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Non-invasive tracking for monitoring the selective delivery and transplantation of

biotargeted agents in vivo has been employed as one of the most effective tools in

the field of nanomedicine. Different nanoprobes have been developed and applied

to bioimaging tissues and the treatment of diseases ranging from inflammatory and

cardiovascular diseases to cancer. Herein, we will review the recent advances in

the development of optics-responsive nanomaterials, including organic and inorganic

nanoparticles, for multimodal bioimaging and targeted therapy. The main focus is placed

on nanoprobe fabrication, mechanistic illustrations, and diagnostic, or therapeutical

applications. These nanomedicine strategies have promoted a better understanding of

the biological events underlying diverse disease etiologies, thereby facilitating diagnosis,

illness evaluation, therapeutic effect, and drug discovery.

Keywords: optical, nanomaterials, bioimaging, tissues, therapy

INTRODUCTION

Molecular imaging reflects biological information on temporal and spatial scales, unveiling the
dynamics of disease (Smith and Gambhir, 2017). It is a crucial diagnostic tool for monitoring
in vivo response and assessing outcomes in targeted therapies (Fan et al., 2017). Also, integrating
imaging, and therapy into theranostic systems is an efficient strategy for real-time tracking
of the pharmacokinetics and biodistribution of a drug. Current imaging modalities include
X-ray, magnetic resonance, optics (e.g., fluorescence, luminescence, Raman, photoacoustics),
radionuclides, and mass spectrometry (Kunjachan et al., 2015). Among them, optical imaging is
a common modality in preclinical research on theranostic agents.

Nanomaterials have been widely developed as therapeutic and diagnostic agents (Lim et al.,
2015; Chen et al., 2016a). Research efforts have changed from developing new materials in vitro
to exploring functional materials in vivo, thereby increasing the potential for clinical translation
(Lamch et al., 2018). Perhaps the unique advantage of nanoparticles (NPs) for optical imaging is
that their physical and optical properties are easily tunable through structural modulation. Also,
some NP compositions possess inherent imaging and therapeutic properties, while others are
rendered multifunctional through the manipulation of multiple structural elements. Engineering
multifunctional theranostic NPs presents several challenges, including imaging quality, loading
capacity, the toxicity of intrinsic ingredients, storage, and in vivo stability, the complexity of
synthesis, batch repeatability, production costs, and regulatory hurdles (Farokhzad and Langer,
2006; Lee et al., 2012). Common nanomaterials, including inorganic and organic NPs, have
demonstrated a potential for diagnosis and therapy (Brigger et al., 2002). Variations in size, shape,
and surface modifications can adjust their biocompatibility and specificity with target tissues
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(Wang and Thanou, 2010). Depending on their structural
composition, NPs can provide an optical signal or function as
nanocarriers for optically active agents. Current interests mainly
involve non-invasive imaging of deep tissues and targeting
drug therapy.

In this paper, we discuss recent progress in optical-sensitive
NPs, their bioimaging involving fluorescence, luminescence,
surface-enhanced Raman scattering (SERS), and photoacoustic
(PA) signals, and their therapeutic applications in photodynamic
therapy (PDT), photothermal therapy (PTT), and drug delivery.
Moreover, common design considerations for advanced
nanomedicines and the challenges of their application are
discussed from diagnostic and therapeutic perspectives.

OPTICALLY ACTIVE NANOMATERIALS

Inorganic Nanomaterials
Due to their unique characteristics, i.e., surface plasmon
resonance (SPR), gold NPs (GNPs) are usually chosen to
enhance optical imaging based on their absorption, fluorescence,
Raman scattering, etc. (Wu et al., 2019). Generally, GNPs are
synthesized by HAuCl4 reduction, known as the Brust et al.
(1994) or Turkevich method Turkevich et al. (1951). GNPs
are stabilized by a wide variety of ligands that affect their
sizes and properties (Treguer-Delapierre et al., 2008; Boisselier
et al., 2010). Their diameters range from 1 nm to more than
120 nm. Also, diverse shapes can be prepared, such as core–shell
nanostructures (Kharlamov et al., 2015), nanorods (de la Zerda
et al., 2015), or nanocages (Chen et al., 2005a) whose aspect
ratios modulate their optical properties. The excellent stability of
GNPs covalently bonded with thiolated ligands permits chemical
modifications directly on their surfaces (Boisselier et al., 2008).
The ligands for stabilizing GNPs can be specifically selected for
drug encapsulation and release or targeted to tissues such as
tumors (Guo et al., 2017; Her et al., 2017; Spyratou et al., 2017).
However, the safety of GNPs in clinical application remains
controversial, with more information required on their long-
term toxicity in vivo.

Carbon-based nanomaterials (CBN) as members of the
carbon family including fullerenes, carbon nanotubes (CNTs),
graphene (G), graphene oxide (GO), nanodiamonds (NDDs),
and carbon dots (CDs) (Bartelmess et al., 2015; Patel et al.,
2019). Modifying their surfaces with functional groups (e.g.,
carboxylic acid, hydroxyl, or epoxy) provides the opportunity to
optimize their properties. The extraordinary optical features of
CBN (e.g., inherent fluorescence, high photostability, and tunable
narrow emission spectra) increase their potential for imaging and
diagnosis of cells or tissues (Sadegh and Shahryari-ghoshekandi,
2015; Goodarzi et al., 2017; Namdari et al., 2017; Bullock and
Bussy, 2019; Tinwala and Wairkar, 2019). Fullerenes usually act
as photosensitizers (PSs) to generate singlet oxygen (1O2) and
hence are applied for blood sterilization and cancer PDT (Lu
et al., 2019). The inherent spectroscopic features of CNTs (e.g.,
Raman scattering and photoluminescence) provide a valuable
means of tracking in vivo therapeutic status, pharmacodynamic
behavior, and drug delivery efficiency and imaging and detecting
diseases (Tasis et al., 2006; Liu et al., 2011). Graphene and

GO-based nanocarriers have attracted significant attention for
imaging and anticancer therapy because of their large drug
loading and effective delivery capacity. Also,∼2,600m2/g is more
than double the surface area of most nanomaterials (Mao et al.,
2013; Reina et al., 2017). Recently, carbon dots (CDs, size <

10 nm) have been extensively studied to gain a high fluorescence
quantum yield through facile synthesis methods (Liu et al.,
2015a). NDDs are nanocrystals that consist of tetrahedrally
bonded carbon atoms in the form of a three-dimensional (3D)
cubic lattice. The optical properties of NDDs allow their use as
photoluminescent probes (λem = 550–800 nm) due to nitrogen-
vacancy defect centers (Chang et al., 2008). When functionalized,
their biocompatibility is known to be superior to CNTs and
carbon black (Mochalin et al., 2013). However, the toxicity of
CBN is presently the key problem for their clinical use. Also,
the toxicology and pharmacokinetics of CBN mainly rely on
several factors, e.g., physicochemical and structural properties,
exposure dose and time, cell type, mechanism, residual catalyst,
and synthesis method. It is necessary to systematically evaluate
CBN in vivo safety using more relevant animal models.

Porous silicon nanoparticles (pSiNPs) have gained intense
attention in the biomedical field due to their low toxicity and
potential for use in minimally invasive and focal therapies that
avoid conventional side effects (Vivero-Escoto et al., 2012).
pSiNPs can be degraded completely to produce non-toxic
orthosilicic acid (Tzur-Balter et al., 2013), a bioavailable form
of Si, and then excreted efficiently through renal clearance
(Park et al., 2009). Also, their high active surface areas (up to
1,000 m2/g) (Loni et al., 2015) allow Si modifications by other
molecules through various surface chemical reactions (e.g.,
hydrosilylation, silanisation, and hydrocarbonization), which
facilitate their targeted and controlled drug release into cancer
cells (Wu et al., 2011a; Makila et al., 2012; Wang et al., 2014).
Actually, the porous nanostructures of pSiNPs allow them
to load drugs, probes, enzymes, proteins, antibodies, siRNA,
or other species (Castillo and Vallet-Regi, 2019). Numerous
cell-specific epitopes and biomarkers afford selective binding
to certain antibodies, peptides, or other molecules and thus
provide the opportunity for targeted drug delivery via vectorized
pSiNPs (Li et al., 2018a). Moreover, the optical features of
silicon nanostructures, i.e., intrinsic photoluminescence,
afford an alternative for bioimaging, accompanied with better
biocompatibility and biodegradability and lower toxicity
compared with semiconductor quantum dots (Warner et al.,
2005; Erogbogbo et al., 2008; Bimbo et al., 2010; Gu et al., 2010).
Finally, easy handling and cost-efficient preparation through
facile electrochemical anodization of crystalline silicon increase
the interest in utilizing pSiNPs (Sailor, 2012). Nevertheless,
the design and synthesis of smart multifunctional pSiNP
nanocarriers, in vivo performance evaluation using animal
models, and subsequent translational studies still need to be
further explored.

