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Background: Various human machine interfaces (HMIs) are used to control prostheses,

such as robotic hands. One of the promising HMIs is Force Myography (FMG). Previous

research has shown the potential for the use of high density FMG (HD-FMG) that can

lead to higher accuracy of prosthesis control.

Motivation: Themore sensors used in an FMG controlled system, themore complicated

and costlier the system becomes. This study proposes a design method that can

produce powered prostheses with performance comparable to that of HD-FMG

controlled systems using a fewer number of sensors. An HD-FMG apparatus would be

used to collect information from the user only in the design phase. Channel selection

would then be applied to the collected data to determine the number and location of

sensors that are vital to performance of the device. This study assessed the use of

multiple channel selection (CS) methods for this purpose.

Methods: In this case study, three datasets were used. These datasets were collected

from force sensitive resistors embedded in the inner socket of a subject with transradial

amputation. Sensor data were collected as the subject carried out five repetitions of six

gestures. Collected data were then used to asses five CS methods: Sequential forward

selection (SFS) with two different stopping criteria, minimum redundancy-maximum

relevance (mRMR), genetic algorithm (GA), and Boruta.

Results: Three out of the five methods (mRMR, GA, and Boruta) were able to decrease

channel numbers significantly while maintaining classification accuracy in all datasets.

Neither of them outperformed the other two in all datasets. However, GA resulted in

the smallest channel subset in all three of the datasets. The three selected methods

were also compared in terms of stability [i.e., consistency of the channel subset chosen

by the method as new training data were introduced or some training data were

removed (Chandrashekar and Sahin, 2014)]. Boruta and mRMR resulted in less instability

compared to GA when applied to the datasets of this study.

Conclusion: This study shows feasibility of using the proposed design method that

can produce prosthetic systems that are simpler than HD-FMG systems but have

performance comparable to theirs.

Keywords: force myography, gesture classification, channel selection, prosthesis control, robotic hand, high

density FMG, upper limb prosthesis
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1. INTRODUCTION

This section provides an application background, explains the
motivation of this study, and outlines some of the related work.
It also provides an introduction to channel selection and its
various categories.

1.1. Application Background
The quality of life of an individual with upper limb amputation
could be drastically affected by their decreased autonomy as
a result of the loss of their limb (Castellini and Koiva, 2013).
Powered prostheses can provide users with means to gain back
some of their upper limb functionality and subsequently increase
their self-sufficiency. Reliability and intuitiveness of prostheses
control play important roles in user experience and are amongst
factors lack of which can lead to prostheses abandonment
(Biddiss and Chau, 2007; Ahmadizadeh et al., 2017). Issues
concerning these factors are commonly addressed through
advancements in robustness of human machine interfaces
(HMIs) used for prostheses control and through the use of
pattern recognition for more intuitive control.

Various invasive and non-invasive HMIs have been
introduced for the control of upper limb prostheses. Some
of the non-invasive HMIs for this application that have gained
interest in the research community are: gaze tracking (Castellini
and Koiva, 2013), electromyography (EMG) (Castellini et al.,
2009; Scheme and Englehart, 2011), electroneurography
(ENG) (Cloutier and Yang, 2013), mechanomyography
(MMG) (Xiloyannis et al., 2015), force myography (FMG)
(Rasouli et al., 2015), etc.

Recent studies have demonstrated FMG to be a promising
HMI for upper limb prosthesis control (Cho et al., 2016;
Radmand et al., 2016; Ahmadizadeh et al., 2017; Jiang et al., 2017;
Sadeghi Chegani and Menon, 2018). FMG monitors changes in
volumetric pattern of user’s forearm and detects intentions of
the user based on these changes (Rasouli et al., 2016). Various
methods are used to monitor these volumetric variations, one
the most common of which is the use of force sensitive resistors
(FSRs) (Castellini and Ravindra, 2014; Jiang et al., 2017).

A study by Jiang et al. showed that FMG has the potential to
outperform the more traditionally accepted HMI, i.e., sEMG, for
hand gesture classification (Jiang et al., 2017). In this study, Jiang
et al. reported classification accuracies of as high as 83.5% for 48
static hand gestures using 8 FSRs with 12 healthy participants.
Ferigo et al. reported classification accuracies of 81.2 and 72.8%
for 6 and 11 static gestures, respectively, in a case study with one
participant with transradial amputation (Ferigo et al., 2017). Cho
et al. reported 62.61 and 41.73% classification accuracies for 6
and 11 static hand gestures, respectively, by placing eight FSRs
on the residual limbs of 4 subjects with transradial amputations
(Cho et al., 2016).

High density FMG is a potentially enhanced alternative
for low density FMG. Belyea et al. conducted a study to
demonstrate possibility of using high density force myography
(by using a grid of 16 by 24 pressure sensors) for proportional
control of upper limb prostheses (Belyea et al., 2018). Radmand
et al. also investigated high-density force myography for upper

limb powered prosthesis control (Radmand et al., 2016).
Despite the potential increased performance of high density
sensory systems, their higher cost in terms of computation,
signal acquisition hardware, and problem complexity can lead
to their incompatibility for many applications. Reduction of
complexity of such systems could be possible through the use of
channel selection.

Channel selection (CS) is a technique that reduces the
dimension of input data by removing irrelevant input variables
while maintaining the ones with vital information in the selected
feature subset. The final channel subset leads to no or little
reduction of performance of the system (Thiemjarus et al., 2004;
Yu et al., 2006). In cases without feature extraction, such as
this study, input channels (sensor data in this study) and input
features are the same (Wang et al., 2017), and channel selection is
the same as feature selection. Moving forward, in this article, the
term “feature selection (FS)” is used due to its more common use
in this field and others.

Feature selection methods mostly involve iterations of two
steps until their stopping criterion is met (Deng et al., 2008).
The two iterative steps are feature subset selection and evaluation
of performance of the chosen subset (Deng et al., 2008). FS
algorithms utilize various search techniques for selection of
feature subsets (Deng et al., 2008) based on which they fall under
three main categories: filter methods, wrapper methods, and
embedded methods (Pal and Foody, 2010; Xu et al., 2010; Yan
and Zhang, 2015).

