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Induced pluripotent stem cells (iPSCs) are reprogrammed somatic cells by defined

factors, and have great application potentials in tissue regeneration and disease

modeling. Biomaterials have been widely used in stem cell-based studies, and are

involved in human iPSCs based studies, but they were not enough emphasized and

recognized. Biomaterials can mimic the extracellular matrix and microenvironment,

and act as powerful tools to promote iPSCs proliferation, differentiation, maturation,

and migration. Many classic and advanced biofabrication technologies, such as

cell-sheet approach, electrospinning, and 3D-bioprinting, are used to provide physical

cues in macro-/micro-patterning, and in combination with other biological factors to

support iPSCs applications. In this review, we highlight the biomaterials and fabrication

technologies used in human iPSC-based tissue engineering to model neuromyopathic

diseases, particularly those with genetic mutations, such as Duchenne Muscular

Dystrophy (DMD), Congenital Heart Diseases (CHD) and Alzheimer’s disease (AD).

Keywords: biomaterial, hiPSC, biofabrication, disease modeling, Duchenne Muscular Dystrophy, Congenital heart

diseases, Alzheimer’s disease

INTRODUCTION

Induced pluripotent stem cells (iPSCs) are pluripotent stem cells generated from somatic cells that
maintainmany of the features of embryonic stem cells (ESCs) such as pluripotency and self-renewal
ability. iPSCs were first generated by Shinya Yamanaka from mouse and human fibroblasts using
four factors: octamer-binding transcription factor 3/4 (Oct3/4), sex determining region Y-box
2 (Sox2), c-Myc, and kruppel-like factor 4 (Klf4) (Takahashi and Yamanaka, 2006; Takahashi
et al., 2007). Later on, many different substitutes for these factors were discovered and used,
e.g., Estrogen-related receptor b(Esrrb), Klf2 for Klf4; Sox17EK for Sox2; Nr5a2 and transforming
growth factor beta (TGF-β) inhibitor SB43152 for Oct3/4, and L-Myc for c-Myc (Feng et al., 2009;
Heng et al., 2010; Xiao et al., 2016).

iPSCs can be generated from various somatic cell types that are easily obtained (Gnecchi
et al., 2017), and give rise to many terminal differentiated cell types that have been used in
tissue engineering for studying disease and developing treatments (Lin et al., 2017). One advanced

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2019.00373
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2019.00373&domain=pdf&date_stamp=2019-11-29
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yangzjiang21@cuhk.edu.hk
https://doi.org/10.3389/fbioe.2019.00373
https://www.frontiersin.org/articles/10.3389/fbioe.2019.00373/full
http://loop.frontiersin.org/people/746042/overview
http://loop.frontiersin.org/people/754692/overview


Sun et al. Biomaterials in hiPSCs-Based Neuromyopathy Modeling

application of iPSCs is for precision or personalized medicine,
since the iPSC technology enable us to generate unlimited
amount of cells from a specific patient for drug efficacy prediction
or tissue regeneration (Gnecchi et al., 2017), and this can
overcome the ethical issues that human ESCs usually meet (Pen
and Jensen, 2017).

After the hiPSC cell-lines were successfully established and
maintained, there are step-wised differentiation processes to
get certain mature tissue cells. The first step is to differentiate
iPSCs into three primary germ layers, the ectoderm, mesoderm,
and endoderm. The differentiation protocol of these steps
has been well-established, and different groups of growth
factors and bioactive molecules are involved. For example,
the ectodermal bone morphogenetic protein 4 (BMP4) and
È-secretase inhibitor (N-[(3,5-Difluorophenyl)acetyl]-L-alanyl-
2-phenyl]glycine-1,1-dimethylethyl ester) (DAPT) can induce
iPSCs differentiate into the surface ectoderm (SE) after 2
days of culture (Qu et al., 2016). After the iPSCs derived
cells differentiated into 3 germ layers, regulating the TGF-β,
WNT, or fibroblast growth factor (FGF) signaling pathways that
mimic each stage of development can further push iPSCs into
different sequential lineages. During studying the biology of
iPSCs, biomaterials also served as a strong supportive factor
that improve the differentiation, proliferation, and application of
iPSCs, and are gradually getting attentions (Guo et al., 2017; Khan
and Tanaka, 2017).

Biomaterials have been developed to provide biophysical
(e.g., stiffness and topography) and biochemical (e.g., growth
factors and signaling pathway) cues to cells, which mimic the
stem cell niches and microenvironment in vitro, and have been
well-used in stem cell related studies and applications. For
example, higher efficacy and accuracy can be achieved in stem
cell differentiation when biomaterials involved (Kumari et al.,
2010), and biomaterials can provide homing signals for stem cell
migration and localization (Martino et al., 2012). In addition,
biomaterials can build scaffolds to support and guide the cell
behavior during forming three-dimensional (3D) tissue and
organs, which are indispensable elements in tissue engineering,
drug screening and disease modeling.

The neuromyopathic diseases are the most prevalent diseases
in the world, including cardiomyopathy, motor neuron disease,
peripheral nervous system disease, and associated muscular
disease. Some of the diseases are due to genetic mutations, for
example, Alzheimer’s disease with PSEN2N141I gene mutation
affected 29.8 million people worldwide in 2015 (GBD 2015
Disease Injury Incidence Prevalence Collaborators, 2016).
Congenital heart diseases (CHD) with DAND5 gene mutation
is the most common birth defect affecting between 4 and 75
per 1,000 at birth and resulting in 303,300 deaths in 2015 (GBD
2015 Disease Injury Incidence Prevalence Collaborators, 2016),
which have great potential to be modeled by patient derived
iPSCs. One more example is the Duchenne Muscular Dystrophy
(DMD), the most common type of muscular dystrophy, has
mutation in dystrophin gene affecting about one in 5,000 males
at birth (Moat et al., 2013). The accordingly genetic mutant
animals are used to elucidate disease mechanisms, such as the
mdx mouse, which has a point mutation in its DMD gene,
that produces non-functional dystrophin protein in muscle, thus

generate the DMD disease in mouse. However, the mdx mouse
model only show a non-consistent disease progress and exhibit
mildly dystrophic (Spencer and Tidball, 1996; Grounds and
Torrisi, 2004), and do not completely recapitulate the phenotype
of humanDMDdisease due to the genetically distinction between
animals and human. Using patient derived iPSCs and the tissue
engineering technique to build DMDmodels for studying disease
and therapies (Choi et al., 2016), and can overcome the limitation
of animal models (Park et al., 2008).