Lanthanide (Ln)-doped upconversion nanoparticles (UCNPs)
can convert two or more low-energy near-infrared (NIR)
photons into high-energy emissions through a non-linear anti-
Stokes process (Auzel, 2004). Due to their special upconversion
luminescence feature and stable Ln-based inorganic framework,
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Ln-UCNPs have been developed as promising alternatives to
conventional labels (e.g., organic dyes and quantum dots)
with several attractive advantages, such as being highly
resistant to photobleaching and photoblinking, having negligible
background autofluorescence, having deeper tissue-penetration
ability, and causing minimal photodamage (Zhou et al., 2012).
Also, considering the high feasibility and maneuverability of
their structural design, many functional components with other
imaging capabilities are introduced into these nanoparticles
for diagnostic and therapeutic applications (Liu et al., 2014a,
2015b). Likewise, UCNPs with a high surface area, characteristic
structures, and versatile surface functionalization can act as
nanocarriers for drug delivery (Wu et al., 2015; Yang et al., 2015a).
Significantly, UCNPswith a distinctive upconverted emission can
double as light-transducers to activate PSs for deep-tissue PDT
or as phototriggered devices for precise control of drug-payload
release induced by NIR light (Wang et al., 2013a; Min et al.,
2014; Idris et al., 2015). However, high upconversion efficiency is
realized only upon 980- or 808-nm excitation, which has seriously
hindered their practical usage in the biomedical field. Also,
surface modification and bioconjugation of long-term stable and
biocompatible Ln-UCNPs remain a huge challenge. Therefore,
more strategies for surface modification and corresponding
toxicology studies of these NPs are still needed for future pre-
clinical and clinical applications.

Quantum dots (QDs) are semiconductor nanocrystals
(typically with diameters <10 nm), which display dimension-
dominant optical features (e.g., absorption and luminescence)
(Xu et al., 2018a). Particularly, QDs of various dimensions or
ingredients are excited by a single light source to separately emit
diverse colors over a wide range with negligible spectral overlap,
rendering them desirable for multiple imaging (Yong, 2012).
Avoiding the photobleaching of organic dyes, QDs are more
beneficial to imaging in vivo for a long time (Geszke-Moritz
and Moritz, 2013). Significantly, QDs can be tuned to emit over
a broad wavelength range (e.g., 450–1,500 nm) by modulating
their dimensions, configurations, and components (Pichaandi
and van Veggel, 2014; Zhao et al., 2018). QDs can also be
conjugated with a recognition molecule, such as antibodies,
DNA, proteins, etc. (Lu and Li, 2011). Flexibility in the surface
chemistry and emission peak of QDs makes them useable as
optical probes or nanocarriers for bioimaging, drug discovery,
diagnostics, and therapy (Probst et al., 2013; Bilan et al., 2016;
Yao et al., 2018). The main QDs involved in biomedicine contain
Cd-based QDs (e.g., CdSe, CdTe, CdS) or Cd-free QDs (e.g.,
InP, CuInS2, AgInS2, Ag2S, WS2, ZnO, silicon, GQDs, CuS) (Xu
et al., 2016; Mo et al., 2017). However, the potential hazards of
QDs have become a critical issue that must be further addressed
prior to clinical use.

Organic Nanomaterials
Optical nanoagents (e.g., QDs, UCNPs, metal nanoclusters,
carbon, and silica-based nanomaterials) have been widely
employed for molecular imaging. However, inorganic NPs
usually suffer from critical safety concerns, including heavy metal
poisoning, and not being susceptible to fast clearance from

the body. To facilitate clinical translation, organic systems are
generally preferred.

Fluorogens with aggregation-induced emission (AIEgens), the
typical organic nanomaterials, exhibit very weak emission in
the molecular state but high fluorescence in the aggregated
state (Luo et al., 2001). They are usually arranged in a rotor-
like conformation. In the free state, intermolecular collisions
cause the consumption of energy in the form of non-radiative
transition, while in the aggregated state, the restriction of
intramolecular motion (RIM) ensures the release of exciton
energy via a radiative pathway, intensifying the emission (Mei
et al., 2015). Through intelligent modulation, AIEgens can emit
a broad wavelength in the ultra-violet (UV) to NIR region,
accompanied with certain attractive qualities. For example, they
enhance the chance of intersystem crossing, thereby increasing
the production of free radicals for PDT (Hong et al., 2009;
Xu et al., 2015) and strengthen the conversion of non-radiative
relaxation to generate thermal energy for PA imaging and PTT
(Mei et al., 2014; Geng et al., 2015). Also, some biomolecules
(e.g., target or chelation agents) can be integrated into AIEgens
without affecting their AIE properties (Hong et al., 2011; Hu
et al., 2014), which endows them with multiple performances
for cancer therapy (Yuan et al., 2015). AIEgens have been
successfully combined with PSs, drugs, and several imaging
methods to realize efficient theranostic platforms (Chang et al.,
2012; Xue et al., 2014). Most AIE systems with multiple functions
(or modalities) are composed of several components through
an all-in-one approach, suffering from defects in their complex
molecular structure and multistep synthesis.

Owing to poor photostability of traditional NIR organic
dyes, organic semiconducting agents, including semiconducting
polymer nanoparticles (SPNs), and semiconducting molecule
nanoparticles (SMNs), have emerged as excellent candidates (Lyu
et al., 2016; Pu et al., 2016; Zhu et al., 2016). These agents possess
higher absorption coefficients, more tunable optical properties,
and controllable dimensions compared with inorganic agents
(Hong et al., 2012a; Pu et al., 2014a). The wavelength range 650–
1,000 nm of NIR fluorescence imaging is known as the first NIR
window (NIR-I), which can achieve a tissue penetration depth
of up to ≈1 cm (Shanmugam et al., 2014). However, when NIR-
I light passes through or interacts with the tissue, it still suffers
from light scattering, tissue absorption, and autofluorescence
(Ntziachristos, 2010), leading to a relatively poor signal-to-noise
ratio (SNR), and thus is less ideal for deep-tissue imaging. To
enhance the imaging depth, the second near-infrared window
(NIR-II, 1,000–1,700 nm), a more ideal region with deeper tissue-
penetration depth and fewer light–tissue interactions, has been
explored recently (Miao and Pu, 2018; Cai et al., 2019). To date,
organic semiconducting agents have been utilized for deep-tissue
imaging, including NIR-II fluorescence, self-luminescence, and
PA imaging, in biomedical fields such as cell (Wu et al., 2010; Pu
et al., 2014b), tumor (Wu et al., 2011b), acute edema (Pu et al.,
2014b), and cardiovascular imaging (Hong et al., 2014) and in
real-time evaluation of drug-toxicity (Shuhendler et al., 2014).
However, they also face the major issues of high accumulation
in the liver and slow removal from the body due to their large
dimensions. Therefore, new designs are needed to increase their
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biodegradability or reduce their sizes so that they are smaller
than the renal filtration threshold (∼5 nm) for quick clearance
via urine excretion.

Polymer nanoparticles (PNPs) have been widely developed
for cancer diagnosis and therapy due to their high extinction
coefficients, extraordinary fluorescence intensity, good
photostability, biocompatibility and biodegradability, and
simple encapsulation of anticancer drugs and/or imaging probes
(Pecher and Mecking, 2010; Yang et al., 2012; Feng et al., 2017).
Although PNPs can accumulate in the tumor region via the
enhanced permeability and retention (EPR) effect (Luk and
Zhang, 2014; Tang et al., 2016), cancer-targeting moieties (e.g.,
proteins, peptides, and aptamers) must be modified onto the
NP surface by chemical or physical interaction, resulting in
functionalized PNPs with enhanced selectivity and sensitivity for
cancer diagnosis and therapy (Liu et al., 2015c; Li et al., 2016; Li
and Yang, 2017; Lin et al., 2017). Recently, functionalized PNPs
have been designed according to specific cellular processes and
disease environments and applied to selectively deliver drugs
to the target regions (Vaidya et al., 2011; Krasia-Christoforou
and Georgiou, 2013; Herranz-Blanco et al., 2016; Kumar et al.,
2018; Wang et al., 2019). Further in vivo work will be required to
comprehensively investigate the safety and efficacy of these novel
theranostic platforms before clinical application.

OPTICALLY ACTIVE NANOMEDICINE FOR
BIOIMAGING

Fluorescence Imaging
Fluorescence imaging, as a means to visualize specific organelles
within cells or animals, has become a powerful tool for biological
research and even for the emerging field of fluorescence-
guided surgery. Additionally, fluorescence imaging can capture
specific molecular information on the tumor microenvironment
(Wolfbeis, 2015).