Filter methods generally rank features based on a scoring
criterion with no dependence on any classifier (Yan and
Zhang, 2015). Wrapper methods select feature subsets based
on their classification performance. These methods directly
utilize the corresponding classifier as a wrapper for their
search mechanism (Ding and Peng, 2005; Xu et al., 2010;
Duro et al., 2012). Based on the search strategy used for
feature subset selection, wrapper methods are divided into two
main categories: sequential selection algorithms and heuristic
search algorithms (Chandrashekar and Sahin, 2014). Embedded
methods incorporate feature selection into the classification
training process to reduce the cost of re-classification in wrapper
methods (Deng et al., 2008; Chandrashekar and Sahin, 2014).

The use of feature selection in gesture classification has been
explored in multiple studies. Wang et al. conducted a study to
investigate feasibility of using FS for channel optimization of
sEMG for gesture recognition. In this study, they used Genetic
Algorithm to select channels based on data recorded from six
able-bodied participants performing 13 gestures. They reported
classification accuracy of 72.3% (97% of maximum accuracy that
is obtained using all channels) after 0.125% reduction in the
number of channels (Wang, 2019). Li et al. also conducted a
study in which they performed channel selection for both sEMG
and EEG that were used in fusion for control of upper limb
prostheses. This study investigated data from four individuals
with amputations performing five motion classes. In this study,
Sequential Forward Selection was used for channel selection from
32 sEMG and 64 EEG channels. They reported classification
accuracies of 84.2 and 87.0% for two optimized channel numbers
(10 sEMG and 10 EEG channels, 10 sEMG and 20 EEG channels).
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The maximum classification accuracy (91.7%) was obtained
when all channels were used (Li et al., 2017).

Dimension reduction for FMG HMI systems has been
attempted by Radmand et al. (2016) and Jiang et al. (2017). Jiang
et al. utilized a sequential forward feature selection algorithm
for selection of 8 sensors out of a total of 16 sensors (Jiang
et al., 2017). They reported a statistically significant decrease in
accuracy of the system due to this reduction in the number of
sensors (Jiang et al., 2017). Radmand et al. conducted a study
that used channel reduction to reduce input dimension. In this
study, reduction of groups of channels was investigated. Channels
were grouped based on location of their corresponding sensor
in the matrix. They reported that they were able to maintain
classification accuracy with a lower density of sensors with some
of the channel reduction options they explored (Radmand et al.,
2016). To the best of our knowledge, no study has attempted
feature selection for high density FMG without grouping sensors
based on their location.

In addition to robustness of the HMI used for prostheses
control, intuitiveness of control also affects prostheses user
satisfaction. Pattern recognition plays an important role in
enhancement of this aspect of user experience in prostheses
applications. Various classification methods have been assessed
for FMG controlled prostheses, some of the commonly used ones
of which are linear discriminant analysis (LDA), support vector
machine (SVM), and k-nearest neighbors (KNN) (Naik et al.,
2015; Ahmadizadeh et al., 2017). Amongst these, LDA is one of
the most widely used classifiers due to its capability in separating
different classes of gestures and also its computational efficiency
(Cho et al., 2016; Radmand et al., 2016; Xiao and Menon, 2017a).
A study by Ahmadizadeh et al. compared performance of the
three aforementioned classifiers for gesture classification using
FMG data and determined LDA to be the classifier of choice for
their study (Ahmadizadeh et al., 2017).

Another classification method that has recently gained
attention in research communities for gesture recognition is
deep learning. Through the availability of technologies that
allow for collection and accessibility of large datasets used for
gesture recognition and activity tracking (e.g., smart watches,
Microsoft’s Kinect, and data management and sharing systems),
deep learning has become a promising method for such
applications (Phinyomark and Scheme, 2018). Variousmodalities
are used as inputs for these deep learning models including
RGB images, skeletal data, depth information, audio, video,
etc. (Asadi-Aghbolaghi et al., 2017). Huang et al. used a novel
3D convolutional Neural Network (CNN) for sign language
recognition which implicitly extracts features from the input
video stream (Huang et al., 2015). Similarly, Molchanov et al.
employed 3D CNN for hand gesture recognition for touchless
control in automotive applications (Molchanov et al., 2015).

Recent expansion of EMG data sources due to availability
of benchmark datasets and also development of high-density
EMG systems providing spatial and temporal information about
muscle activities, has made deep learning approaches relevant
for EMG data and thus a candidate for prosthetic control
applications (Phinyomark and Scheme, 2018). Georgi et al. used
Hidden Markov Models (HMMs) for gesture recognition using

an Inertial Measurement Unit (IMU) and HD-sEMG data from
five subjects and 12 gestures and reported recognition rates of
about 97.8 and 74.3% for session-independent and for person-
independent cases, respectively (Georgi et al., 2015). In another
study, Du et al. used deep convolutional networks for HD-
sEMG data from 23 participants performing up to 12 gestures for
inter-session gesture recognition in muscle computer interface
applications. They reported recognition accuracies of 63.3 and
55.3% for 12 basic finger movements in inter-session and inter-
subject cases, respectively (Du et al., 2017). Geng at al. also
conducted a study employing deep convolutional networks for
sEMG data for gesture recognition application. They reported
within-subject recognition accuracy of 89.3% for 8 gestures using
an instantaneous frame of sEMG image (Geng et al., 2016).

In activity/gesture recognition tasks like the one studied in
this article, when practical use case of the application including
dynamic movements of the body is considered, temporal
dependencies are introduced (Asadi-Aghbolaghi et al., 2017). For
consideration of such dependencies, Long Short-term Memories
(LSTMs) have gained an important role in activity recognition
using sequential input data. LSTMs improve on the drawback of
the more traditionally used Recurrent Neural Networks (RNNs)
which is their short-term memory (Asadi-Aghbolaghi et al.,
2017). A study by Donanue et al. showed that considering time
domain in addition to visual domain can improve upon methods
that focus only on visual domain or methods that consider an
instance of the visual representation of the input data. This
study explored the use of Long-term Recurrent Convolutional
Network (LRCN) for a variety of vision tasks including activity
recognition based on video input for this comparison (Donahue
et al., 2017). Other studies have also employed long short-term
memory (LSTM) for gesture recognition for its capability to learn
activities of varying time length (Nishida and Nakayama, 2016;
Tsironi et al., 2016).