3D structure of iPSCs and the iPSC-derivations cultures
is requested in the terminal differentiation steps to construct
many tissues and organs that simulate the native conditions.
Biomaterials and related biofabrication techniques have been
used in hiPSCs fate decision and application, but they were
not enough emphasized and recognized (Yildirimer et al.,
2019). For instance, cell-sheet self-assembly technique was
used in hiPSCs based clinical study of treating exudative age-
related macular degeneration (Mandai et al., 2017), and the
electrospinning, computing aided design/rapid prototyping, 3D
bioprinting (Wheelton et al., 2016) are being investigated.
In this review, we highlight the involvement of biomaterials
and the biofabrication techniques in hiPSCs-based tissue
engineering, particularly in hiPSCs-based in vitro modeling of
neuromyopathic diseases (Figure 1).

BIOMATERIALS FOR iPSCs APPLICATION

The iPSC supportive biomaterials should be biocompatible,
biodegradable, and have enough mechanical strength. In this
section, the classification, composition, physical, and chemical
cues of suitable biomaterials are discussed.

Classification of Biomaterials in iPSCs and
Tissue Engineering
The common biomaterial types in stem cell and tissue
engineering are inorganic materials, natural polymers, and
synthetic polymers. The inorganic materials, such as metals and
ceramics, have been widely applied as substitutes for broken
bone or teeth, but these hard tissue specific characteristics also
make inorganic materials rarely used in other applications.
Meanwhile, polymer biomaterials, either natural or synthetic fit
many application scenarios with stem cells involved, and have the
potential to be directly adopted in iPSC applications.

Natural Derived Materials
Natural derived materials are largely similar to the cellular
microenvironment, or even are directly taken from the
extracellular matrix (ECM), which indicate the great
biocompatibility with hiPSCs.

The mostly used natural polymers as scaffold and cell
vehicles are polysaccharides. The polysaccharides are either from
plants (e.g., alginate, agarose, and cellulose) or from animals
(e.g., chitosan and chitin). The aqueous solutions of these
polysaccharides can undergo a sol-gel transition upon reversible
effect of external stimuli, such as temperature (agarose) and ionic
strength (alginate and chitosan), forming polysaccharide-based
hydrogel, which have good biocompatibility for cell survival and
high porosity for cell ingrowth and effective mass transport.
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FIGURE 1 | Key elements in hiPSC-based neuromyopathic disease modeling. (Left) The cells used in disease modeling can be derived from patient-specific iPSCs,

which carry the genetic mutations in (A) skeletal muscle, (B) cardiac tissue, and (C) neural tissue, and cause the neuromyopathic diseases. The gene names are in

deep blue, italic, and capitalized. (Middle) (A) Organoid and (B) cell-sheet technologies are the most common examples of scaffold-free hiPSCs based tissue

engineering. (Right) Biomaterials and scaffold are used to achieve comprehensive 3D structures with advanced biofabrication processes, (A) 3D bioprinting and (B)

electrospinning are widely used in combination with many biomaterials as bio-inks and scaffolds. PDO, polydioxanone; P(AN-co-MMA), poly(acrylonitrile-co-methyl

methacrylate); PANI/PES, polyaniline (PANI)/poly(ether sulphone) (PES).

When processed at physiology-like condition, the hydrogels
are capable to encapsulate cells. The mechanical properties and
average pore size of polysaccharide-based hydrogel are dose-
and structure-dependent (Aymard et al., 2001; Drury et al.,
2004). Agarose and cellulose are slow/non-degradable in vivo
and in vitro, and are used for long-term cell culture support.
Meanwhile, alginate, chitosan and chitin are biodegradable,
which are commonly used in drug delivery and making scaffolds
for tissue reconstruction, e.g., for blood vessel, nerves and bone.
In order to build a complex tissue, many different polymers
are employed during tissue engineering applications. For
instance, the combination of alginate, carboxymethyl-chitosan
and agarose were used as cell-laden bio-ink to print iPSC-
encapsulated construct for neuron reconstruction, and this
construct can maintain the proliferation and pluripotency
of iPSCs, and induce neuron differentiation and tissue
reconstruction (Gu et al., 2017).

A typical natural derived ECM component is type I collagen,
the most abundant ECM proteins in native tissue, and it is
the first gel used in 3D tissue engineering (Vandenburgh et al.,
1988; Kjaer, 2004). The derivant of collagen, gelatin, which can
reduce the adverse effect of immunogenic problems of type I
collagen (Schwick and Heide, 1969), then became popular in
the in vivo applications (Tondera et al., 2016). One application
example in iPSCs is that the fibroblast reprogramming efficacy
was increased when seeded on type I collagen scaffold compares
to the conventional 2D culture method (Gu et al., 2016).

Other ECMs, such as Matrigel or related proteins (e.g.,
laminin and fibrin), are also commonly applied in supporting

iPSCs formation (Feaster et al., 2015), and help iPSCs derived
cells forming 3D structures during differentiation and tissue
reconstruction (Kong et al., 2018; Maffioletti et al., 2018). For
example, thick mattress of undiluted Matrigel enables rapid
generation and enhanced maturation of rod-shaped hiPSC-
derived cardiomyocytes with aligned myofilaments and robust
contractile responses. This Matrigel mattress-based cell culturing
allows quantification of contractile performance at the single
cell level, which should be valuable to disease modeling, drug
discovery and preclinical cardiotoxicity test (Feaster et al., 2015).
Using cell derived matrix such as fibroblast derived ECM to
culture hiPSCs can mediate cell plasticity (Kim et al., 2018).
Furthermore, PuraMatrix, a new commercial synthetic matrix,
is a natural polymer mimic 16 amino acid synthetic peptide
that can self-assemble into nanofibers (∼10 nm) in response
to monovalent cations to mimic the in vivo soft hydrolgel
based ECM for neural lineage differentiation (Zhang et al.,
2014). However, low mechanical strength, potential impurities
and inconsistence among the manufacturing batches limit the
application of some of the ECM derived materials.