Among the commonly utilized non-viral vectors, gold
nanocages (AuNCs) were investigated for microRNA
(miRNA) delivery due to their biological inertness and unique
physicochemical features (Skrabalak et al., 2008). Their strong
and easily adjustable absorption and scattering in the NIR region
demonstrate their feasibility in theranostic uses (Xia et al., 2011).
The sizes, shapes or surface chemistry of NPs can mediate their
cellular uptakes, macrophage clearance, and biodistribution
(Huang and El-Sayed, 2010). NPs with a size of 10–100 nm are
more appropriate for cancer diagnosis and therapy since they
can escape from renal elimination and accumulate in tumors.
Besides size, surface chemistry is another crucial factor for the
cellular uptake and biodistribution of NPs in vivo (Chen et al.,
2005b). Bao et al. (2017) have successfully fabricated a series
of differently-sized miRNA delivery systems, miR-26a-loaded,
hyaluronic acid (HA)-modified, polyetherimide-conjugated
PEGylated AuNC ternary nanocomplexes (PPHAuNCs-TNCs),
and monitored them through fluorescence and PA imaging.
First, they prepared PEGylated AuNCs (PAuNCs) by employing
HS-PEG-OMe (MW 5000) to replace the PVP layer through an
Au-S bond to extend the circulation period of the NPs in the

blood and enhance their stability. Secondly, polyethyleneimine
(PEI)-conjugated PAuNCs (PPAuNCs) were obtained by
conjugation of PEI onto the surface of the PAuNCs to condense
miRNAs, utilizing 11-mercaptoundecanoic acid (MUA) as a
linker. Thirdly, miRNAs were encapsulated with differently-sized
PPAuNCs via electrostatic interaction to obtain miRNA-loaded,
PEI-conjugated PEGylated AuNC binary nanocomplexes
(PPAuNCs-BNCs). Finally, to neutralize their slightly positive
charge and enhance their stability and biocompatibility, a small
amount of HA was added to PPAuNCs-BNCs to obtain the final
product, PPHAuNC-TNC (Figure 1A).

miRNAs were labeled with Cy5.5, a NIR fluorescent dye,
so as to visualize the effect of NP size on biodistribution
in vivo. Figure 1B shows real-time images of differently-sized
PPHAuNCs-TNCs in BEL-7402 tumor-bearing nude mice.
Notably, the fast tumor accumulation of PPHAuNCs-30-TNCs
was clearly observed at 0.5 h and approached saturation at 6 h
post-injection. For the PPHAuNCs-30-TNC group, sustainable
maintenance of the relatively high fluorescence density was found
at the tumor site at 24 h, which was similar to the PPHAuNCs-
50-TNC group. However, slower and less tumor accumulation
was observed for the PPHAuNCs-50-TNC group than for the
PPHAuNCs-30-TNC group. In addition, no obvious fluorescence
signals were detected at the tumor site 24 h after injection in the
PPHAuNCs-70-TNC and naked Cy5.5-labeled miRNA groups.
This was likely due to the accumulation at the tumor site being
too weak to be examined or its rapid clearance from the body.
The different biodistribution profiles of the three NPs clearly
indicated that NP accumulation in the tumor could be ascribed
to not only the EPR effect but also diffusion, which largely
relied upon the morphology, dimensions, and surface charges
of the NPs and the physicochemical properties of the interstitial
matrix. The above results confirmed that the PPHAuNCs-30-
TNCs and PPHAuNCs-50-TNCs efficiently delivered miRNAs
into the tumor.

Abraxane is the trade name of paclitaxel (PTX)-loaded human
serum albumin (HSA) NPs, which is an example of clinical
success of nanomedicine against cancer (Ma and Mumper,
2013). HSA is usually applied to encapsulate certain theraputic
drugs to promote their biocompatibility (Desai, 2016). Wang
et al. (2016a) constructed a targeted agent by employing PTX
and AIEgens for cancer imaging and therapy. The theranostic
nanoplatform included four elements: (1) AIEgens conjugated
with HSA for imaging; (2) cyclic arginine-glycine-aspartic
acid (cRGD)-modified HSA for specific recognition; (3) HSA-
functionalized polypyrrole (PPy) for thermotherapy; (4) PTX
as a chemotherapy agent and mediating the protein assembly.
Firstly, HSA-AIEgens was synthesized by introducing AIEgens
into a hydrophobic pocket of HSA, which endowed AIEgens
with strong fluorescence. Notably, due to the superb features
of AIEgens, the final product exhibited strong fluorescence
intensity even after conjugation with quencher-PPy. Next, the
imaging performance of the AIEgens-based nanoplatform was
investigated to assess tumor treatment efficacy in mice. With
intravenous injection for about 1 h, AIEgens fluorescences
were observed in the whole bodies of the mice, which were
associated with the large amounts of NPs in blood. Thereafter,
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FIGURE 1 | (A) Formation of PPHAuNC-TNC. (B) in vivo biodistribution of differently-sized PPHAuNCs-TNCs. After intravenous injection with (a) naked

Cy5.5-miRNAs (control group), (b) PPHAuNCs-30-TNCs, (c) PPHAuNCs-50-TNCs, and (d) PPHAuNCs-70-TNCs.

the nanoagent showed elevated accumulation in tumors with
enhanced fluorescence vs. time, which verified its ability to
target tumors specifically. Also, the fluorescence of the nanoagent
in mice still remained strong after injection for 48 h, which
indicated the superior performance of AIEgens in bioimaging
and their superb long-lasting retention in vivo.

Persistent Luminescence Imaging
Persistent luminescence is the phenomenon whereby
luminescence lasts for several seconds to even days after
switching off the excitation source. Generally, two types of active
centers, i.e., traps and emitters, contribute to the generation of
persistent luminescence. Intrinsic lattice defects or codopants in
the host material act as the traps, which are just a few electron
volts (eV) below the conduction bands. The emitters are usually
lanthanide or transition metal ions. The emergence of persistent
luminescence covers four consecutive processes: the formation of

charge carriers, trapping of charge carriers, release of the trapped
charge carriers, and recombination of the released charge carriers
to generate emission.

ZnGa2O4:Cr
3+ is gaining considerable attention because of

its strong NIR persistent luminescence upon UV excitation
(Bessiere et al., 2011). Maldiney et al. (2014a) introduced the
new generation of ZnGa2O4:Cr

3+ nanoprobes whose persistent
luminescence could be directly charged in vivo by incident
light with deep penetration and low energy. Low-temperature
sintering was adopted to prepare the nanoprobes. The excitation
spectrum of n-ZGO photoluminescence showed a broad spectral
range from ultraviolet to red light containing four bands
(Figure 2A, solid black line). The bands at 245, 290, and
425–560 nm corresponded to an exciton energy higher than
the bandgap of ZnGa2O4, interband excitation, and Cr3+ d-
d transitions, respectively. The 4A2 → 4T2 absorption band
was partly ascribed to weaker absorption of tissue domains
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FIGURE 2 | (A) Photoluminescence excitation (black solid line) and emission (black dotted line) spectra of Cr3+ doped n-ZGO. (B) Schematic representation of in vivo

imaging after in situ activation of persistent luminescence nanoparticles (PLNPs). (C) Optical image of a tumor-bearing mouse. (D) Persistent luminescence image of a

tumor-bearing mouse 2 h after injection of ZGO-PEG NPs. (E) Persistent luminescence image of a tumor-bearing mouse immediately after LED illumination, 4 h after

injection of ZGO-PEG NPs.

(red rectangle, Figure 2A). The n-ZGO PL emission (Figure 2A,
dotted black line) consisted of the 2E → 4A2 bandgap of Cr3+.
The mechanism for ZnGa2O4:Cr

3+ persistent luminescence
under visible light was related to antisite defects around the Cr3+

ion. Then, ZnGa2O4:Cr
3+ nanoprobes were directly injected

into mice without preliminary activation (Figure 2B). In the
first 2 h, there was no difference in the biodistribution between
tumor-bearing and healthy mice (Figures 2C,D). However,
persistent luminescence images of tumor-bearing mice clearly
showed the tumors 4 h after PEGylated ZGO administration and
following visible activation using the orange/red LED source
(Figure 2E).

Unfortunately, the persistent luminescence peak (around
700 nm) of ZnGa2O4:Cr

3+ made it difficult to use for deep
tissue imaging. Also, the emissions of Near-infrared persistent
luminescence NPs (NPLNPs) quickly decays over time, leading
to lower SNRs. Therefore, superior nanoprobes with higher
SNRs are urgently needed for bioimaging. Shi et al. (2018)
fabricated a desirable NPLNP, mSiO2@Gd3-Ga5O12:Cr

3+,Nd3+

(mSiO2@GGO), for bioimaging and cancer treatment. The
mSiO2@GGO NPs showed an intense emission at 745 nm using
254-nm excitation. The NIR emission was ascribed to the
Cr3+ spin-allowed 4T2/

4A2 transition. The 258-nm excitation
band was attributed to the GGO host absorption. After the
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nanoprobes were injected into mice, their luminescence signals
were detected throughout the body in 5min. An intensive
luminescence was observed in the liver due to nanoprobes
captured by the reticuloendothelial system (RES). The signal
intensities of the nanoprobes were even still maintained in
the liver after 60min. This suggested that the nanoprobes
could achieve long-duration imaging in vivo using their NIR-
I luminescence. Also, the mSiO2@GGO NPs could realize 2-
cm tissue imaging with high SNR (≈5.5). Three main emission
peaks were detected at 888, 1,067, and 1,338 nm, corresponding
to the eletronic transitions of Nd3+ from the excitation level
4F3/2 to the bottom states 4I9/2,

4I11/2, and
4I13/2 with 808-

nm irradiation, respectively. Among them, the emission peak at
1067 nm was predominant, demonstrating high NIR-II emission
efficiency. After the nanoprobes were subcutaneously injected
into the abdomens of mice, a remarkable NIR-II luminescence
signal was detected at the injection site, while negligible intensity
was determined at other abdomen areas, suggesting that the
nanoprobes can be applied for in vivo imaging in the NIR-
II region.