A study by Tsironi et al. explored the combination of
CNN and LSTM (CNNLSTM) for gesture recognition. This
combination is used due to its ability to implicitly extract features
and handling variable-length sequences of data representing an
activity/gesture. They employed CNNLSTM for recognition of
9 gesture classes for human robot interaction application. They
analyzed data collected from an RGB camera from six subjects
and obtained precision percentage of 73.33–100% for various
gestures (Tsironi et al., 2017). To the best of authors’ knowledge
no study has used deep learning methods for FMG data.

FMG has been processed with various classification methods
in various studies, but in most cases, the difference between
them was not statistically significant (Cho et al., 2016; Radmand
et al., 2016; Ahmadizadeh et al., 2017; Xiao and Menon,
2017a,b).Whereas, the influence of feature selection, which is the
focus of this study, is critical in this experiment. As a result, for
all classification purposes LDA was used in this study due to its
good performance for baseline accuracy (which is the LOOCV
accuracy using all features), and its simplicity. It is one of the
limitations of this study that it does not consider deep learning
methods. However, due to the specific application considered
here (i.e., use of feature selection in the design phase for custom
prostheses), size of available data is limited since it is specific
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FIGURE 1 | Custom made prosthetic socket and the Bebionic 3 robotic hand.

to the individual and is collected only in the design phase. This
prevents the use of deep learning in this application. In future
work, it is valuable to consider deep learning methods with data
collected frommultiple subjects as sensor placements are fixed in
all cases. With availability of larger datasets, it would be valuable
to also explore application of LSTM for gesture detection. This
can be especially valuable in the practical use case of prostheses
control since a gesture is combined with dynamic movements
of the arm which introduces temporal dependencies of input
sequential data.

This study explores the use of feature selection for dimension
reduction in a high density FMG system without grouping
sensors. This is done toward the goal of achieving a design
method that uses feature selection for FMG HMI to achieve
performance of high density FMG in systems with lower cost and
complexity. This could be attained by collecting data from the
user with a high density system, determining location of features
with the most contribution to gesture recognition, and finally
designing a custom device for the individual that embeds sensors
in selected locations. To examine the feasibility of this method,
feature selection methods were assessed for reduction of input
dimension in this case study.

Three datasets were used in this study. All three datasets
were collected from the same individual with a transradial
amputation using the same custom-made socket with FMG
sensors embedded inside to control an off-the-shelf prosthetic
hand. All datasets were collected using protocols including the
same six gestures essential to activities of daily living. One of the
datasets was collected using a static protocol and the other two
with a dynamic protocol. Different sensor configurations were
used in these datasets. The three datasets were used to include
data from various sensor configurations, sample sizes and with
both static and dynamic protocols. The analysis performed on
all datasets was the same. This is a case study based on one
specific individual and a specific prosthetic device used. For
this experiment, a custom-made prosthetic socket was used to
be compatible with the off-the-shelf prosthetic hand. For this
reason and also due to the difficulty of recruiting subjects with
amputation, all datasets were collected from one individual. This
is one of the limitations of this preliminary study. In future work,
more individuals should be considered.

This study explored the use of four feature selection
algorithms for the three collected datasets. These algorithms
contain one commonly used method from each category of
FS algorithms: sequential forward selection (SFS), minimum

redundancy, maximum relevance (mRMR), Genetic algorithm
(GA), and Boruta [an embedded method that uses Random
Forest (RF)]. These are explained in more detail in the “Materials
and Methods” section.

Findings of this study indicated that mRMR, GA, and Boruta
were able to decrease the number of input features considerably
without significantly decreasing classification accuracy. This
shows the feasibility of the proposed method to use HD-FMG in
the design phase to reduce complexity of custom FMG controlled
prostheses without compromising the performance of the system.

2. MATERIALS AND METHODS

This section explains the materials and methods that were used
to conduct data collection and data analysis for this study. A
high density FMG controlled powered upper limb prosthesis
was custom designed for the pilot subject using an off-the-shelf
robotic hand as shown in Figure 1 to collect data in protocols
consisting of hand gestures essential to activities of daily living.
Collected data were then analyzed to determine which sensors
had the most impact on the accuracy of classification of
intended gestures.

Experiments of this study were approved by the Office of
Research Ethics at Simon Fraser University and the participant
provided informed consent.

2.1. Subject
In this study, data were collected from a right handed, 59 years
old male with a transradial amputation of the left arm acquired
in a work-related accident in 1980. He had experience using an
EMG controlled powered prosthesis for 2 years, but used a body
powered mechanical hook prosthesis on a daily basis. The subject
was recruited by Barber Prosthetics Clinic (BPC).

2.2. Data Collection
2.2.1. Hardware
Data were collected from the pilot subject wearing a custom-
made prosthetic socket and a robotic hand (medium Bebionic
3, Ottobock, Duderstadt, Germany). The inner surface of the
inner socket was covered with custom printed FSR strips each
containing 16 0.5-in sensors similar to the FSR 402 from Interlink
Electronics (Camarilo, California) (Ahmadizadeh et al., 2017).
Three datasets were collected with different sensor placements
and with both dynamic and static protocols to reduce bias
of analysis based on a specific sensor placement or protocol.
The number of strips and their configuration were different
for the three different datasets. In dataset1, nine FSR strips
were located in the socket so that it was covered by sensors
as much as the physical shape of the socket allowed as shown
in Figure 2. Not all sensors on the strips were located inside
the socket. In the configuration used for dataset1, 63 sensors
were located inside the socket to cover the inner surface of
the socket as much as its physical shape allowed as shown in
Figure 2. For dataset2, four strips were located on the extensor
and flexor muscles to cover the muscle bellies. Another strip
was located around the forearm over the muscle bellies in a
circumferential manner. The total number of sensors used in this
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FIGURE 2 | FSR strips placed inside the inner socket representing: (A) the sensor configuration for dataset1, (B) the sensor configuration used for dataset2, and (C)

the sensor configuration used for dataset3.