Synthetic Polymers
Synthetic origin polymers had been utilized in iPSCs based
tissue engineering too. The well-established synthetic polymer
types are poly(ε-caprolactone) (PCL), poly(3-hydroxybutyrate)
(PHB), poly(lactic acid) (PLA), poly(L-lactic acid) (PLLA), poly
(glycolic acid) (PGA), and their copolymers like poly(lactic-co-
glycolide) (PLGA). Among these, PLGA and PCL, both have been
approved by American Food andDrug Administration (FDA) for
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clinical application, are most frequently used. Both of PLGA and
PCL can either form different shapes of biocompatible scaffolds,
or encapsulate and deliver drug/bioactive molecules based on
their controllable biodegradability. PCL is more stable in quality
and more cost-effective than PLGA, while PLGA is easier in
processing. Another elastic tissue substitute synthetic polymer
is polydimethylsiloxane (PDMS), which has flexible mechanical
strength, excellent biocompatibility, non-degradability, low cell
toxicity, and negligible immune reaction, and have been used as
iPSCs culture substrate (Herron et al., 2016; Kroll et al., 2017).

Synthetic gel and scaffolds are more controllable,
reproducible, and exhibit stronger mechanical properties
compare to native derived materials, however, they do not
have sufficient bioactivity and biocompatibility. Thus, the
combinations of native and synthetic polymers are adopted to
achieve both biocompatibility and mechanical support in iPSCs
based tissue engineering and other applications. For instance,
the enzymatically crosslinked poly(ethylene glycol) (PEG)-based
hydrogel, which was further modified with fibronectin-derived
adhesion peptide Arginne-glycine-aspartate-serine-proline
(RGDSP), has been proved that it can boost the hiPSC
reprogramming efficacy (Caiazzo et al., 2016). In iPSC based
bone tissue engineering, hydroxyapatite-coated poly(lactic-co-
glycolic acid)/poly(L-lactic acid) (HA-PLGA/PLLA) scaffolds
combined with cultivation of osteoblasts and osteoclasts,
which were differentiated from hiPSC-mesenchymal stem cells
and macrophages, respectively, resulted in accelerated bone
formation both in vitro and in vivo (Jeon et al., 2016).

Key Factors in Scaffold Design
Scaffold design for iPSCs related application has to meet the
needs of native tissue development and maturation. Several
features of engineered scaffold, such as the surface modification,
stiffness, topography, and bioactivity, affect the cellular behaviors
like attachment, proliferation and differentiation, and the
tissue formation.

Surface Modification
The surface of biomaterial scaffold can be modified with
many functional groups (e.g., -OEG, CH3, -OH, -NH2, and -
COOH), which provide a wide range of wettability and charge
(Hao et al., 2016). Hydrophilic surface exhibits greater cell
adhesion and migration compared with hydrophobic surface,
because hydrophilia enhances the deposition of bioactive ECM
proteins, which provides structure motifs for cells to bind.
Similarly, the surface charge also affects the cell and protein
bindings. The positive charge of amine group (-NH2) displays
greater protein affinity (Keselowsky et al., 2004) and fibroblasts
adhesion and growth (Faucheux et al., 2004) compared with
the neutral charged -OH and negative charged -COOH
(Lindblad et al., 1997).

Beside the surface charge, the conductivity of scaffold started
to draw more attention in the application, particularly in the
neural and muscular system. Recently, Gelmi et al. reported a
electromechanically active scaffold for iPSC based cardiac tissue
engineering by using surface coating of polymer polypyrrole
(PPy), a conductive polymer, on electrospun PLGA fiber scaffold
(Gelmi et al., 2016). Graphene, single layers of carbon atoms

with great electrical conductivity, biocompatibility, mechanical
strength and high surface area, can be oxidized by oxygen-
containing moieties (e.g., -COOH, -O-, -OH) to improve the
surface roughness, colloidal stability and hydrophilicity, making
it suitable for scaffold surface modification. When coated with
graphene oxide-gold nanosheets, a chitosan scaffold gained the
conductivity, and can improve hiPSC-derived cardiomyocytes
attachment, differentiation and the in vivo cardiac contractility
(Saravanan et al., 2018), and for neural tissue engineering (Bei
et al., 2019). It is clearly a trend that more bio-electroactive
scaffolds can be expected in the near future.

Stiffness
It was well-established that the matrix stiffness plays an
important role during stem cell differentiation. During the in
vitro culturing of human mesenchymal stem cells (hMSCs),
soft matrix can promote neurogenic differentiation (0.1–1 kPa),
moderate matrix supports the myogenic differentiation (8–17
kPa), while rigid matrix favors the osteogenic differentiation
(25–40 kPa) (Engler et al., 2006; Gibson et al., 2006). The
theory also applied to other stem cells, for instance, the purity
and yield of functional motor neurons differentiated from
hESC/hiPSCs depends on the rigidity of substrate, soft substrate
promote neuroepithelial induction of hiPSCs (Sun et al., 2014).
In addition, Kim et al. used fibroblast-derived matrix (FDM) as
substrate to culture hiPSCs, and use different concentration of
genepin to regulate the biophysical features of the FDM substrate.
The FDM showed a range of the Young’s modulus at ∼100, 800,
5,600, and 8,900 Pa before and after crosslink treatments, and
as the stiffness increase, the substrate conserve the pluripotent
characteristics of hiPSCs at the expense of growth and migration
(Kim et al., 2018). Therefore, the stiffness of biomaterials in iPSCs
application should be carefully studied.

Scaffold Topography
Topography provides different physical cues in macro-/micro-
patterns that regulate the stem cell fate and tissue structure.
For example, in an electrospun porous membrane, there are
at least three types of topography features that can affect the
attached cells—the fiber diameter and direction (Christopherson
et al., 2009; Mohtaram et al., 2015), the average pore size of the
membrane (Levenberg et al., 2003), and the surface nanosized
topography patterns (Abagnale et al., 2017). The fiber diameter
and surface nanostructure influence the attached cells, and the
pore size of the membrane affect the volume of cells that can fill
the scaffold.

