functional analysis of protein sequences, and PRINTS also is a
resource of detailed annotation for protein families in addition
to a diagnostic tool for newly determined sequences. Subcellular
localization feature is a key functional characteristic of potential
gene products such as proteins, especially for plant.

Actually, in the GO database, proteins are clustered in a way
in which their subcellular locations can be reflected fully. To
incorporate more information, most of the approaches need to
formulate a long list of the GO numbers, and a great part of
the GO numbers make meaningless as a whole. In literatures
(Gao et al., 2010; Yao et al., 2012), the authors show us that
local sequence clusters often appear in the neighborhood of
PTM sites for the reason that the same PTM family generally
have some similarities in local sequences. As a better choice for
depicting the character, K nearest neighbor score was proposed.
To take advantage of such cluster information of GO and other
FDA databases as well as subcellular localization for predicting
acetylation proteins, for a given potential acetylation protein,
we took the characteristics around the query neighborhood and
extracted the KNN scores features from the training dataset
containing both positive and negative samples. The algorithm is
listed as follows.

Step 1. For a query protein sequence find its k nearest
neighbors, which can be positive or negative samples, in the
whole set according to local sequence similarity. For a given
protein p, FDAj(p) = {Nf ’J,Nf’], e ,Nﬁl’f} represents the
keywords set of the jth FDA. The j (=1, 2, ..., 7, 8) represents
“GO; “Pfam,” “Smart, “PROSITE, “SUPFAM, “InterPro,
“PRINTS,” or “subcellular localization,” respectively), FDA;(q) =

{Nq’],Ng’J,--- ,NZ;]} is the similar mean for protein q. The

similarity distance Distj (p,q) between p and q can be defined
as follows:

[FDA, () (Y FDA, ()|
[FDA, (j) U FDA, (7)]

DiStj (p, q) =Wj. (1 -

) +wy . dist(p,q) (4)

Where (), | and | | are the operators “union,” “intersection,” and
“norm” of the set theory, respectively. Here, | | is defined as the
number of its elements. dist(p, q) is the Euclidean distance on the
basis of PseAAC. w; and w; are the weights of the two distances.

Step 2. A corresponding KNN feature is then extracted
by calculating the KNN score, noted it as the percentage of
acetylation proteins in its k nearest neighbors.

Step 3. To obtain diverse and enough properties of neighbors
with KNN scores, the above two steps were repeated for different
k values. For the jth member of FDA, the protein P can be
formulated as:

Pepa; = [@1()s 020), -+ ok () 1" (5)

In this paper, the number of features is 50 and k was defined to be
0.1, 0.4, 0.7, ..., 14.5 and 14.8 percent of the size of the involved
dataset. In this way, 50 KNN scores were extracted as features
for identifying acetylation proteins. To be more precisely, ¢ (j) is
the ratio of positive neighbors to whole concerned samples, i.e.,
0.1 percent of the size of the training data set, ¢, (j) is the ratio
of positive neighbors to whole concerned samples whose value is

Input query protein\
sequence P

A J

| PSI-BLAST

Find the homology
protein of P
v .
Generate FDA ) UniProt
descriptor for P —x
F---->
Training
Generate Knn

Dataset

scores for P

FIGURE 2 | Flowchart of the proposed predictor.

the product of 0.004 and the size of the training data set, and so
forth, when K = 50, ¢s0(j) is the ratio of positive neighbors to
14.8 percent of the size of the training data set.

In a word, a query protein sequence can be
formulated  with  seven  50-Dimension  vectors, i.e.,
Prpa = [Prpa,>PrDA,>- - -» PrpA, ], by using FDA database.

Since Chou’s pseudo amino acid composition (PseAAC) (Chou,
2001; Mondal and Pai, 2014) have showing so great powerful
for identifying structure and function of protein, the proposed
method took it into account according to the style of reference
(Shen and Chou, 2008) (we select type 1 and let A = 5). Thus,
a given protein sequence can be expressed as 375-dimension
vector, and these digital representations served as the input of
the query protein for the prediction model.

Operation Engine and Evaluation

Algorithms

Here we choose Random Forest as the operation engine as the
predictor, and named the final predictor as “iAcet-PseFDA.” This
name is an acronym created from its description, and Figure 2
would show how iAcet-PseFDA working.