FIGURE 3 | The six grips used in this protocol: (A) relax, (B) open, (C) force, (D) tripod, (E) finger point, (F) key.

configuration was 58. For dataset3, five strips were located over
extensor and flexor muscle bellies and on the anterior side of the
forearm. The total number of sensors used in this configuration
was 37. More detail on dynamic datasets can be found in
Ahmadizadeh et al. (2017).

2.2.2. Protocol
The protocol used in this study consisted of six grips: relax, open,
force, tripod, finger point, and key as shown in Figure 3. This
set of grips was chosen to include neutral hand gestures and
also functional movements important in activities of daily living
(ADL) (Cho et al., 2016; Ahmadizadeh et al., 2017; Ferigo et al.,
2017).

To collect data, the subject was asked to wear the custom
designed prosthesis. No preparation was needed prior to donning
the prosthesis. He would then perform the six grips of the
protocol and hold them for 15–25 s. This process was done for
five repetitions with rest in between as needed. For dataset1,
gestures were performed as the subject held their arm in a
stationary position with their elbow flexed at 90◦. For dataset2
and dataset3, subject held the grips as he was moving his arm in
the circular dynamic motion shown in Figure 4. FSR data were
collected at sampling rate of 10 Hz (Ferigo et al., 2017; Jiang et al.,
2017).

2.3. Data Analysis
In this section, feature selection (FS) algorithms used in this study
are explained. It is also explained how the data were analyzed
and what outcome measures were used to compare selected
FS algorithms.

In this study, no feature extraction was performed and each
feature (channel) corresponded to one of the sensors. As a
result, feature selection (channel selection) selects sensors whose
values had the most contribution to the gesture classification
accuracy. At each sample point (10 samples per second), input
to the classifier was the combination of sensor values at that
point in time from all selected sensors (features). There were 10
classification outputs per second each corresponding to one of
the sample points as the sampling frequency is 10 Hz.

2.3.1. Feature Selection Algorithms
As explained in the background section, feature selection
algorithms can be categorized to three major classes: filter
methods, wrapper methods, and embedded methods (Pal and
Foody, 2010; Xu et al., 2010; Yan and Zhang, 2015). Wrapper
methods are then split to two main categories depending on their
method of selecting features in each of their iterations: sequential
selection algorithms and Heuristic algorithms (Chandrashekar
and Sahin, 2014).
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FIGURE 4 | The dynamic protocol used for dataset2 and dataset3. Participant moved his arm through positions (A–E) in a circular motion.

Here, one commonly used algorithm from each of the
aforementioned categories was chosen and its performance
was assessed when applied to data collected from the pilot
subject. Selected algorithms for this study were: minimum
redundancy, maximum relevance (mRMR) which is a filter
method (Hanchuan et al., 2005; Chandrashekar and Sahin,
2014), Sequential forward selection (SFS) (Chandrashekar and
Sahin, 2014) as the sequential selection wrapper method, Genetic
algorithm which is a heuristic wrapper method (Liu et al., 2002;
Krishnaswamy et al., 2011; Chandrashekar and Sahin, 2014), and
Random forest as the embedded method (Pal and Foody, 2010;
Duro et al., 2012).

MRMR is an FS algorithm that improves on mutual
information and attempts to choose a feature subset that
minimizes redundancy defined as having highly correlated
features in the chosen subset. It also tries to maximize relevancy
so that chosen features are highly informative about their
corresponding class labels (Ding and Peng, 2005).

The implementation of mRMR used in this study maximized
relevancy of selected features with the targeted class, which is
represented by the mutual information of the feature and the
targeted class. It also tries to minimize redundancy of the selected
features with each other which is quantified using the mutual
information of each feature with all other features in the feature
subset. The quantity that is maximized in this algorithm is the
following (Ding and Peng, 2005):

I(a, l)
1
|F|

∑
b∈F I(a, b)

(1)

Where l is the targeted class, a is the feature being investigated,
I is the mutual information of two variables, F is the subset of
features, and |F| is the number of features in the subset.

A third-party implementation of mRMR for MATLAB was
used to apply the Mutual Information Quotient criterion (MIQ)
version of the algorithm on collected data. MIQ was chosen since
it has been recommended for discrete features in a study by Ding
et al. For more details on the implementation of the algorithm,
refer to Ding and Peng (2005).

The selected sequential wrapper algorithm for this study,
SFS, selects features by starting with an empty set and adding

one feature in each iteration. The feature added in each step is
chosen so that the objective function, which is defined as the
LOOCV classification, is minimized. This can be represented by
the following steps (Li et al., 2017):

SF0 = ∅

RF0 = all features

For i = 1 to n

accuracy(SFi) = Max
b∈RFi−1

(accuracy(SFi−1 + b))

RFi = RFi−1 − a

SFi = SFi−1 + a

end

(2)

Where SFi is the selected feature subset in iteration i, RFi is the
remaining feature subset (not yet selected) in iteration i, and n is
the number of all features

MATLAB’s implementation of the algorithm was used
with Linear Discriminant Analysis (LDA) as its classifier
(Chandrashekar and Sahin, 2014). Information about settings
used for the two stopping criteria used for this algorithm is
provided in the next section.

Genetic algorithm is an evolutionary optimization algorithm
(Chandrashekar and Sahin, 2014) that is used in this study
as the Heuristic FS method. In this application,GA tries to
optimize (minimize in our case) the objective function which was
defined as the LOOCV classification error using LDA classifier
in this experiment. The algorithm’s MATLAB implementation
was used for this purpose. Due to inherent randomness of
GA, the process was performed 10 times for each dataset and
for each outcome measure, and average values were reported.
GA was implemented using uniform mutation, tournament
selection, arithmetic crossover, elite cont of 2, and random initial
population. Information about stopping criteria used for GA is
provided in the next section.

For the embedded feature selection method, Boruta package
for R was used. Boruta starts with creating shadow variables
by copying original variables and shuffling their values. It then
trains a classifier [random forest (RF)]) using the original and
shadow variables. The importance score of original variables are

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 December 2019 | Volume 7 | Article 331

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Ahmadizadeh et al. Channel Selection for Gesture Classification

determined based on comparison of their z-score with the z-score
of shadow variables. This is performed in iterations until the final
decision is made and feature scores are returned (Duro et al.,
2012). In the implementation of Boruta, number of trees for RF
was set to 500 and the maximum number of importance source
runs was set to 100.