PLNPs have gained more attention in deep-tissue bioimaging
due to their emission in the NIR region, lack of in-situ excitation,
and high SNR (de Chermont et al., 2007; Abdukayum et al.,
2013). In particular, Cr3+-doped PLNPs can produce renewable
persistent luminescence under tissue-penetrating LED light,
which indicates that the imaging performance of PLNPs is
no longer restricted by the light-emitting lifetime (Li et al.,
2015a). Chen et al. (2016b) fabricated a novel luminescence
probe for bioimaging by combining PLNPs and metallic sulfide.
The nanoprobe is attractive due to its ultrasensitive switch-
on imaging response to targeted recognition. The PLNP,
Zn1.1Ga1.8Ge0.1O4:Cr

3+, served as the light source due to
its renewable persistent luminescence. CuS NP is not only
as a PTT agent but also serves as a quenching agent for
photothermal conversion and NIR absorption. A peptide
catalyzed by matrix metalloproteinase (MMP) was introduced to
construct the nanoprobe. Further modification with mercapto-
PEG and polypeptide endows the nanoprobe with desirable
biocompatibility and tumor specificity. To evaluate the activation
performance of the nanoprobe, it was intravenously injected into
mice after being treated by UV light for 10min. Remarkable
luminescence was clearly detected at the tumor site of mice for
about 2 h, showing efficient MMP activation and the superior
tumor-targeting recognition of the probe.

Some PLNPs consisting of host nanomaterials and codopants
have been extensively investigated; please see details in Table 1

(Liu et al., 2019a).

Near-Infrared Surface-Enhanced Raman
Scattering (NIR SERS) Imaging
NIR optical nanoprobes have received increasing attention
as multimodal therapeutic reagents for bioimaging and
photothermal tumor elimination. For optical imaging, SERS
has emerged as an attractive method with intense signal
response and good specificity (Gandra and Singamaneni, 2013;
Zhang et al., 2018). A narrow bandwidth, high resistance to

photobleaching, and autofluorescence make SERS an effective
tool for non-invasive single-cell assay, rapid disease diagnosis,
and nanomedical imaging (Maiti et al., 2012; Guerrini et al.,
2017). Three parts, including a noble metal matrix, Raman active
reporters, and a biocompatible surface coating, constitute a
typical NIR SERS nanoprobe.

The NIR SERS probe is usually prepared through direct
modification of a reporter molecule (e.g., a dye) onto the
metal surface. However, the electrostatic force-based metal-
dye framework leads to structural instability, particularly
in physiological environments (Wang et al., 2013b). Strong
cytotoxicity is another defect that limits the uses of dye-based
SERS probes in nanomedicine. Outer covering with hydrophilic
thiolated polyethylene glycol (PEG-SH) can evidently improve
the biocompatibility of the metal-dye system. However,
competitive binding of polymer and dye reporter with the noble
metal can reduce the SERS signal intensity of probes. Also, this
kind of PEG-based modification is unsuitable for PTT owing to
its labile steric conformation, which is subject to morphological
change (melting) upon high-power NIR irradiation (Wang
et al., 2012). Liu et al. (2015d) developed environmentally
friendly NIR SERS nanoprobes instead of using highly toxic
organic dyes. Multifunctional conducting polymer (CP), acting
as an outer modification layer and Raman-active molecule,
was immobilized on the surface of gold nanorods (GNRs).
The GNR-CP nanostructure was separately fabricated through
oxidatively chemical polymerization, utilizing two different
combinations of monomer and oxidant, namely pyrrole/FeCl3
and aniline/(NH4)2S2O8. Rod-shaped GNRs were synthesized
with average dimensions of 42.3 ± 6.9 nm long and 9.6 ±

1.4 nm wide (Figure 3A). Such nanoparticles are considered
to have an EPR effect and long-term retention in tumors. The
UV-vis-NIR absorption spectra of GNRs showed a transverse
and a longitudinal SPR peak at around 515 and 800 nm,
respectively. Figure 3Ab,c show different constructions of two
probes, GNR-polyaniline(PANI) and GNR-polypyrrole(PPy).
Remarkable shifts toward longer wavelengths and reductions in
absorbances were observed in the absorption curves of GNR-CPs
(Figure 3Ad). The SERS fingerprints of the nanoprobes were
dependent on excitation light source. Negligible SERS signal
were detected as the probes were illuminated with 514.5 nm light.
In comparison, very strong SERS signals appeared upon 785 nm
excitation. The strongest peaks were located at 945 cm−1 for
GNR-PPy and 1,170 cm−1 for GNR-PANI (Figure 3Ae,f), which
were ascribed to in-plane distortion and bending vibrations of
C-H in the quinoid group, respectively.

A549 cells exposed with the probe were investigated by
utilizing the above NIR SERS imaging. After cell exposure to
GNRs, the SERS images exhibited a very weak response from
cellular elements in the 600–1,700 cm−1 range (Figure 3Ba–c).
However, distinct SERS signals were obtained from cells exposed
to GNR-PANI (Figure 3Be–g) or GNR-Ppy (Figure 3Bh–j). The
results demonstrated that the probes were mainly distributed in
the cytoplasm. The characteristic signals from the cytoplasmwere
detected clearly in the SERS spectra (Figure 3Bd), displaying
the availability of SERS probes in the sophisticated cellular
environment. Moreover, cancer cells were cotreated with the two
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TABLE 1 | Persistent luminescence NPs for bio-imaging and therapy.

Hosts Dopants Comments and applications in bio-imaging References

Gd2O2S Eu3+,Mg2+,Ti4+ Regular NP shape, bimodality optical/MRI Rosticher et al., 2015

Ca3(PO4)2/hydroxyapatite Mn2+,Tb3+,Dy3+ Fully biocompatible, NPs and in vivo imaging Rosticher et al., 2015

Ca2Si5N8 Eu2+,Tm3+ Bioimaging applications Maldiney et al., 2012

SrAl2O4 Eu2+,Dy3+ NPs, functionalization, Bioimaging applications, green

emission

Zeng et al., 2018

Ca0.2Zn0.9Mg0.9Si2O6 Mn2+,Eu2+,Dy3+ NPs, functionalization, pioneer work for bio-imaging: cancer

cells imaging, cell targeting

de Chermont et al.,

2007

Ca1.86Mg0.14ZnSi2O7 Eu2+,Dy3+ FRET and various bio-sensing applications Sun et al., 2018

CaMgSi2O6 Mn2+,Eu2+,Pr3+ NPs, functionalization, bio-imaging Maldiney et al., 2011

MAlO3 (M = La, Gd) Mn4+/Ge4+ Bio-imaging in pork tissue Liu et al., 2016

GdAlO3 Mn4+,Ge4+Au

Sm3+,Cr3+
Trimodality imaging

Optical and magnetic dual mode imaging

Liu et al., 2016

Li et al., 2018b

ZnGa2O4 Cr3+ NPs, functionalization, bio-imaging (cancer cells imaging),

Cell targeting, cytotoxicity, visible Light NIR

photostimulation

X-rays activation

Oral administration

Breast cancer imaging

Toxicology analysis

Protobiotic analysis

Maldiney et al., 2014a

Xue et al., 2017; Liu

et al., 2018a

Ramirez-Garcia et al.,

2017; Liu et al., 2017

ZnGa2O4 in hollow

cavity

Cr3+ Photodynamic therapies Wang et al., 2018

ZnGa2O4 Cr3+,Gd3+ NPs, functionalization, bimodality optical/NMR imaging Maldiney et al., 2015

ZnGa2O4/SiO2 Cr3+ Core-shell structure, drug delivery Maldiney et al., 2014b

ZnGa2O4/Fe2O3 Cr3+ Cell labeling and magnetic vectorization Teston et al., 2018

ZGOCS@m-

SiO2@Gd2O3

Cr3+ Multimodal nanoprobes Zou et al., 2017

Zn1.1Ga1.8Ge0.1O4/SiO2 Cr3+,Eu3+ NPs, core-shell structure, drug delivery Shi et al., 2015a

Zn3Ga2Ge2O10 Cr3+ Imaging of pork tissue, Photostimulation, cytotoxicity Li et al., 2014a

Zn1.1Ga1.8Ge0.1O4@SiO2 Cr3+ Bio-imaging and drug delivery Liu et al., 2018b

Zn1.25Ga1.5Ge0.25O4 Cr3+,Yb3+,Er3+ Metastasis tracking and chemo-photodynamic therapy Li et al., 2018c