As shown in Figure 2, the first step is to input the query amino
acid sequence P. And then, the PSI-BLAST software was used to
find the most similar protein to P, which is used to determine the
most likely GO or other information of FDA set and generate the
KNN scores with it. With the descriptor of P, the desired result
can be obtained with the framework of Random Forest classifier
trained on the benchmark.
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Metrics and Test Method

The predictor iAcet-PseFDA was evaluated with cross-
validation tests in the terms of following seven widely-accepted
measurements: accuracy (or Acc, for short), Mathew’s correlation
coefficient abbreviated as Mcc, sensitivity (abbreviated as Sn,
i.e., the fraction of the relevant documents that are successfully
retrieved), specificity (i.e., Sep), Precision (i.e., Pre, a description
of random errors), F-measure (or F-m, the harmonic mean of
precision and recall), and G-mean. Since the area under the
receiver operating characteristic curve (auROC, for short) is
another important measurement of the performance of a given
model, it was also calculated and plotted in this study. In view of
the traits of validation method trait, cross-validation method was
applied on three datasets for evaluating the proposed predictor.

RESULTS AND DISCUSSION

Investigating the Performances of KNN

Score of FDA Represent

Figure 3 depicted the comparisons of the KNN scores of
acetylation and non-acetylation proteins on all of the FDA
features, and there really are some differences between the
positive and negative samples. Figure 3A showed the comparison
of PAAC represents between acetylation proteins and non-
acetylation proteins, Figure 3B showed those of KNNScore-GO,
and so forth, Figure 31 showed those of Subcellular localization.

Overall, acetylation proteins gained obvious larger KNN
scores than non-acetylation proteins on GO and Subcellular
localization, and a little larger gap between the KNNScores of
positive and negative datasets, all of the average KNN scores are
nearly merged in 0.5 with the growth of features.

Specifically, for acetylation proteins with the view of GO
evaluated on different sizes of nearest neighbors, the average
values shown in Figure 3B are within 0.6-0.8, however, the
average digits are within 0.2-0.4 for non-acetylation proteins.
From the view of Subcellular localization as showed in Figure 31,
most of the average KNN scores of acetylation proteins are
waved within 0.5-0.7 while those of non-acetylation proteins
fluctuating around 0.4. From the view of Smart, Supfam, InterPro
Pfam, Prosite and PRINTS as showed in Figures 3C-H, there
are clearly gaps between the acetylation proteins and non-
acetylation proteins, and the gaps are narrowing with the growth
of KNNScores number.

We tested the eight kinds of features on the three datasets
with RE and the mean performances are depicted in the first
11th lines of Table 1, while the compared measurements obtained
from the proposed model, in which the features were selected
with Relief, are attached in the last line. As showed in the table,
the features of Subcellular localization reached the best results
with Acc is 73.95%, Mcc is 0.4843, Sn is 81.24%, Recall is 81.24%,
F-measure is 75.72%, and G-mean is 73.59%. As regards for Sp
and Precison, GO gained the best result which are 68.37 and
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FIGURE 3 | (A) Comparison of KNNScore-PAAC represents between acetylation proteins and non-acetylation proteins. (B) Comparison of KNNScore-GO represents
between acetylation proteins and non-acetylation proteins. (C) Comparison of KNNScore-Pfam represents between acetylation proteins and non-acetylation proteins.
(D) Comparison of KNNScore-Smart represents between acetylation proteins and non-acetylation proteins. (E) Comparison of KNNScore-Prosite represents between
acetylation proteins and non-acetylation proteins. (F) Comparison of KNNScore-Supfam represents between acetylation proteins and non-acetylation proteins. (G)
Comparison of KNNScore-InterPro represents between acetylation proteins and non-acetylation proteins. (H) Comparison of KNNScore-PRINTS represents between
acetylation proteins and non-acetylation proteins. (I) Comparison of KNNScore-SL represents between acetylation proteins and non-acetylation proteins.
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TABLE 1 | Mean performance comparison with different KNN score feature tested with RF.

Acc% Mcc% Sn% Sp% Pre% F_m% Gmean%
PAAC 69.49 0.3909 73.01 65.98 68.22 70.53 69.40
GO 73.61 0.4754 78.85 68.37 71.39 74.90 73.39
Pfam 68.21 0.3647 70.99 65.43 67.27 69.07 68.14
Smart 67.01 0.3410 70.11 63.91 66.04 68.01 66.93
PROSITE 68.37 0.3679 70.85 65.89 67.52 69.14 68.31
SUPFAM 68.67 0.3738 7117 66.16 67.79 69.44 68.62
InterPro 68.25 0.3658 71.40 65.10 67.17 69.22 68.18
PRINTS 66.11 0.3234 69.52 62.71 65.10 67.21 65.99
Subcellular localization 73.95 0.4843 81.24 66.67 70.91 75.72 73.59
All-MeanJK 74.64 0.4980 81.38 67.91 71.78 76.24 74.30
This paper 77.55 0.5883 96.41 71.26 52.79 68.23 82.89
*The bold value means the largest element of the column.

28
CLS ox
1 th
PRINTS s
3
INTERPRO
2
SUPFAM - »
15
PROSITE -
41
SMART + o =
27
PFAM [ ¢ e
13
GO +
8 |1 st
PAAC e
0 25 75 125 175 225 275 325 375 425
FIGURE 4 | Features selected by Relief.