2.3.2. Stopping Criterion
In order to decide what the optimum feature subset is,
performance-based criterion was used. Performance base
stopping criterion defines a condition based on system
performance that determines when the algorithm stops and
returns the resulting feature subset. Convergence conditions
vary depending on the selection algorithm used.

One possible stopping criterion is the relative iterative
improvement (RII) in classification accuracy. This method is
suitable for SFS since the algorithm tries to improve classification
accuracy in each iteration. In the implementation of SFS used
in this study, the algorithm stopped when improvement in
current iteration was less than a relative threshold defined by the
following formula where eps = 2.2204e − 16 and TolFun, which
determines the tolerance for termination based on improvement
of the objective function (classification error in this case) value is
set to 1e− 6:

critTh = oldCrit(abs(oldCrit)+ sqrt(eps)) ∗ TolFun (3)

In this formula, critTh is the threshold against which
improvement of the objective function in each iteration is
compared, and oldCrit is the value of the objective function in
the previous iteration.

Another stopping criterion used in this study was the global
maximum. It is used for algorithms that output ranking of
features or order features in term of their importance. Accuracy
of feature sets with 1 to all features is calculated as features are
added according to their rank and the feature subset resulting in
themaximum accuracy is selected. In this study, global maximum
was used for mRMR and Boruta. SFS was also examined using
this criterion as well as RII.

The last stopping criterion used in this study was Function
Tolerance over Stall Generations, which is used for GA. This is
also a performance criterion that concludes the process when
average performance enhancement over a predefined number
of generations is less than a threshold. In the analysis done for
this study, function tolerance was set to 1e-6 and maximum stall
generations was set to 50.

To summarize, five feature selection methods were examined
in this study: SFS with RII stopping criterion, SFS with global
maximum stopping criterion, mRMR with global maximum
stopping criterion, GA with function tolerance over stall
generations stopping criterion, and Boruta with global maximum
stopping criterion.

2.3.3. Algorithm Assessment
Chosen feature selection algorithms were assessed based
on three outcome measures: their running time, the
algorithms’ performance in terms of classification accuracy,
and their stability.

Reported running time for each of the methods for each
dataset is the amount of time it took for the implementation
of the method used in this study to run. Running time is an
indication of the algorithm’s computational complexity and can
be important in cases where computational power is limited or
the sample sizes are large.

Classification accuracy
The goal of using FS in this study was to reduce input dimension
with no significant loss of vital information regarding gesture
classification. As a result, classification accuracy is the first
outcome method used for assessment of the five FS methods.

To obtain classification accuracy yielded by each feature
selection algorithm in this study, leave-one-out cross validation
(LOOCV) was used to separate one repetition of collected data
as test data and the remaining four repetitions as training
data. Feature subset was chosen using LOOCV on the four
repetitions of training data. This process was repeated for the
five permutations of test data. Then only the features that were
mutually selected in all five iterations were chosen for the final
feature subset. This process is illustrated in Figure 5. Reported
classification accuracies were the result of performing LOOCVon
all five repetitions of data using only the selected features. These
accuracies were compared with the baseline accuracy.

Stability
As Defined by Chandrashekar et al., stability of a feature selection
method is consistency of the feature subset chosen by the
algorithm as new training data are introduced or when some
training data are removed (Chandrashekar and Sahin, 2014).
Stability is an important outcome measure for comparison of
algorithms used in this study since it determines the algorithm’s
sensitivity to the size of training data. Feature subset variations
observed in this study could also be affected by variability of
data in different repetitions. Variability of data in applications
for individuals with amputation is inevitable due to limited
visual feedback. This makes stability an important measure for
applications similar to the one examined here.

To compare stability of different algorithms selected for this
study, selected feature subsets were compared when training data
were reduced from the first four repetitions to the first three
repetitions and then to the first two repetitions. For all these
cases, the last repetition was used as test data. For this outcome
measure, variation in feature subsets were compared using an
average percentage of variation in each iteration as training data
were reduced, which was obtained using the following formula:

Variation% = (number of features −number of mutual features)

/number of features ∗ 100 (4)

3. RESULTS

In this section, results for assessment of the five feature selection
methods are reported and compared with the baseline accuracies.
Baseline accuracies for the six gestures used in this study were
86.45 ± 4.5%, 70.7 ± 10.6%, and 80.4 ± 11.4% for dataset1,
dataset2, and dataset3, respectively.
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FIGURE 5 | Feature selection process used in this study.

3.1. Classification Accuracy
Accuracies obtained using LOOCV with selected features by
each of the five methods for the three datasets are shown in
Figures 6–8. Each method produced a feature subset with a
different number of features which are shown in Table 1.

GA was run 10 times and reported values in Table 1 indicate
the average of the 10 times. The lowest numbers of features
selected by GA were 10, 14, and 10 for dataset1, dataset2,
and dataset3, respectively. These feature subsets resulted in
classification accuracies of 78.4, 71.5, and 71.4%, respectively.

To determine whether reduction in the number of input
channels caused a significant decrease in classification accuracy,
the Student’s paired t-test at significance level of 5% was used.
It is worth noting that this is an exploratory study with one
participant and five repetitions of the protocol for each dataset.
Each reported classification accuracy is the average of five
permutations of LOOCV. Each of these five values are the
average classification accuracy of six gestures that are performed
in each repetition. The values used in the t-test are the five
LOOCV accuracies. Given the low sample size of the t-test,
low power is expected and results should be considered with
caution. This is one of the limitations of this study and it
would be valuable to do an experiment with a larger sample
size in future work. Even though the power of the t-test is low,
looking at the average and standard deviation values, it seems
that in populations that do not prove to be significantly different
using t-test, the difference between averages is not considerable
considering standard deviations.