Zn1.1Ga1.8Ge0.1O4 Cr3+ Nanothermometry Yang et al., 2017a

Zn3Ga2Sn1O10 Cr3+ Imaging of goldfish Li et al., 2014b

Zn2.94Ga1.96Ge2O10 Cr3+,Pr3+ NPs, functionalization Abdukayum et al.,

2013

Zn3Ga2Ge2O10 Cr3+ Recognition of breast cancer cells Li et al., 2015b

Zn3Ga2GeO8 Cr3+,Yb3+,Er3+ Upconversion Liu et al., 2014b

LiGa5O8 Cr3+/PEG-OCH3 NPs, functionalization, bio-imaging, Visible light stimulation,

photostimulation

Liu et al., 2013; Fu

et al., 2014

Ca3Ga2Ge3O12 Cr3+,Yb3+,Tm3+ Pr3+,Yb3+ NIR stimulation, upconversion

in vivo imaging

Chen et al., 2014; Dai

et al., 2017

m-SiO2@Gd3Ga5O12 Cr3+,Nd3+ Multimodal imaging and cancer therapy Shi et al., 2018

Sr2SnO4 Nd3+ Finger image Kamimura et al., 2014

SiO2/CaMgSi2O6 Eu2+,Pr3+,Mn2+ Bio-imaging, intraperitoneal injection

Photostimulation imaging of pork tissue

Li et al., 2014c

Y3Al2Ga3O12 Er3+,Cr3+ Imaging in the second biological window Xu et al., 2018b

NaYF4 + SrAl2O4 Yb3+,Tm3+, Eu2+,Dy3+ Upconversion & photodynamic therapy Hu et al., 2018b

Sr2MgSi2O7 Eu2+/3+,Dy3+ Photodynamic activation

Visualization of abdominal inflammation

Homayoni et al., 2016

Yu et al., 2018

La3Ga5GeO14@SiO2@Van

(vancomycin)

Cr3+,Zn2+ Bio-imaging-guided in vivo & drug delivery Zhan et al., 2018

CaTiO3 Pr3+,Yb3+,Tm3+ Upconverting and guided photothermal therapy Zhao et al., 2017

ZnSn2O4 Cr3+,Eu3+ Cellular and deep tissue imaging Li et al., 2017a

Sr3Sn2O7 Nd3+ Second window imaging Kamimura et al., 2017
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FIGURE 3 | (A) Characterization of SERS nanoprobes: (a–c) TEM images of GNRs, GNR-PANI, and GNR-PPy, respectively. (d) UV-vis-NIR absorbance spectra of the

nanostructures. Raman spectra of GNR-PPy (e) and GNR-PANI (f) under 785 nm (red line) and 514.5 nm (blue line) laser excitation, respectively. Black lines show the

normal Raman spectra of CP molecules. (B) NIR SERS imaging of A549 cells after incubation with GNRs (a–c), GNR-PANI (e–g), and GNR-PPy (h–j) for 4 h. (d) Raman

spectra in the cytoplasmic compartments. Arrows indicate the Raman peaks used for SERS imaging. (k–n) Two-color imaging after incubation with a mixture of two

tags [brightfield image (k), GNR-PANI (l), GNR-PPy (m), merged image (n)].

probes. Figure 3Bl,m show SERS images of the probes and the
individual response distribution in cells. Notably, each mapping
was separate, which was attributed to the narrow bandwidth of
the Raman peaks.

Silver bumpy nanoshell (AgNS) has been explored as a
highly active NIR SERS nanoprobe for the biomedical field
(Premasiri et al., 2018). AgNS has intense scattering in the
NIR-region, where its SERS enhancement factor is higher than
those of gold nanorods or nanospheres. Also, AgNS has strong
NIR absorption, which is useful for PA imaging. Additionally,
AgNS do not induce any in vivo toxicity, as confirmed by
cytotoxicity tests (Baumberg et al., 2017). Cha et al. (2017)
demonstrated dual-modal detection of sentinel lymph nodes
(SLNs) using a silica-coated silver bumpy nanoshell probe
(AgNS@SiO2): imaging the SLN with a PA signal and in vivo
multiplex identification of targets in the located region with
SERS. Using the correctional Stöber approach, the surface of
AgNS was covered by silica-shell and finally treated with bovine
serum albumin (BSA) to enhance biocompatibility. AgNS@SiO2

possesses some advantages, e.g., high dispersion stability, facile
surface modification, and good biocompatibility. PA imaging was
adopted to detect the accumulated regions of AgNS@SiO2, and
the SERS signals were analyzed to identify different ratios of
several kinds of Raman-labeled AgNS@SiO2. After three different
types of Raman-labeled AgNS@SiO2 probes were injected into
rat’s left front paw pad, respectively, their PA and SERS signals
were monitored and analyzed to locate the SLN and identify
the targeted AgNS@SiO2. They successfully obtained PA images
and SERS spectra using the portable-Raman system with a
785-nm NIR-excited laser. This dual-modal imaging system may

be utilized in diagnostic fields, e.g., multiplex cancer marker
detection in vivo.

Photoacoustic (PA) Imaging
Photoacoustic (PA) imaging, a new method of visualization via
photoacoustic response, has increasing potential in nanomedical
fields (Kim et al., 2010). PA imaging has been explored
to visualize biostructures from organelles to cells to organs
(Wang and Hu, 2012). A contrast agent absorbs the excitation
energy and converts it into thermal energy. Thus, a wideband
ultrasound emission is produced due to heat-induced transient
thermoelastic expansion, which is collected with an acoustic
detector and transformed into PA images. PA imaging combines
the good specificity of optics and the deep-tissue transmission of
ultrasound (US), which overcomes the restrictions of traditional
imaging (Nie and Chen, 2014).

Perylene-3,4,9,10-tetracarboxylic diimide (PDI) and its
derivatives have been extensively applied to fabricate diverse
electronic devices based on their extraordinary physicochemical
properties, easy functionalization, and extremely low price
(Perrin and Hudhomme, 2011; Birel, 2017). Fan et al. (2015)
constructed an efficient PDI-based NIR-absorptive contrast
nanoagent enveloped by micelle for PA imaging of deep
brain tumor in living mice. To make PDI absorb in the NIR-
region, tertiary amine and diimide as donor and acceptor
were introduced to fabricate a classical donor-π-acceptor
system for increasing redshift efficacy. Water-soluble PDI NPs
were prepared by wrapping with amphiphilic PEG derivatives
(Figure 4A). These PDI NPs displayed strong NIR absorption
at around 700 nm in aqueous solution (Figure 4B). After 2-h

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 November 2019 | Volume 7 | Article 320

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Yang et al. Nanomaterial-Based Optical Imaging and Therapy

FIGURE 4 | (A) Schematic illustration of the PA imaging process of brain tumor in vivo by PDI NPs. (B) UV-vis-NIR absorption spectrum of PDI NPs in aqueous

solution. (C) Ultrasonic (gray), photoacoustic (green), and their overlay brain coronal sections of the tumor model after tail vein injection of PDI NPs. (D) PA spectra of

PDI NPs in different media. Skull region in the red dotted circle of (C) before NP injection (red line) and tumor region in the blue dotted circle of (C) after 2 d NP

injection (blue line).

injection, the PA signal at the skull region (red dotted circle)
intensified greatly due to the circulation of PDI NPs in the blood
vessel. After 1-d injection, a significant PA signal appeared in
the brain tumor region (blue dotted circle) of mice, but no
signal was found in the control group. Also, a 4.0-mm depth of
the tumor region was more clearly observed after 2-d injection
compared with a shallower depth (∼3.0mm) after 1-d injection
(Figure 4C), which was attributed to the enhanced tumor
penetration depth of NPs with time. The biodistribution of
PDI NPs in brain tumor was verified by measuring PA spectra.
Strong PA intensities at 700 and 735 nm (blue line) were clearly
observed in the tumor region after 2-d NP injection (Figure 4D),
which was consistent with the NIR absorption peak of PDI NPs
(Figure 4B). This indicated the successful accumulation of PDI
NPs in the tumor.

Carbon dots (CDs) are promising carbon-based imaging
probes due to their excellent biocompatibility, water solubility,
and photostability (Yang et al., 2009; Li et al., 2012, 2013).
However, the main challenge of CDs for practical application
is guaranteeing their biodegradability (Tang et al., 2013; Ge
et al., 2015; Jiang et al., 2015). Moreover, the mechanisms of
the interaction between CDs and low-energy photons are being
investigated to obtain high resolution and contrast for CD
optical imaging. Lee et al. (2016) synthesized a biocompatible
and N-doped type of CD (N-CDs) for PA imaging. N-CDs