Fiber diameter and direction in scaffold affect the attached
cell behavior, cells on small fibers showed stretched and multi-
directional shape, whereas the cell extension on fibers with
larger diameter is restricted. Cooper et al. reported that scaffold
topography regulated iPSCs differentiation and showed that
larger diameter (400 nm) aligned fibers enhanced iPSCs to
become neural cells, while smaller diameter (200 nm) of the fibers
promotes the expression of osteogenic and hepatic makers during
iPSCs differentiation (Cooper et al., 2012).

The pore shape and size within scaffolds are important
cues too. Ji et al. (2015) suggested that sphere-shaped
pores give more support for iPSC osteogenic differentiation
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compared to rod-shaped pores within a nano-hydroxyapatite
(HA)/chitosan/gelatin 3D porous scaffold. Meanwhile,
Worthington et al. (2016) reported that greater proliferation and
neurogenetic differentiation of iPSCs in porous PLGA scaffold.

Besides the macropatterns, the surface micro- and nano-sized
features can affect the cell elongation, alignment, migration,
polarization, and differentiation (Kong and Mooney, 2007).
For example, surface micropatterned nanoridge could induce
neurogenic cell morphology, while cells in smooth surface prefer
to exhibit fibroblast-like morphology of MSCs (D’Angelo et al.,
2010). In sum, topography of scaffold has strong influence on
the attached hiPSCs and the hiPSCs based structures, and design
the topography of scaffold for hiPSCs depends on the aim
of application.

Scaffold Bioactivity
ECM compositions and growth factors are usually used
to enhance the bioactivity of scaffold in hiPSCs related
applications. For example, decellularized fibroblasts-derived
matrices can support the maintenance and differentiation
of hiPSCs (Lim et al., 2013; Kim et al., 2018), which
may be mediated through the activation of integrin and
downstream signaling events (Dickinson et al., 2011). Another
example is that gelatin scaffold (GS) combined with BMP4
facilitated odontoblastic differentiation of hiPSCs (Ozeki et al.,
2017). Encapsulating basic fibroblast growth factor (bFGF)
in electrospun polycaprolactone-polyvinylidene fluoride (PCL-
PVDF) nanofibrous scaffold can also significantly increase
proliferation and osteogenic differentiation of the iPSCs on the
scaffold (Abazari et al., 2019).

There are more comprehensive application examples for
scaffold design, which the bioactivities were rebuilt based on the
requests of spatiality and temporality features of hiPSCs. Xu et al.
developed electrospun silk fibroin(SF)/poly(L-lactic acid-co-ε-
caprolactone) (PLCL) core-shell fibers for dual-delivering the
connective tissue growth factor(CTGF)-derived osteoinductive
peptide H1 from the core, and HA from the shell. The
resultant dual factor-containing scaffold markedly enhanced
adhesion, proliferation and osteoblastic differentiation of hiPSC-
derived mesenchymal stem cells (hiPSC-MSCs) (Xu et al.,
2019). Mulyasasmita et al. (2014) designed and fabricated
protein-polyethylene glycol (PEG) hybrid hydrogels as a tunable
injectable carrier for co-delivery of vascular endothelial growth
factor (VEGF) and hiPSC-endothelial cells.

These findings collectively suggest the great potential and
significance of using biomaterial in iPSCs studies.

BIOFABRICATION TECHNIQUES USED IN
iPSCs RELATED APPLICATION

Scaffold Fabrication Techniques
The biofabrication techniques used in manufacturing scaffolds
for iPSCs, particularly in hiPSCs based tissue engineering,
include the basic solvent casting, gas foaming, lyophilization,
phase separation, self-assembling, and more advance, the
electrospinning and 3D bioprinting (Figure 1, right panel).
Selection of biofabrication technique(s) depends on the nature

of biomaterials, and the structural and biological requests of the
final products.

Acellularized tissue scaffold is one attractive bioactive scaffold
type for iPSC-based tissue engineering because they can
reserve the basic structure and bioactivity of the native tissue.
hiPSCs cultured on decellularized human brain tissue-derived
ECM showed enhanced differentiation into myelin-expressing
oligodendrocytes, which involved in many neural disorders (Cho
et al., 2019). Electrospun brain decellularized ECM (dECM)
nanofibrous scaffold promoted maturation of hiPSC derived
oligodendrocytes with increased production of myelin sheath-
like structures (Cho et al., 2019). dECM have also been
successfully used as cell-laden bio-ink (Pati and Cho, 2017). Yu
et al. (2019) demonstrated the potential of using dECM of heart
and liver in hiPSC 3D bioprinting. However, the derivation,
donor sources, and inconsistency between batches make it is
hard to refine the acellularized tissue scaffolds and dECM,
which are crucial factors in manufacturing. Using polymers and
other biomaterials for scaffold fabrication is more consistent
and controllable, and the scaffold geometry structure can be
precisely controlled from the general frame to very detailed
surface nano-patterns by solvent casting (Li and Wurster, 2018),
electrospinning (Mohtaram et al., 2015), lyophilization (Ji et al.,
2016), surface treatments (Abagnale et al., 2017), etc.

Most of these methods can produce scaffolds with high
porosity and controllable pore size and structure, however, there
are limitations of each method. The classic techniques of solvent
casting and gas forming bring inadequate pore interconnectivity,
that limits the thickness of scaffolds in application, while
the freeze drying has temperature requirements when
manufacturing. Multiple types of biomaterials and biofabrication
techniques are thus used in combination when re-establish
the complex tissues and organs, such as for bone, neuron,
liver, and heart tissue engineering. For example, a polymeric
nanofibrous constructs made by hydroxyapatite/chitosan/gelatin
with high porosity can be manufactured by phase separation
technique based on the natural of materials (Ji et al., 2016). More
advanced technique is electrospinning, with the combinations
of using natural polymers (e.g., collagen, gelatin, chitosan, and
dECM) and synthetic polymers (e.g., PLLA, PCL), has been
applied in building scaffolds for iPSCs based neuron, liver,
heart, bladder, pancreas, bone, cartilage, and tendon tissues.
Recently, the 3D bioprinting is a burgeoning technology with
higher accuracy and greater shape complexity in biomaterials-
based scaffold fabrication. Moreover, living cells also can be
printed with 3D printing in bio-inks. As reported, biomaterials
such as alginate, cellulose, chitosan, agarose (Gu et al., 2017;
Nguyen et al., 2017), PEG (Maiullari et al., 2018), hyaluronic
acid and gelatin methacrylate (GelMA) (Ma et al., 2016)
have been used bio-inks in iPSC-based 3D printing. Table 1
summarized the typical examples of classic and advanced
scaffold fabrication technologies that are used in iPSC-based
tissue engineering applications, and their advantages and
disadvantages (Table 1).