It was found that using SFS with either of the two stopping
criteria resulted in accuracies that were significantly lower than

the baseline in dataset1. However, in this dataset, no significant
difference was determined for the other three methods: mRMR,
GA, and Boruta. In dataset2, no significant difference was
observed comparing the baseline accuracy with the accuracies
obtained using smaller feature subsets produced by any of
the five feature selection methods. In dataset3, SFS with RII
criteria lowered accuracy with significant difference. However,
no significant difference was observed comparing accuracies
produced by the other four methods and the baseline accuracy.
It is worth noting that although GA resulted in a lower average
accuracy compared to SFS-RII criteria, due to the small difference
in the average accuracies of these two methods (0.31%) and GA’s
smaller standard deviation, the Student’s t-test could not reject
the null hypothesis that it comes from a population with the same
mean as the baseline, while in the case of SFS-RII criteria, the null
hypothesis was rejected.

Table 2 shows the grips with the lowest accuracy for each
dataset using each FS method. In this table, the force grip appears
frequently for dynamic datasets. A closer look at the errors
of prediction for this class showed that in various cases, the
force grip was misclassified as either the finger point grip or
the key grip. This is likely because these grips are differentiated
through fine finger movements. Variations in muscle volume
caused by these movements could be affected by variations in
the force exerted by the prosthetic socket as the user moves his
arm dynamically.

Using SFS with either of the stopping criteria, grips
with the lowest accuracies were “finger point” in dataset1
and force in dataset2 and dataset 3. Using mRMR, force
was the grip with the lowest accuracy in dataset1 and
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FIGURE 6 | Leave-One-Out Cross Validation accuracy using different feature selection methods for dataset1. Shaded area around the baseline indicates its standard

deviation.

FIGURE 7 | Leave-One-Out Cross Validation accuracy using different feature selection methods for dataset2. Shaded area around the baseline indicates its standard

deviation.

dataset3, and key was the grip with lowest accuracy
in dataset2.

To summarize, mRMR, GA, and Boruta were able to meet
the goals defined in this study in all three datasets. Percentage
decrease in number of features using each of the three methods
are shown in Table 3.

3.2. Stability
Stability of the five feature selection methods were measured
based on consistency of the feature subset they select when

number of samples in training data was decreased. This was done
by comparing the variation percentage in feature subsets selected
by different selection methods. These values for the three datasets
are shown in Figure 9.

3.3. Running Time
The five FS methods considered in this study are different in
terms of computational complexity and running time. Running
times for the five methods for each dataset are shown in
Table 4. MRMR and SFS-RII criteria have the shortest run time
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FIGURE 8 | Leave-One-Out Cross Validation accuracy using different feature selection methods for dataset3. Shaded area around the baseline indicates its standard

deviation.

TABLE 1 | Number of features selected in LOOCV using different feature selection

methods.

SFS-RII

criteria

SFS-global

max.

mRMR GA Boruta

Dataset1 2 12 23 11.6 ± 1.3 27

Dataset2 8 14 35 16 ± 1.8 32

Dataset3 11 15 30 11.8 ± 1.0 29

TABLE 2 | The grip with highest classification error for each dataset, using each

FS method.

SFS-RII

criteria

SFS-global

max.

mRMR GA Boruta

Dataset1 Finger point Finger point Force Finger point Tripod

Dataset2 Force Force Key Force Key

Dataset3 Force Force Force Force Force

interchangeably for the three datasets. GA and then Boruta have
the longest run times for all datasets.

4. DISCUSSION

Baseline accuracies were comparable to that of other studies.
Previous studies by Cho et al. and Ferigo et al. used the same 6
grips in a static protocol on four subjects and one subject with
transradial amputations and reported classification accuracies of
62.61 ± 11.5% and 81.2 ± 11.3%, respectively. Ferigo et al. also
used a dynamic protocol similar to the one used in dataset2
and dataset3 of this study and reported accuracy of 75.5 ±

9.2% (Cho et al., 2016; Ferigo et al., 2017). Other studies using

TABLE 3 | Percentage decrease in input features using different feature selection

methods.

mRMR (%) GA (%) Boruta (%)

Dataset1 63.5 81.6 57.1

Dataset2 39.7 72.4 44.8

Dataset3 18.9 68.1 21.6

EMG with subjects with amputation have reported classification
accuracies in the range of 85–90% for 4–6 classes of movement
(Peerdeman et al., 2011).

4.1. Classification Accuracy
This study focused on assessment of five feature selection
methods on reduction of input dimension of an FMG controlled
powered prosthesis without significantly sacrificing performance
of the device. To determine if feature number reduction affected
performance, classification accuracy was examined since it
determines probability of correct prediction of user intentions.

Results showed that out of the five methods used to reduce
input dimensions, while maintaining system performance, three
methods were able to reduce the number of input features
by 18.9–81% in the three datasets used in this study. This
was possible since multiple sensors might produce correlated
information depending on their location. Another reason is that
some of the input channels could contain noisy or irrelevant
signals and removing them could increase class separation and
lead to higher classification accuracies (Guyon and Elisseeff,
2003; Kumar et al., 2005).

Elimination of irrelevant or noisy data through feature
selection can also be observed by comparing standard deviations
of the LOOCV accuracies over the five repetitions before and
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FIGURE 9 | Percentage variation in feature subsets as amount of training data were decreased.

TABLE 4 | Running time for each FS method for each dataset (s).

SFS-RII

criteria

SFS-global

max.

mRMR GA Boruta

Dataset1 90.5 311.1 54.7 2,592.3 1,504.5

Dataset2 71.8 133.5 107.2 1,721.2 163.5

Dataset3 42.1 53.3 42.5 2,112.1 111.4

after feature selection, especially in dynamic datasets. Dynamic
datasets aremore prone to containing noisy or irrelevant data due
to factors, such as weight of the prostheses applying compressive
or tensile forces as the orientation of the arm changes, slight
movements of the socket, and variations in movement of the
arm. In the two dynamic datasets of this study, after feature
selection, LOOCV standard deviations were decreased by 4.8 and
3.3% in dataset2 and dataset3, respectively, which indicates the
possibility that eliminated features were contributing to increased
data variation among various repetitions.