were prepared by solvothermal carbonation using citric acid and
HNO3 as a C and N source. N-CDs showed strong absorption
in the NIR region (680–800 nm). N-CDs with high contents of
N atoms raised the ambient temperature more quickly upon
NIR (680–808 nm) laser irradiation. This was because a high
N content produced more bandgaps so that the carrier could
be captured from LUMO to a bandgap and relaxed between
bandgaps. N-CDs exhibited higher heat conversion efficiency
than conventional PA contrast agents (e.g., GNR and methylene
blue) under the same optical density. Therefore, N-CDs could
produce sufficiently intense PA effects to realize non-invasive
imaging and thermal therapy in vivo. The researchers carried
out time-resolved PA imaging of SLNs of Sprague-Dawley rats
and evaluated the biodegradability of N-CDs through renal
clearance. The relative PA signal was suddenly enhanced in
SLNs 30min after hypodermic injection of N-CDs and reduced
gradually until 180min. Meanwhile, the PA signal from the
bladder area rose intensively at 100min, suggesting the effective
removal of N-CDs to the urine. For tumor PTT, the N-
CDs displayed complete tumor ablation without recurrence for
Balb/c nude xenograft HepG2 tumor model mice with a tumor
volume of 27 mm3 upon 808-nm NIR laser irradiation. N-
CDs, as a kind of NIR-absorbing nanomaterial, will become
a potent contrast agent for PA bioimaging and for improving
PTT efficacy.
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A new type of optical nanoagent, semiconducting polymer
NP (SPNP), provides an inspiring strategy for solving the
nanotoxicity problem (Li and Pu, 2019). SPNPs with highly
conjugated structures exhibit excellent photothermal conversion
efficiency and photostability (Li et al., 2018d). Moreover, the
molecular versatility of SPNPs is not only beneficial to facile
tuning of the spectrum independent of size or morphology but
also allows the skeleton or side chain to be easily modified
for on-demand functionalization (Feng et al., 2013). Based on
these merits, SPNPs have been used as promising PA agents
for biomarkers and cancer detection (Lyu and Pu, 2017).
Furthermore, preliminary investigation has revealed that SPNPs
have the advantage of being degradable NIR-I nanoagents
(Lyu et al., 2018). Nevertheless, whether they can perform as
biodegradable NIR-II nanoagents has not been explored. Jiang
et al. (2019) fabricated metabolizable NIR-II SPNP-based agents
for PA imaging. By introducing the strong electron-withdrawing
group benzobisthiadiazole, the synthesized SPNPs (SPNP-PT,
SPNP-DT, and SPNP-OT) showed strong absorption at 1,079 nm
and superior photothermal conversion efficiencies at 1,064 nm.
Owing to the oxidizable thiophene group and hydrolyzable PEG-
based matrix in their skeletons, three NIR-II SPNPs (∼30 nm)
could be effectively decomposed into smaller sizes NIR NPs
(∼1 nm) by myeloperoxidase or lipase with high abundance
in vivo. Further, the SPNPs were completely eliminated in 15
days through renal or hepatobiliary metabolism in living mice.
Especially, SPNP-PT demonstrated good SNRs for PA imaging
of tumor or brain vasculature in mice under a systematic
dosage (2.5mg kg−1) lower than that of other reported agents
(≥10 mg kg−1).

Overall, various nanomaterials have been exquisitely designed
for deep-tissue PA imaging. PA contrast agents are mainly
categorized into inorganic and organic nanoagents based on their
structures (Table 2) (Wang et al., 2016b).

OPTICALLY ACTIVE NANOMEDICINE FOR
TARGETED THERAPY AND DRUG
DELIVERY

Photodynamic Therapy (PDT)
Photodynamic therapy (PDT) employs photosensitizers (PSs)
and light of a specific wavelength in combination with molecular
oxygen to generate reactive oxygen species (ROS) that kill
cancer cells through the oxidation of important biomolecules
and organelles (Zhou et al., 2016a). The introduction of NPs in
PSs provides the following advantages: (1) effective PS delivery
to the target site, (2) easy phase transfer of hydrophobic PSs
into an amphiphilic bloodstream to increase circulation time,
(3) use of the EPR effect for the effective diffusion of PSs
into tumors, (4) surface modification with various molecules,
enhancing the cellular uptake and targeting, and (5) multiple
functionality by combining the properties of NPs (e.g., multi-
modal imaging) with those of PSs (Lucky et al., 2015). A
myriad of inorganic and organic nanostructured PSs, e.g., gold
NPs (Dykman and Khlebtsov, 2012), metallic oxides (Bechet
et al., 2008), carbon-based materials (Albert and Hsu, 2016),

mesoporous silica (Montalti et al., 2014), polymeric micelles
(Elsabahy et al., 2015), and UCNPs (Wang et al., 2017), have
been developed for image-guided PDT therapies (Lan et al.,
2019).

Recently, AIE PS, a new family of PSs, has been gaining
more attention (Hu et al., 2018a). Owing to the inhibition of
non-radiative energy consumption and RIM, AIE PSs exhibit
enhanced signal intensity (Alifu et al., 2017) and produce more
ROS species in the aggregate state (Gu et al., 2017). These
properties of AIE-based PSsmake them a better choice for image-
guided PDT and tumor-killing (Wu et al., 2017a). However, PSs
with NIR emissions and high ROS production still remain to
be explored. Wu et al. (2017b) reported the fabrication of a
kind of PS TPETCAQ (Figure 5A) with AIE characteristics for
NIR image-guided PDT. Encapsulation of TPETCAQ using a
DSPE-PEG-MAL matrix and subsequent surface modification
with the HIV-1 transactivator were used to obtain the final
product, TPETCAQ NPs (Figure 5B). The resultant product
exhibited strong fluorescence emission intensity at 820 nm,
accompanied by much more 1O2 production than Ce6, a well-
known highly efficient PSs. The bioluminescence of tumor
in vivo progressively reduced with time, which demonstrated
that the nano-PSs were efficient for image-guided PDT. Also,
only very faint luminescence signals were detected from the
AIE-based PSs after 14 d, suggesting their high PDT efficacy
(Figure 5C). The excellent PDT efficacy of the AIE PSs was
further confirmed by tumor volume changes for different groups
(Figure 5D).

In addition to low toxicity, photobleaching resistance, and
deep tissue penetration, UCNPs also have the unique properties
of transforming from NIR emission to visible light (Gu et al.,
2013; Chan et al., 2015). Notably, the long-lived red emissions
from UCNPs overlap partly with the absorptions of some
PSs, e.g., ZnPc or Ce6, which offers a valid energy transfer
pathway to activate PSs for PDT under NIR irradiation (Idris
et al., 2015; Tian et al., 2015). Huang et al. (2016) prepared
Na0.52YbF3.52:Er UCNPswith intense red emission using a simple
solvothermal approach for multimodal imaging and tumor PDT.
A low [Na]/[Yb] ratio in UNCPs was found, owing to the
lack of elemental Na, which resulted in high luminescence
intensity and color purity for red UC emission of Er3+. The
UNCPs displayed dominant red and weak green UC emission
at 655 and 522/543 nm, which were attributed to the intra-4f
transitions of Er3+, 4F9/2 → 4I15/2, and

2H11/2/
4S3/2 → 4I15/2,

respectively. In addition, a thin SrF2 layer was modified on the
UNCPs, and the red UC emission intensity was increased by
about 17 times, while a relatively high intensity ratio (∼5.8) of
Red/Green was still retained. To make them utilizable in vivo,
the Na0.52YbF3.52:Er@SrF2 UCNPs were further modified with
DSPE-PEG to obtain the final low toxicity product Lipo-UCNPs.
Significantly, the PS ZnPc-loaded Lipo-UCNPs exhibited high
efficacy in 1O2 production and cancer cell killing under 915 nm
irradiation, avoiding the overheating effect usually resulting from
980 nm excitation. After intratumoral injection of 50 µL ZnPc-
Lipo-UCNPs (10mg mL−1) into HeLa tumor-bearing mice, the
tumor volumes increased much more slowly, demonstrating
the significant tumor growth rate inhibition effect of the
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TABLE 2 | Examples of PA contrast agent explored in PA imaging.

Materials Types of nanoagents Advantages (+)/Disadvantages (-) References

Inorganic Metallic nanomaterials Au nanorods;

Au nanostars;

Au nanocages;

Au nanoshell;

Au nanovesicles;

Au nanoflowers;

Ag nanoplates;

Palladium nanoplates;

antimony nanoparticles

(+) tunable physiochemical

properties;

chemically inert element with

reasonable

biocompatibility; able to carry

cargoes.

(–) non-biodegradability;

suboptimal photothermal stability

Chen et al., 2015b; Zhong et al.,

2015

Wang et al., 2015a

Zhang et al., 2013

Topete et al., 2014

Song et al., 2015a

Huang et al., 2014a

Homan et al., 2012

Nie et al., 2014

Li and Chen, 2015

Carbon-based nanomaterials Carbon nanotubes;

Graphenes;

Carbon dots

(+) able to carry cargoes;

good photothermal stability.

(–)

non-biodegradability; heterogeneity

Zhang et al., 2015

Lalwani et al., 2013; Sheng et al.,

2013; Ge et al., 2015

Transition metal chalcogenides

(TMC)-based nanomaterials

CuS; WS2; MoS2;

FeS; Bi2S3; CuSe;

Co9Se8; Bi2Se3

(+) high photothermal conversion

efficiency;

good photothermal stability; low cost.

(–) non-biodegradability;

contain heavy metal elements

Cheng et al., 2014a; Yin et al., 2014

Cui et al., 2015; Yang et al., 2015b

Hessel et al., 2011; Liu et al., 2015e

Song et al., 2015b

Organic Dyes Porphyrin- and

Cyanine-based dyes,

e.g., Indocyanine green (ICG), IR780,

IR825, etc.

(+) good

biocompatibility/biodegradability.