Cell Self-Assembling Techniques
Besides the scaffold, the cell based self-assembling techniques are
used abundantly in iPSCs based tissue engineering. The typical
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TABLE 1 | Biofabrication techniques used in hiPSC-based tissue engineering: cardiac, neural tissue, and others.

Fabrication

technique

Biomaterials used in

hiPSC-based tissue engineering (TE)

Advantage Disadvantage

Solvent

casting/Particulate

leaching

• Alginate/chitosan/gelatin in TE of neuron (Kuo

and Hsueh, 2017)

• PLGA in TE of neural retina (Worthington et al.,

2016)

• Polyurethane in TE of vascular tissue (Lin et al.,

2017)

• PCL/borophosphosilicate glass/boron in TE of

bone (Mondal et al., 2019)

• High porosity • Produce thin membranes up to

3mm thick

• Unable to control individual pore

structure and distribution

Gas foaming • Applicable biomaterials such as silk fibroin

(Maniglio et al., 2018), cellulose (Lee et al., 2015),

and collagen (Croutze et al., 2013)

• These biomaterials are suitable for iPSC-based

tissue engineering, can be used in hiPSC tissue

engineering in the future

• Free of organic solvents

• Encapsulation of bioactive species

• Inadequate pore interconnectivity

• Unable to control pore structure

and distribution

Freeze drying • Methacrylate-modified HA (HAMA) in Rett

syndrome disease modeling of neuron (Zhang

et al., 2016)

• Pore diameter and porosity in the scaffolds

can be regulated

• Keep bioactivity of proteins and peptides

• Cannot engineer scaffolds with

hierarchical structures

Phase separation • Hydroxyapatite/chitosan/gelatin used in TE of

bone (Ji et al., 2015)

• Produce polymeric nanofibrous constructs

• Produce high porosity and interconnected

scaffolds

• Stable between batches

• Limited materials combinations can

use this method

• Inadequate resolution

• No orientation or alignment of the

scaffold

• Less control over fiber diameter

(Ma and Zhang, 1999)

Self-assembly • Collagen/HA/alginate, and the peptides of

fibronectin fragment GRGDSP and laminin

fragment Ln5-P4, were self-assembled as

scaffold for induce differentiation of hiPSCs and

TE of neuron (Kuo and Hsueh, 2017)

• Assemble scaffold without directed external

intervention

• Biomimetic, bioactive

• Widely used in protein, peptide, hydrogel

• Cells and bioactive agents can

be incorporated

• Limited mechanical property and

stability

• No orientation or alignment of the

scaffold

• Case-by-case, depends on the

properties of the precursor

monomers, the specific intra- and

intermolecular interactions from

molecular identity

Electrospinning • Polyaniline/polyetersulfone used in TE of heart

(Mahmoodinia Maymand et al., 2017)

• PLLA used in TE of neuron (Lin et al., 2018)

• Electrospun brain dECM nanofibrous scaffold

promoted maturation of hiPSC derived

oligodendrocytes with increased production of

myelin sheath-like structures (Cho et al., 2019)

• Collagen/polyethersulfone used in TE of liver

(Mahmoodinia Maymand et al., 2017)

• HA/collagen/chitosan used in TE of bone (Xie

et al., 2016)

• PCL/gelatin used in TE of cartilage (Liu et al.,

2014)

• Chitosan used in TE of tendon (Zhang et al., 2015)

• Poly(lactide-co-glycolide) used in TE of bladder

(Mirzaei et al., 2019)

• Collagen/Polyethersulfon used in TE of pancreas

(Mansour et al., 2018)

• Generate ultrafine fibers with diameters

ranging from <2 nm to several micrometers

(Huang et al., 2006)

• High surface area to volume ratio beneficial

for cell attachment and bioactive factors

loading

• Capable of producing long, continuous fibers

• Possibility to control fiber morphology (e.g.,

porous or core-shell)

• Apply to plethora of polymers

• Avoid temperature changing

• Modified into electroblowing avoiding use of

solvent, and electrospraying to form thin

layer of polymer

• Limited control of pore structures

• Process depends on many

variables, such as solution,

processing parameters, and

atmosphere

• Sometimes used solvents like

surfactants can be toxic

3D bioprinting • Alginate and PEG-Fibrinogen used in TE of heart

(Maiullari et al., 2018)

• Using dECM of heart and liver tissue in hiPSC 3D

bioprinting (Yu et al., 2019)

• Alginate/chitosan/agarose used in TE of neuron

(Gu et al., 2017)

• GelMA/GMHA used in TE of liver (Ma et al., 2016)

• HA used in TE of liver (Ma et al., 2016)

• Cellulose/Alginate used in TE of cartilage (Nguyen

et al., 2017)

• Automated, high accuracy, controllable, and

reproducible

• Covers a broad range of biomaterials

• Cells and bioactive agents can be

incorporated

• High resolution

• Fabricate constructs of multicellular,

automical architecture providing vasculature

• Cell viability can be affected while

applying extrusion pressure

• The size of objects is limited

• The current resolution is insufficient

to print capillaries, which are as

small as 3µm in diameter (Potter

and Groom, 1983)
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one is cell-sheet technology, which was firstly derived from the
monolayer cell cultures with enriched ECM production to form a
sheet spontaneously. Later on, multiple cell-sheets are folded into
3D tissue structures. This technology gradually progressed with
cells seeded on the dishes which are modified with temperature-
responsive polymer poly(N-isopropylacrylamide) (PIPAAm) at a
nanometer-scale thickness, or coated with native ECM derived
gels (e.g., type I collagen, fibrin), that can further be easily
removable from the petridish by changing temperature or
treatment with enzymes, respectively (Figure 1, middle panel, B).
The application of cell-sheet technology is not limited to single
cell type, multiple-linage co-cultures can also be introduced
when the cell sheets stack together to mimic the structure
of the native tissue. The cell-sheet technology is currently
limited in thickness of reconstructed tissue due to insufficient
oxygen and nutrient supply to the core, but iPSC-based cell-
sheet has been used for thin tissue regeneration, such as in
the retina clinical trial (Mandai et al., 2017). Furthermore,
the origami-based smart scaffolds are the further development
of cell-sheet technology (Kim et al., 2015). This fabrication
process relies on computer-aided designs of the 3D scaffold
structure, which can control the internal stresses within scaffolds,
and transform the scaffold sheets into designed 3D structures,
thus enhance the complexity and robustness of the original
cell-sheets (Kim et al., 2015).