It is worth noting that even after feature selection, data
variability is still evident through average LOOCV standard
deviations of 7.3% in dataset1, 5.8% in dataset2, and 8.1% in
dataset3 for the five FS methods. Standard deviations of about
11 and 9% were also reported by the two studies with datasets
similar to the ones used here (Cho et al., 2016; Ferigo et al., 2017).
It is likely that data variability in prostheses control applications
is inevitable, especially as experimental setups become closer to
the practical use case of the system. In future work, it would be
valuable to conduct a study that differentiates between noisy or
irrelevant signals and data variability that would be inevitable
in real use case of the prostheses. This could potentially be
achieved through studying variations among small sections of
each repetition.

Comparing performance of the FS methods considered in this
study, out of the three methods that could successfully achieve
the goal defined in this study, GA resulted in the most reduction
of input features in all datasets with a chosen feature subset of
about 11 sensors out of the original 63 sensors resulting in average
classification accuracy of 0.78 ± 0.09 in dataset1. It also reduced
feature numbers to 16 sensors out of the total of 58 sensors in
dataset2 yielding an accuracy of 73.2± 4.3% and a chosen feature
number of about 12 sensors out of the total sensor number of 37
in dataset3 with resulting classification accuracy of 75.0± 2.4%.

Neither of the other two methods outperformed the other
drastically in terms of feature number reduction in any of the
three datasets. The reduction percentage difference for Boruta
and mRMR in the three datasets were from 2.7 to 6.4 % while
GA outperformed them by reducing feature numbers by up
to 46.5% more in dataset3. This could be because wrapper
methods, such as GA make their selection in each iteration based
on classification accuracy. On the other hand, the other two
methods (mRMR and Boruta) do not include classification in
their selection decision. Thus, GA selects the feature subsets for
the very specific application and tries to maximize the measure
considered for it—i.e., classification accuracy. For this reason,
if multiple classifiers or more generalized applications were to
be considered, GA would not necessarily be able to produce
similar results as the ones it produces when only one classifier is
considered. Another drawback of wrapper methods, such as GA
compared to Boruta andmRMR is their computation complexity.
Wrapper methods perform a classification task in each iteration
of the algorithm which could be computationally extensive in the
presence of large sample sizes (Chandrashekar and Sahin, 2014).

Average accuracies that resulted from the three selected
feature selection methods in dataset1 were within the range of
“baseline accuracy—7.7%” and “baseline accuracy + 2.9%.” In
this dataset, Boruta yielded the highest accuracy that was higher
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TABLE 5 | Classification accuracies obtained using half of the data.

SFS-RII

criteria (%)

SFS-global

max. (%)

mRMR

(%)

GA

(%)

Boruta

(%)

Dataset1 60.8 ± 7.5 76.7 ± 8.3 79.8 ± 5.1 75.8 ± 10.3 88.0 ± 5.0

Dataset2 66.5 ± 4.4 75.8 ± 4.5 74.6 ± 6.1 76.8 ± 3.5 71.3 ± 6.8

Dataset3 73.7 ± 9.1 77.6 ± 8.6 80.1 ± 10.0 75.8 ± 2.8 80.0 ± 8.6

than the baseline accuracy. In dataset2, variation in accuracies
produced by the three methods were less compared to dataset1.
Contrary to dataset1, Boruta produced the feature subset with the
lowest resulting accuracy compared to the other two. Accuracy
obtained using the feature subset selected by Boruta in dataset2
was less than the baseline accuracy by 3.4% while the other
two methods resulted in accuracies that were about 2.5% higher
than the baseline accuracy. In dataset3, Boruta and mRMR both
resulted in accuracies similar to the baseline accuracy while GA
reduced the accuracy by 5.4%.

None of the three methods resulted in the highest
classification accuracy in all three datasets. However, it is
worth noting that a decrease of up to about 7% in accuracy when
the average standard deviation was about 7.1% (in the accuracies
obtained using the three selected methods in all datasets), which
is not considerable especially in this case where no statistically
significant difference was shown.

SFS with either of the stopping criteria was not able to meet
the goal defined in this study. This could be since the algorithm,
in iteration i, only considers selections combining the “selected
feature subset (SFi)” and one of the feature in the “remaining
feature subset (RFi)”—i.e., features that are not yet selected to
be in the selected feature subset. This could be a drawback
since there is a chance that a combination consisting of part of
the features in SFi and more than one feature from RFi would
produce better results.

To determine sensitivity of the proposed method to the size
of datasets used for model training, an analysis was conducted
using selected features by the five FS methods and only half of the
data from each repetition. Results showed that reducing the size
of the datasets to half their size would not significantly change
classification accuracies in dataset1 and dataset3. Using only
half of the data significantly increased accuracies obtained using
feature subsets selected by SFS-Global Max. and GA methods in
dataset2. This could be due to the eliminated data being noisy.
Obtained classification accuracies using the smaller datasets are
reported in Table 5.

Comparing this study with the studies by Wang et al. and Li
et al. that performed channel selection for gesture classification
(using sEMG), this study was conducted using both static and
dynamic protocols with an individual with an amputation using
a prosthetic socket. Experimental setup of this study was closer
to the real use case of the application and was likely to be
able to capture some of the possible errors introduced by the
real application of the system. The aforementioned studies each
investigated one FS method, while this study runs a comparison

between five methods. In terms of feature number reduction,
Wang et al. reported classification accuracy of 69.3% after about
35.7% decrease in channel numbers and Li et al. reported
accuracy of 84.2% after about 79% decrease in the number of
channels. In the study presented here, maximum percentage
decrease in the number of channels varied between 57.1 and
81.6% in the three datasets (Li et al., 2017; Wang, 2019).

To summarize, all three methods resulted in inconsiderable
reduction/increase in accuracy while GA resulted in the most
reduction in feature number. And using only half of the data,
comparable results were obtained.

4.2. Running Time
For the different datasets, either mRMR or SFS with RII criteria
was the fastest method. After these, SFS-Global Max., Boruta, and
GA had increasing running times in that order. MRMR was one
of the fastest method since it does not perform any classification
tasks and ranks features based on solving the value of the formula
stated in Equation (1).