(–) poor aqueous solubility,

low photothermal stability,

short bloodstream circulation half-life

Sheng et al., 2014;

Wang et al., 2015b

Lovell et al., 2011; Song et al., 2015c

Huang et al., 2014b; Chen et al.,

2015a; Rong et al., 2015

Polymer-based nanomaterials Polypyrrole;

Polyaniline;

Polydopamine;

Semiconducting

polymers

(+) good biocompatibility and

photothermal stability; able to carry

cargoes.

(–) their biodegradation behaviors

remain unknown

Yang et al., 2011; Lin et al., 2014

Yang et al., 2012; Pu et al., 2015

UNCP-based PDT. The results revealed the great potential of
UCNPs with high-purity red emission for imaging-guided PDT
of tumors.

Most PSs for PDT possess poor solubility in water and
suboptimal selectivity in vivo (Yan et al., 2015). To overcome
these limitations, PSs are usually conjugated with nanocarriers
with a high surface area, e.g., GO (Yang et al., 2013). Various
PSs have been designed to load on the surface of GO via π-
π stacking and hydrophobic forces for tumor imaging and
PDT in animal models (Rong et al., 2014; Shi et al., 2014).
However, most PS-GO nanoconjugates passively targeted to
tumors in vivo via an EPR effect. Thereby, some tumor-specific
molecules (e.g., peptides, ligands, and antibodies) need to be
modified onto GO to increase targeting and PDT efficacy (Shi
et al., 2015b). Yu et al. (2017) fabricated a PS-loaded GO
nanocomplex by conjugating PEGylated GO with a tumor-
selective HK peptide that can specifically bind to highly expressed
integrin αvβ6 receptor in many tumor types and following
functionalization with a PS. The tumor uptake of GO(PS)-PEG-
HK was obviously higher than that of free PS and GO(PS)-PEG,
demonstrating the specific intake of the nanocomplex in tumors
by the recognition of integrin αvβ6. Tumor recurrence, especially
lung metastasis, was significantly inhibited in mice for nearly
a month by vaccination with necrotic 4T1 tumor cells induced
by the nanocomplex PDT. The nanocomplex-treated necrotic
tumor cells could activate dendritic cells and significantly

inhibit tumor growth and lung metastasis by increasing the
infiltration of cytotoxic CD8+ T lymphocytes in tumor. Using the
nanocomplex, the primary tumor, and the residual tumor cells
could be efficiently killed by activating host anti-tumor immunity
and stimulating the immune memory, accordingly prohibiting
distant metastasis. These findings suggest that nanocomplex-
based PDT is an effective strategy for eliminating residual cells
after tumor resection and preventing tumor recurrence and
distant metastasis.

Photothermal Therapy (PTT)
Photothermal therapy (PTT) utilizes the photothermal effect of
a photothermal transduction agent (PTA) that can harvest the
energy from light and transform that energy into heat to raise
the surrounding temperature and induce the death of cancer
cells. An ideal PTA should possess high photothermal conversion
efficiency (PCE), strong absorption in the NIR region, and good
accumulation in tumors without toxic side effects. In particular,
nano PTAs can accumulate in tumors through the EPR effect
and active targeting. Also, nano PTAs can realize higher PCE
than small-molecule PTAs and can potentially be used with
multiple imaging modalities and incorporate various therapeutic
functions for advanced application (Cheng et al., 2014b). Nano
PTAs can be divided into inorganic and organic materials (Gai
et al., 2018). Inorganic materials include noble metals (Riley and
Day, 2017), metal chalcogenides (Li et al., 2017b), carbon-based
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FIGURE 5 | (A) Design of TPETCAQ. (B) Synthesis of TPETCAQ-1 NPs and TPETCAQ NPs. (C) Time-dependent bioluminescent 4T1-luc tumor imaging of mice after

intratumoral administration of TPETCAQ NPs (30 µL, 1mg mL−1 for TPETCAQ, top panel) or saline (bottom panel) with light irradiation (300 mW cm−2, 5min) at 1 h

post-injection. (D) Tumor volume measurement for different groups of mice. ***P < 0.001.

materials (Hong et al., 2015), and other two-dimensional (2D)
materials (e.g., black phosphorus, nanosheets, boron nitride,
graphitic carbon nitride, MXenes) (Chen et al., 2015c; Augustine
et al., 2017; Tan et al., 2017; Choi et al., 2018; Huang et al., 2018).
Organic PTAs include semiconducting polymer NPs (SPNPs),
nanomicelle-encapsulated NIR dyes, and porphysomes (Jung
et al., 2018; Liu et al., 2019b).

Recently, stoichiometric semiconductor metal sulfide
nanocrystals (e.g., Ag2S and CuS) have been developed for
optical imaging and PTT due to their strong absorption
capacity in the NIR-region, negligible photobleaching, high
photoconversion efficiency, ultrasmall size, and good inertia
(e.g., the solubility product constant is Ksp = 6.3×10−50

for Ag2S) (Hong et al., 2012b). Yang et al. (2017b) designed
dimension-dependent Ag2S nanodots (NDs) as a photothermal
agent for PTT and multimodal imaging. These NDs are
prepared by finely modulating their growth within clinically
acceptable HSA nanocages (Figure 6A). They exhibited a narrow
emission band (full-width at half-maximum ∼8.0 nm) due to

their monodisperse size distribution (Figure 6B). Also, larger
NDs showed a higher fluorescence response in the NIR-II
range, suggesting that the fluorescence spectrum strongly
depended upon their diameters. Ag2S-NDs also displayed
obvious size-dependent temperature elevations (Figure 6C),
mainly originating from their size-dependent molar extinction
coefficients. Additionally, strong non-radiative energy decay
in the conduction band may contribute to the efficient
photothermal conversion efficacy of the NDs. The improved
circulation and EPR effect of NDs caused them to be mainly
distributed into tumor, suggesting their high uptake in tumor
(Figure 6D). The NDs showed remarkable fluorescence within
tumor at 48 h after injection, whereas the control group displayed
a faint signal due to fast elimination of NDs (Figure 6E). These
findings indicated that the NDs could be accumulated at the
tumor site for a long time, which was beneficial to flexible
imaging or PTT. The NDs showed time-dependent uptakes in
other tissues, including heart, liver, spleen, lung, and kidney.
Moreover, the NDs were progressively excluded from the tissues
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FIGURE 6 | (A) Schematic illustration of construction of theranostic Ag2S nanodots in HSA Nanocages. (B) Fluorescence spectra of Ag2S-NDs. (C) Temperature

elevations of Ag2S-NDs under 5min irradiation (785 nm, 1.5W cm−2). (D) Biodistribution of Ag2S-NDs at 24 h post-injection. (E) NIR fluorescence imaging of

4T1-tumor-bearing mice treated with Cy7.5-labeled Ag2S-NDs at 72 h post-injection. (F) Long-term distributions of Ag2S-NDs in various major tissues during 30 days

post-injection. Dose: 50.0 µmol kg−1 Ag.

in 30 days via renal excretion (Figure 6F), thus avoiding potential
toxicity concerns.

Copper chalcogenide (Cu2−nR, R = S, Se, Te, 0 ≤ n ≤

1) NPs, which possess strong localized SPRs (LSPRs) in the
NIR region due to copper deficiency, have been employed for
PA imaging and PTT (Coughlan et al., 2017). Cu2−nR NPs
may be much smaller than conventional photothermal agents
such as GNPs (typically >50 nm in 1D to generate NIR LSPR).
Also, their good biodegradability allows the release of the vital
trace elements copper and chalcogen to maintain the health
of the organism (for example, selenium or copper deficiency
contributes to the incidence and mortality of some cancers [e.g.,
liver, prostate, and lung)] or the evolution and aggravation of
some cardiovascular diseases and diabetes (Zhou et al., 2016b).
Monodisperse Cu2−nSe NPs are usually synthesized in organic
solvents at high temperature, and they then need laboriously
subsequent modification to make them utilizable in biological
fields (van der Stam et al., 2015; Yan et al., 2017). Zhang
et al. (2016) prepared novel ultrasmall PEGylated Cu2−nSe
NP in aqueous solution for multimodal imaging-guided tumor
PTT. The Cu2−nSe NPs were synthesized in distilled water and
formed by a characteristic dark green solution and were then
functionalized with dimercaptosylated PEG to enhance their
solubility, dispersity, and biocompatibility after ultrafiltration.
The final product displayed strong LSPRs in the NIR region
(600–1,100 nm) owing to the high hole density due to copper
deficiency. The high extinction coefficient (8.5 Lg−1 cm−1)
of the PEGylated Cu2−nSe NPs at 808 nm reflected a distinct

photothermal conversion capability. Also, the NPs showed good
photothermal stability and long-term circulation with a half-
life of 8.14 h owing to the presence of water-soluble and large
sterically hindered PEG. After intravenous injection of the
PEGylated Cu2−nSe NPs into BALB/c mice bearing 4T1 tumors
(130 mm3 volume), the tumor temperature of the mice rose
steeply to 57.6◦C during NIR irradiation, which was high enough
to kill the cancer cells and to halt their lethal proliferation. The
tumors shrank and became black scars at day 3 and were removed
totally in 16 d without recurrence. These NPs might become an
effective PTT agent for in vivo tumor therapy.