Organoid is another representative self-assembly
biofabrication technique that is well-used in iPSCs based
tissue engineering (Figure 1, middle panel, A). Organoids are the
tiny organ like-3D tissue structures, which can be derived from
pluripotent stem cells following the developmental processes
in vitro (McCauley and Wells, 2017). It could represent the
complex physiological features of organs or tissues during
both normal development and disease affected changes. The
first successfully established organoid is intestinal organoid
in 2009 (Sato et al., 2009). Hans Clevers and his colleagues
used single Lgr5+ stem cell to generate crypt-villus organoids
without epithelial cellular niche (Sato et al., 2009). Afterwards,
synthetic hydrogel were introduced into the culture system,
which can improve the formation of organoids. Glorevske
et al., reported that PEG hydrogel backbone functionalized
with RGD(Arg-Gly-Asp) is sufficient for dynamic control
of the culture condition to improve the proliferation and
differentiation of intestinal stem cells and organoids (Glorevski
et al., 2016; Gjorevski and Lutolf, 2017). The biomaterials
assisted iPSCs-based organoids thus provide a more flexible
cell model for almost any differentiation requirement for
future applications.

Although cell-based self-assembling methods have been
widely used in tissue engineering, the tissue size problem
remained, the maximum size/thickness of the 3D structure is
limited by the oxygen and nutrient diffusion, and manufacturing
bigger/thicker tissues may result in necrotic cores. As
improvement, combining the self-assembled small tissue
units with blood supply and/or ventilation channels by using
designed scaffolds and bioreactors probably could overcome
the size limitation by providing a pathway for nutrients and
oxygen supply.

BIOMATERIALS IN hiPSCs BASED
DISEASE MODELING

Lately, patient-derived iPSCs have been used to model colonic
tissues for drug screening (Crespo et al., 2017). HiPSCs derived
lung tissues, including human alveoli and lung bud organoids
have been established to model pulmonary tissues (Chen et al.,
2017; Yamamoto et al., 2017). Therefore, it is gradually proven
that hiPSCs can be used in disease modeling and drug screening,
specifically for those caused by genetic mutations, and lacking
appropriate animal models.

Central nerve system is one of the most complex system in
human. Scientists have come up with strategies to modeling
forebrain spheroid from hiPSCs with functional cortical neurons
(Birey et al., 2017). Moreover, using bioreactors, hiPSCs derived
specific region of brain tissue could be modeled within several
months (Qian et al., 2018). The brain organoids could also
be vascularized through re-embedded in Matrigel with hiPSC-
derived endothelial cells, which can be transplanted into animals
to form human CD31+ blood vessels within the organoid (Pham
et al., 2018). The development of brain organoids is valuable for
studying complex neural development and disease (Logan et al.,
2019). Similar applications of hiPSCs derived organoids were
reported for heart tissues and disease (Hoang et al., 2018).

In this session, biomaterials used in patient derived iPSCs
based disease modeling with genetic mutation in neuromuscular
disease (e.g., skeletal muscle, cardiac muscle, and neurons;
Figure 1, left panel) are discussed.

Duchenne Muscular Dystrophy
Dystrophin is a cytoplasmic protein in the linker protein
complex that connect cytoskeleton of muscle fibers to local ECM.
Mutation of dystrophin gene can cause the DMD, a severer
degenerative muscle disorder that affects mostly boys in early
childhood, progress to disability at around 12 years old, and the
average life expectancy is 26 years old. Because animal models
and human conditions are different in DMD, tissue engineering
a three-dimensional artificial skeletal muscle tissue from DMD
patient derived hiPSCs (Choi et al., 2016) become a potential
powerful model for studying the pathology and therapy.

In order to generate muscle tissue in vitro, the first step
is to differentiate the hiPSCs into skeletal muscle cells. The
myogenesis protocol of hiPSCs is a step-wise differentiation
protocol. Firstly, the hiPSCs is differentiated into myogenic
progenitors with factors such as Pax3/Pax7, and followed by
the myogenic regulatory factor (MRF) MyoD/Myf5/Mrf4 to get
myoblasts, then use Myogenin to get mature myotubes (Kodaka
et al., 2017). After the hiPSCs were fully differentiated in to
mature myotubes, these cells would be able to build 3D skeletal
muscle tissue for drug screening (Uchimura et al., 2017).

Several ECM proteins have been adopted as scaffold for
skeletal muscle tissue engineering, such as collagen, fibrin
and laminin (Juhas et al., 2016; Shadrin et al., 2016), which
has the potential to be used in hiPSCs skeletal muscle tissue
engineering. For example, during the differentiation and the
assembling of myotubes from iPSCs, fibrin gel is used to
embed the differentiated myoprogenitors, which eventually
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form aligned multi-nucleated myotubes that exhibit calcium
transients in response to electrical stimulation (Rao et al.,
2018). Supplementing Matrigel during muscle formation can
improve the engineered muscle structure, as myofibers in healthy
muscle directly interact with basal lamina proteins (Sato et al.,
2011). Nakayama et al. (2018) fabricated 3D parallel aligned
nanofibrillar scaffolds with type I collagen, which significantly
improved vascular perfusion and muscle innervation after in
vivo implantation for volumetric muscle loss animals. These
successfully applications in muscle tissue engineering suggested
that these knowledge are transferable to hiPSC-based muscle
tissue engineering for DMD.