The running time for SFS with RII criteria method was less
than the running time for SFS-Global Max. method. This is since
the number of iterations for SFS-Global Max. is fixed and equal to
the number of features as the algorithm starts with an empty set
and adds one feature to it in each iteration until all features are
added. On the other hand, the number of iterations of SFS-RII
criteria is data dependent and is less than or equal to the number
of all features.

After GA, Boruta is the method with the longest running
time. Boruta’s running time for dataset1 was longer compared
to dataset2 and dataset3. This was because in analysis for
dataset1, Boruta ran an average of above 90 runs to resolve
all attributes left tentative for the five LOOCV cases, while for
dataset2 and dataset3, all attributes were resolved in an average
of about 13 runs. This is due to fluctuations of importance of
some of the attributes requiring more runs for the algorithm
to either confirm or reject them. There is also shuffling of
values of shadow variables that is performed when shadow
variables are created. Based on the result of this shuffling,
running time of the algorithm could be affected. Although
there are methods that fix convergence issues of the algorithm
due to tentative attributes, these methods use weaker tests for
attribute judgement. To summarize, the run time of Boruta is
data dependent.

GA has the longest run time compared to all the other
methods since it ran an average of about 84, 81, and 69 iterations
for the five LOOCV cases of dataset1, dataset2, and dataset3,
respectively. In each iteration, a classification task was performed
in addition to steps of genetic algorithm. As mentioned before,
in this study, feature selection using GA was performed 10
times for each dataset and each outcome measure. The run time
reported in Table 4 is for one processing of the method for the
“classification accuracy” outcome measure.

4.3. Stability
Stability of a feature selection method was the second outcome
measure assessed in this study. It is worth noting that the
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variations shown in this measure did not affect the accuracies
reported in the previous section since the accuracy results were
obtained using only the features that appeared in all iterations
of cross validation and features accounting for the variability
were discarded.

As shown in the “Results” section, out of the three algorithms
that were able to achieve the goals of this experiment,
GA produced the feature subsets with most feature subset
variation percentage ranging from 47.7 to 58.0% in the
three datasets. This showed that GA was more sensitive
to the volume of training data or variability in data that
were collected in different repetitions of the experiment. This
could be due to the randomness that is inherent to this
algorithm. Comparing the other two methods, mRMR resulted
in average feature subset variation of about 21% in the three
datasets and Boruta resulted in average variation percentage
of 24.8% in all datasets with more variability between the
three datasets.

It is worth noting that in this experiment, as the size of
training data was reduced, the total number of samples in
training data was decreased by 25% in the first iteration, 33%
in the second iteration, and 50% of the remaining data in the
last iteration. As a result, the stability measure considered here
represented sensitivity of methods to high variations in the size
of training data. In applications where variability in the size of
training data was not considerable, thesemethodsmight yield less
instability, which is only due to sensitivity to variations of data in
different repetitions.

5. CONCLUSION AND FUTURE WORK

This study examined feasibility of using a high density FMG
apparatus to determine optimum number and location of sensors
for each individual. This aimed at design of a simpler and lower
cost FMG controlled prosthesis with performance comparable to
that of high density FMG systems.

Five feature selection methods were examined using data
collected on a pilot subject with transradial amputation: SFS
with two different stopping criteria, mRMR, GA, and Boruta.
Three of the five FS methods were able to reduce the number
of FSR sensors while maintaining vital information for gesture
classification in all three datasets examined in this study.

Out of the three selected methods, none outperformed the
others in all datasets in terms of classification accuracy, however,
GA produced the smallest feature subsets in all datasets without
significantly sacrificing performance defined by classification
accuracy. MRMR and Boruta were more stable than GA in all
datasets which means that GA was most sensitive to variations in
training data.

This was a case study based on one individual and a specific
prosthetic socket. This is because the socket was custom-made
for the participant of this study and also due to the difficulty
of recruiting individuals with amputations to participate in
such studies. Potential future work includes expansion to more
individuals and more classes of motion. This would make results

more applicable to the general case of the application. Another
focus of further investigations would be development of an easy-
to-use high density FMG apparatus. Also, more feature selection
methods could be assessed for a more thorough comparison of
FS algorithms for this application.

Various studies have explored the use of different classifiers
for applications similar to the one considered in this study. In
most cases, using different classifiers did not result in significantly
different results. For this reason and also since the focus of this
study was channel selection, only one classifier (LDA) was used
in this study. To build on findings of this study, it would be
valuable to investigate the effect of using various classifiers on the
datasets of this study. Collection of larger datasets from one or
more individuals would introduce the possibility of using deep
learningmethods and LSTMwhich have shown promising results
for gesture recognition in other studies.

Another limitation of this study was that it did not investigate
the effect of noise reduction. This should be studies in future
works. Also, the sample size used for the t-test was not enough
to guarantee high test powers. In future work, a study should be
conducted with more repetitions of data so that enough samples
are available for high powers of t-test. Moreover, given that this
was a pilot study, there is dependency of data and therefore the
assumptions underlying the statistical method used are not fully
met and results should be considered with caution.

Three datasets were used in this experiment to include
variations in static or dynamic protocols, different sensor
configurations, and different sample sizes. However, the reason
why results obtained from these datasets varied was unaddressed.
It would be valuable to investigates potential reasons for these
variations in future work.

Location of selected sensors is a valuable information that is
unaddressed in this study. Future work should include a study
that explores if there are locations of the forearm that would
be more optimal for placement of sensors in FMG controlled
prostheses applications. For this purpose, the algorithm should
be designed so that selection of sensors that are spatially close to
each other are promoted.

It has been demonstrated that unlike EMG, performance of
FMG does not rely heavily on feature extraction (Belyea et al.,
2018) which has led to the common use of raw FMG signals
for gesture recognition (Radmand et al., 2016; Ferigo et al.,
2017; Jiang et al., 2017; Xiao and Menon, 2017a; Belyea et al.,
2018). Since the focus of this study was channel selection, feature
extraction was not considered in this experiment. It would be
valuable to explore the feasibility of using feature extraction to
enhance performance of the system in future work.

This study showed feasibility of the proposed design method
to produce a system with performance comparable to that of the
high density FMG systems with lower cost and less complexity.
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