Nanodiamonds (NDDs) with diameters of 2–10 nm and a
truncated octahedral framework have appeared as innovative
materials for bioimaging and therapy due to their good
biocompatibility, spherical morphology, high density, large
surface area, and surface functionality (Mochalin et al., 2011).
Ryu et al. (2016) designed folic acid (FA)-conjugated NDD
(FA-NDD) nanoclusters by using the unique features of NDDs
for PTT. FA was selected as a model targeting ligand for
tumor and receptor-mediated endocytosis since its receptors
are generally overexpressed in some types of tumor cells. Their
spherical morphology and good biocompatibility enabled NDDs
to act as a nanoplatform for delivery systems. Amination of
NDD nanoclusters with -COOH via 1,2-ethylenediamine and
subsequent modification with FA by carbodiimide chemistry
were performed. After 5-min laser irradiation, the temperature
of NDD (10 µg mL−1) rose to 54◦C. Compared with WI-38 cells
(negative control), FA-NDD nanoclusters easily entered the KB
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FIGURE 7 | (A) Schematic illustration for the preparation of charge-convertible CD-based drug nanocarrier. pHe means tumor extracellular pH. (B) Schematic

illustration for the drug delivery process: (1) negative charge/PEGylation to prolong circulation time, (2) accumulation at the tumor site through the EPR effect, (3)

responsiveness to tumor extracellular pH, (4) effective uptake by cancer cells, (5) facilitated endosome escape by the “proton sponge” effect and controlled cisplatin

release, and (6) cisplatin binding with DNA to exhibit cytotoxicity. (C) Relative tumor volume achieved from mice after intravenous treatments with CD-based drug

nanocarrier. (D) Photographs of mice and excised tumors from representative euthanized mice. (E) H&E stained tumor slices from different groups after 14-day

treatment. ***P < 0.001.

cells (positive control), indicating specificity to tumor cells that
overexpress FA receptors. Cell viability assay and fluorescence
microscopic imaging clearly showed that FA-NDD preferred to
ablate KB cells selectively rather than WI-38 cells under NIR
laser illumination. For tumor-bearing nude mice, a substantial
accumulation of FA-NDD in tumor led to a significant decrease
in tumor volume, and almost absent 14 d after NIR laser exposure
as compared to NDD nanoclusters. These results clearly verified
that the combination of the FA-NDD nanoclusters and NIR light
might be an efficient and feasible tumor therapy.

Optical-Responsive Drug Delivery
The effective delivery and release of drugs to targets remains
a great challenge to improving therapies for human diseases
(Devadasu et al., 2013). A recognized strategy is to construct
a target-specific drug delivery system (DDS) that can carry
an efficient dosage of the drug to targeted cells and tissues
(Wong and Choi, 2015). An ideal stimuli-responsive DDS should
possess the following features: biocompatible or biodegradable
composition, high drug-loading capacity, a site-specific delivery
mechanism to spare normal cells and tissues, no premature
drug release, and accurate release in response to exogenous or
endogenous stimulus (Karimi et al., 2016; Liang et al., 2016).
Various nanocarriers such as liposomes (Grimaldi et al., 2016),

polymers (Nicolas et al., 2013; Tong et al., 2014), micelles
(Cabral et al., 2018), dendrimers (Astruc et al., 2010), silica
(Wen et al., 2017), gold NPs (Arvizo et al., 2012), black
phosphorus (Qiu et al., 2019), and carbon-based nanomaterials
(Panwar et al., 2019) have been developed for medical purposes.
Robust and effective nanocarriers could even be responsive to
multiplex combinations of diverse stimuli to further strengthen
their specificity for targeted and controlled drug delivery (Biju,
2014).

CDs can serve as imaging probes or as nanocarriers for
transporting the targeted theranostic agents (e.g., PSs, drugs,
genes) (Boakye-Yiadom et al., 2019). The surfaces of CDs,
as the drug nanocarriers, are usually modified by negatively
or positively charged PEG, which affects their therapeutic
efficacy and future biological application. Owing to electrostatic
repulsion from the same-charged cell membrane, negatively
charged PEGylated CDs nanocarriers cannot easily enter
the cancer cells, which affects intake and ultimately leads to
low curative effects. Due to non-specific interactions with
cellular ingredients (e.g., serum), positively charged CD
carriers can be easily endocytosed through RES, resulting
in quick clearance from blood circulation. Also, positively
charged nanocarriers can be phagocytized by healthy cells to
produce some potential toxicity via charge attraction with cell
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membrane (Mishra et al., 2018). To solve the above-mentioned
problems, Feng et al. (2016) developed a cisplatin-loaded
charge convertible CD nanocarrier functionalized by poly-
(allyamine)-modified PEG, which could sensitively distinguish
the pH difference between tumor pathologic outcomes and
the normal physiological environment for controllable drug
delivery (Figure 7A). The anionic poly-(allyamine)-modified
PEG polymer with dimethylmaleic acid on the constructed
CD nanocarrier would experience a charge transformation
into the cationic polymer under the mild acidity of tumor
cells (pH ∼ 6.8), resulting in intense electrostatic repulsion
and “leakage” of cisplatin(IV)-CD cations. Significantly,
positive cisplatin(IV)-CDs showed high affinity for negative
cancer cell membrane, thus leading to the enhancement of
internalization and efficient release of drug in the reductive
cytosol (Figure 7B). Tumors growth in mice injected with the
drug-loaded CDs were greatly suppressed during 14 days of
treatment (Figure 7C). The digital images of tumor excision
in mice further confirmed that the sizes of the tumors were
smallest using the drug-loaded CDs, indicating their better
treatment efficiency (Figure 7D). Also, through hematoxylin
and eosin (H&E) staining analysis of tumor tissues (Figure 7E),
the drug-loaded CD treatment groups exhibited the greatest
degree of cell injury, which was consistent with the tumor
growth data.

Zinc gallogermanate structured PLNPs have demonstrated
superior physiochemical properties, e.g., a strong NIR signal
(quantum yield ∼10%), superlong optical lifetime (>90 h),
monodisperse stability, and minimal poisoning (Abdukayum
et al., 2013). The superlong sustained emission and red
light renewability of the trivalence-doped zinc gallogermanate
PLNPs (ZGGO:Cr3+,Yb3+,Er3+) are the principal basis for long
circulation bioimaging and drug release in living organisms
(Li and Yan, 2016). Also, the easily controllable surface
modulation of ZGGO PLNPs makes them desirable alternatives
for fabricating the drug carriers. Liu et al. (2018b) incorporated
red blood cell membrane vesicles withNIR PLNPs to construct an
erythrocyte membrane bioexcited optical nanocarrier. In order
to realize the biomimetic pattern, erythrocyte membrane vesicles
were isolated from RBC and then fused with mesoporous SiO2-
coated ZGGO to form the membrane bioexcited nanocarriers.
Three groups of 4T1 tumor-bearing mice were individually
treated with unmodified, SiO2-coated, or membrane-fused
ZGGO via tail vein injection. The NPs were mainly distributed in
the two primary RES organs (i.e., liver and spleen) and the tumors
due to EPR effects. Meanwhile, compared with two other NPs,
the membrane-fused ZGGO exhibited a far higher proportion
of retention capacity. Moreover, the amounts of membrane-
fused ZGGO loaded with the drug Dox in blood were measured,

and the results indicated a long cycling period with a half-life
of 9 h. Furthermore, injection of the drug-delivery vehicle into
mice exhibited improved sustained-release efficacy of the NPs,
strongly confirming the efficient decrease of systemic clearance
and extension of circulation time caused by the biomimetic
membrane coating. Employment of the drug-delivery system in
the 4T1 orthotopic mammary tumor model showed the best
tumor growth inhibition performance.

SUMMARY AND PERSPECTIVES

By conjugating with different functional groups, ligands,
and biomolecules, multifunctional NPs have displayed superb
capabilities in diagnosis and therapeutic applications. Diverse
designs and synthesis strategies have been developed to achieve
specific NPs offering targeted and controlled drug delivery for
practical use.Multiple aspects of NP research, from investigations
of the effects of different kinds of NPs and their sizes on the
imaging and therapeutic efficacy in biological environments
to studies of specific ligand targeted drug delivery, have been
carefully performed.

Despite these exciting achievements in the last few years,
the distinctive functions of multifunctional nanomaterials
have influenced the injection dose in different imaging
models and therapy types. Therefore, the issues around the
controllable synthesis of nanoagents, synergistic theranostic
effects, and short-term and long-term toxicity should be carefully
investigated as a whole to realize every function (diagnosis and
therapy) and to achieve the lowest side effect with single injection.

More investigations are required to improve the performance
of theranostic agents, such as intensifying excretion,
strengthening continuous monitoring, prolonging blood
circulation time, promoting physiological barrier penetration,
evading the RES, and accelerating more materials into clinical
trials. Therefore, continuous innovations and development for
novel theranostic approaches are necessary to meet growing
clinical requirements.
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