A recent sophisticatedmodel for hiPSCs derived DMDmuscle
tissue has utilized the fibrin hydrogel to combine multiple
DMD-hiPSCs derived cell types, which include iPSCs derived
myofibers, vascular endothelial cells, pericytes, and motor
neurons (Maffioletti et al., 2018). In this multilineage culture
system, isogenic hiPSC-derived endothelial cells, pericytes, and
myogenic cells were firstly generated and embedded within
fibrin hydrogels with uniaxial tension to help the myogenic
differentiation. Neurofilament protein SMI32+ cells with long
axon-like processes spreading from hiPSC-derived neurospheres
were further placed above the hydrogels to differentiate from
neural precursors into motor neurons. A 3D-hiPSC derived
artificial skeletal muscle model of DMD were built and
pathological cellular hallmarks can be modeled with high fidelity
(Maffioletti et al., 2018).

One interesting application of biomaterials in DMD-hiPSCs
is that the nano-topography of cell seeding materials can result
different myotube forming patterns of healthy and DMD-
hiPSCs, and this myotube alignment differences can provide a
sensitive phenotypic readout as a biomarker for related drug
testing (Xu et al., 2018). Xu et al. differentiated myotubes
from hiPSCs-derived myogenic progenitors with non-diseased,
less-affected DMD, and severely-affected DMD, respectively,
and further tested the morphologies of myotubes when they
were cultured on substrates patterned with nanogrooves. They
discovered that myotubes derived from healthy iPSCs aligned
almost perpendicular to the nanogrooves, while the counterparts
with severely affected DMD showed random orientation, and
myotubes from less-affected DMD donors aligned approximately
14◦ off the alignment direction of non-diseased myotubes. Based
on the distinct cell morphologies in alignment and orientation,
this disease affected special phenotype of hiPSCs can be used as
a simple and cost-effective readout for DMD drug screening, and
serves as a complementary tool for early diagnosis of DMD (Xu
et al., 2018).

Cardiac Muscle—Congenital Heart
Diseases
Similar to the DMD, genetic mutation caused cardiac muscle
abnormalities can be modeled by patient derived hiPSCs. CHDs
caused by alteration in the DAND5 gene, can be represented by
iPSCs generated from patients (Cristo et al., 2017). Hypoplastic
left heart (HLH) patient derived iPSCs were used to identify
primary cardiac defects such as changes in expression of

cardiac transcription factors and changes in histone modification
(Bosman et al., 2015). Channelopathies can be modeled by
iPSCs for cardiometabolic diseases. iPSCs derived from a patient
with a heterozygous D1257N mutation in the SCN5A gene,
which encodes for a subunit in the cardiac voltage-gated sodium
channel NaV1.5, were used to show themutation loweredNaV1.5
levels (Hayano et al., 2017). Cardiomyopathy modeling of left
ventricular non-compaction (LVNC) through iPSCs derived
from LVNC patients with a mutation in the cardiac transcription
factor gene TBX20 (Kodo et al., 2016), and familial hypertrophic
cardiomyopathy (HCM) can be established by patient derived
iPSCs with a single missense mutation in the MYH7 Gene
(Han et al., 2014).

To generate a piece of cardiac muscle from hiPSCs, hiPSCs-
cardiomyocytes can be seeded in hydrogel-based scaffolds,
which are commonly used to mimic the microenvironment of
myocardium and form cell-sheet. Natural ECM protein collagen
type I, fibronectin, and laminin are commonly used, and PGA,
hyaluronic acid (HyA), or mixtures of HyA with alginate also
can support the 3D modeling of cardiac muscle (Breckwoldt
et al., 2017). In addition to the ECM and hydrogel, electrospun
nanofibrous scaffolds are utilized to provide stronger support
and 3D structure. Amirabad et al. seeded hiPSCs derived
cardiomyocytes onto the electrospun polyaniline/polyetersulfone
(PANI/PES) nanofibrous scaffolds modified with camphor-10-
sulfonic acid (β) (CPSA), then cultured this 3D structure in
cardiomyocyte-inducing factors, and exposed to unidirectional
electrical impulse mimicking the unidirectional wave of electrical
stimulation like the native cardic tissue, which significantly
enhanced the cardiomyocyte differentiation of cardiac patient
-specific iPSCs (Mohammadi Amirabad et al., 2017).

Even with the patient specific-hiPSCs derived cardiomyocytes,
heart is still a very complex organ to recapitulate. Integration
of more cell types, such as cardiac fibroblasts and endothelial
cells are crucial in myocardial tissue engineering and disease
modeling, and scaffolds are also required for the formation
of the complicated 3D structures. Kim et al. demonstrate
improved endothelial differentiation of iPSCs when seeded on
the electrospun porous PCL microfibrous scaffolds, especially
with parallel-aligned fiber orientation, which can further induce
anisotropic vascular network-like organization (Kim et al., 2017).

A more advanced fabrication method to incorporate multiple
cell types to form comprehensive tissue is the 3D bioprinting
technology (Figure 1, right panel, A), which had been used
in hiPSCs derived myocardial tissue engineering. HiPSCs
based scaffold-free cardiac constructs can be assembled by
3D bioprinter with iPSCs-derived cardiomyocytes, human
umbilical vein endothelial cells (HUVECs), and normal human
dermal fibroblasts (NHDFs). These cells were suspended and
mixed to form cardiac spheroids containing total of 35,000
cells/spheroid, then the spheroids were placed on a needle
array by 3D-Bioprinter according to the desired 3D design
to form functional tubular cardiac constructs (Arai et al.,
2018). More often, bio-inks such as hydrogel and ECMs
were applied in the 3D bio-printing of hiPSCs based cardiac
tissue. Maiullari et al. used 3D bioprinting in combination
with HUVECs and iPSC-derived cardiomyocytes to fabricate
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a model of vascularized cardiac tissue. In this study, the cells
were encapsulated within hydrogel strands containing alginate
and PEG-Fibrinogen and extruded through a bioprinter that
allows to precisely tailor their 3D spatial deposition, a multi-
cellular 3D bioprinted cardiac tissue patch was formed, and
the hiPSCs in the scaffold had differentiated into cardiac
phenotype with better overall alignment of cardiomyocytes and
blood vessels ingrowth in the 3D printed tissue compared
to the hiPSC-cardiomyocytes in bulk hydrogel after in vivo
implantation (Maiullari et al., 2018). Gao et al. produced
hiPSC-derived cardiac muscle patch (hCMP) from hiPSC-
derived cardiomyocytes, smooth muscle cells, and endothelial
cells, and a native ECM structural-like scaffold with the
resolution in submicron scale. The native ECM—mimic scaffold
was printed via 3D- multiphoton-excited bio-printer with
methacrylated gelatin and sodium 4-[2-(4-morpholino)benzoyl-
2-dimethylamino]-butylbenzenesulfonate (MBS), with ECM
components and patterns that support either cardiomyocytes,
endothelial cells or smooth muscle cells in a multilayers structure
that to generate hCMPs (Gao et al., 2017).