71.39%, respectively. Thus, the features of GO gained the second
place. The other six performances are not satisfactory and worse
than those of GO and Subcellular localization, all Accs of them
are <0.7 except for GO and Subcellular localization. The results
obtained with the enhanced model are discussed below.

Performance of Proposed Model
Based on the above discussions, we argue that the local amino
acids surrounding acetylation sites, which have been verified,
would share in similar pattern(s) with positive set on average as
expected. These findings confirm that there are some acetylation-
related clusters in acetylated proteins and hence may be used to
distinguish them from the non-acetylation protein. Accordingly,
the KNN scores were used to encode query sequence for
predicting acetylation proteins in this study.

As we known, the Relief algorithm as a feature weighting
algorithm was first proposed by Kira and Rendell (1992). In
the algorithm, the features were allocated different weights in

light of the relevance of characteristics and categories. The
feature will be removed when its weight less than a threshold
by this method. Since the combined features generated a high-
dimensional vector, and the Relief method can rank the values of
features, this work thus used Relief to reduce feature redundancy.
With the help of Relief, we tested the predictor on different
features sets and listed the mean performances in the last line of
Table 1. The Acc is 77.55% which is better than 74.64%, the result
obtained by using all of the eight features, and better than that of
subcellular localization. The Relief model gained the better results
according to the other seven measurements. Figure 4 depicted
the selected features by Relief algorithm which containing 156
potential features (of which, there are 8 PSSM-gray features, 13
GO KNNScores, 27 for PFAM, 41 for SMART, 15 for PROSITE,
2 for SUPFAM, 3 for INTEPRO, 19 for PRINTS, and 28 for
Subcellular localization KNNScores). From the figure, we can see
that the importance of PAAC, SMART and PRINTS are obvious
since a lot of features are noted as blue which means their rank
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False Positive Rate

FIGURE 5 | The ROC curves of predictor with different features.
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in the selected feature set. The predictor obtains the best result at
156, which means there are 156 features were selected here, with
Accis 77.55%, Mccis 0.5883, Sn is 96.41%, Sp is 71.26%, Precision
is 52.79% which isn’t the best performance unfortunately, Recall
is 96.41%, F-measure is 68.23% and G-mean is 82.89%. These
obtained results are better than anyone of Table 1.

The performance of iAcet-PseFDA was also depicted with
ROC curves shown in Figure 5 in which the graphic lines are
represent for GO, Subcellular localization and other Domain
notations’ KNNScores along with PseAAC’s. As shown in first
subfigure of Figure 5, the proposed model’s AUC value is 0.8280
while those of PseAAC, GO, PFAM are 0.7521, 0.8146, 0.7548,
respectively. Thus the proposed model obtained best result of
the four methods. With similar analysis depicted in the last two
subfigures of Figure 5, the AUC values of SMART, PROSITE,
SUPFAM, INTERPRO, PRINTS, and Subcellular localization
KNNScores are 0.7453, 0.7538, 0.7614, 0.7611, 0.7144, and
0.8087, respectively. In conclusion, all of the values are <0.8280,
and there still are gaps between them and that of the proposed
model. It shows that the feature set enhanced with Relief would
obtain more satisfactory results than those of the independent
FDA features.

CONCLUSION

In order to detect acetylation proteins, this study developed
a method on the basis of Random Forest algorithm and
Relief. Our approach considered information of sequence
conservation extracted by PSI-BLAST besides with PseACC. The
involved features are extracted from the sequence conservation
information and “GO,” “Pfam,” “Smart,” “PROSITE,” “SUPFAM,”
“InterPro,” “PRINTS” and Subcellular localization information
of the given query amino acid sequence. This work may
cope with the expensive and time-consuming process of
identifying acetylation proteins because that the features only
incorporated the sequence conservation via gray system model
and Knn scores based on FDA databases. All of these

processes only need computational model instead of any physical
chemistry experiment.

Also, our result manifested that it appears that using FDAs
is essential for the prediction of acetylation functional class,
which had been reported in previous research (Qiu et al,
2016a,b, 2017b), and the information related to subcellular
is also important for identifying the PTM proteins. As the
growing demand of verification of acetylation sites, we argue
that more effort should be input in developing organism-
specific predictors for this issue. The reason for presenting the
model here then is for the improving the predictor used in
similar research, and it may be helpful for those researchers
who would like to deal with bioinformatics problems with
computational models. In addition, the involved features may
provide important clues of the acetylation mechanism and guide
the related experimental validations.

Additionally, a web-server has been established at http://www.
jci-bioinfo.cn/iAcetyP which is user-friendly and convenient for
the researchers who are working in distinguishing acetylated
proteins from non-acetylated proteins.
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