In future applications, biomaterial scaffold with elastic and
electrical conductivity have the potential to be adopted in hiPSC
based cardiac tissue engineering, cardiac functional test, and
drug screening. The elastic and electrically conductive devices
can provide stimulations for tissue maturation, and examine the
mechanical and electronical signals of hiPSCs derivedmyocardial
tissue. It has been used in cardiac tissue engineering—a
porous conductive scaffold from aniline pentamer-modified
polyurethane/PCL blend was made for cardiac tissue engineering
(Baheiraei et al., 2015). And more biofabrication methods and
applications include the elastic suspension (Godier-Furnemont
et al., 2015), elastic silicone posts (Boudou et al., 2012),
or thin silicone frames (Jackman et al., 2016) that allow
the engineered cardiac tissue to perform contractile work
can be expected. One interesting study of using biomaterial-
electronics hybrid scaffold to record the electrophysiological
activities of attached cells is inspiring for future hiPSCs based
application—nanocomposite fibers of polycaprolactone-gelatin
were combined with electronic mesh as hybrid scaffold to host
the cardiac cells to form a functional cardiac tissue, and the
electrophysiological activities can be recorded from the scaffold
(Feiner et al., 2016).

Neurological Diseases Modeling
Patient-derived iPSCs had been utilized to model frontotemporal
dementia (FTD), amyotrophic lateral sclerosis (ALS) Alzheimer’s
disease (AD), in vitro for drug and therapeutic screenings
(Figure 1A, left panel).

For FTD and ALS, disease specific iPSC-derived cells were
used, such as FTD-associated mutation in the PRGN gene in
hiPSCs astrocytes (Valdez et al., 2017), and a mutation shared
by both FTD and ALS, the hexanucleotide GGGGCC repeat
expansions in C9ORF72, was modeled using iPSC-derived motor
neurons (Lopez-Gonzalez et al., 2016).

For AD, astrocytes generated from patient-derived iPSCs
can model the early stages of the disease (Jones et al.,
2017), and be used for drug screening (Oksanen et al., 2017).

Detection of amyloid β peptides (Aβs) in AD-patient iPSC-
derived cortical neurons can also be used as an AD assay
(Kondo et al., 2017). CRISPR-Cas9 editing correction of the
genetic mutation of AD can be tested in hiPSCs based AD
modeling. Basal forebrain cholinergic neurons (BFCNs), one
of the first cell types to be affected in all forms of AD, were
generated from iPSCs derived from patients with the PSEN2N141I

mutation, and the correction of the mutation using CRISPR-
Cas9 editing led to the abolishment of disease phenotypes
(Ortiz-Virumbrales et al., 2017).

The involvement of biomaterials and 3D structure further
enhances the effectiveness of AD-hiPSCs based modeling
(Yildirimer et al., 2019), e.g., constructing a 3D hydrogel
culture with hiPSCs derived neuroepithelial stem cell line
AF22 and synthetic peptide RADA-16 can recapitulate the
in vivo-like responses of AD, such as increased levels of
activated p21-activated kinase and their relocation to the
submembraneous regions under Aβ oligomer treatment were
detected, which is not possible to detect in conventional
2D cultures (Zhang et al., 2014). Matrigel has been used in
generating 3D cerebral organoids for AD and FTD modeling
due to its capability of developing tau aggregation in AD-
iPSCs, which does not happen in 2D culture systems either
(Raja et al., 2016; Seo et al., 2017).

FUTURE APPLICATIONS

Although significant progresses have been made, few types of
scaffolds have reached the pre-clinical or clinical trials. The
biocompatibility, long-term stability, and degradation speed,
integration to native tissues, immune reactions, and other
safety concerns still remain. The biofabrication technologies
applied in iPSCs based clinical trials are mostly natural derived
materials. For example, in the application of autologous hiPSC-
derived retinal pigment epithelium (RPE) in patients to treat
exudative age-related macular degeneration (Mandai et al.,
2017), cell-sheet was formed with the assistance of porcine
derived collagen membrane. The hiPSCs were reprogrammed
from patient’s own skin fibroblasts, and were differentiated
into RPE cells, then the purified RPE cells were seeded on
porcine derived collagen, which acts as an artificial scaffold
and can be decomposed by collagenase, to obtain a scaffold-
free RPE cell-sheet. The autologous 1.3 × 3.0mm iPSC-derived
RPE cell-sheet was then transplanted under the retina of the
patient (Mandai et al., 2017). Another example is that ViaCyte
and other teams are developing islet cell replacement therapy
through subcutaneous implantation of hiPSC-derived pancreatic
beta cell progenitors encapsulated in an immunoisolating device
in patients with type I/II diabetes, which are mainly alginate
based (Strand et al., 2017). These biofabrication methods and
biomaterials had been proven safe and effective in other
tissue engineering applications, thus are transferable to the
hiPSCs based applications. It is naturally to expect that more
biomaterials and biofabrication technologies which had been
used in other tissue engineering occasions, can be adopted in
hiPSCs based applications.

Besides the disease modeling, biomaterial-based biomolecules
delivery in a precise and controllable manner is in need for
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controlling the differentiation and application of hiPSCs. More
biofabrication technologies for scaffold manufacturing, drug,
and cell delivery including shape-memory elastomeric scaffold
fabricated through micromolding technique (Montgomery et al.,
2017), and external stimuli (e.g., pH, temperature, and light)-
sensitive biomaterial (Knipe and Peppas, 2014) can be expected.
Furthermore, hiPSC-biomaterial combination are able to model
the physiological and pathological conditions in vitro for many
other tissue and organs, such as to be applied in studying the
reestablishment of the stem cell niche (bone marrow), immune
system (lymphatic) (Galat et al., 2017), and nutrient support
(blood supply) (Atchison et al., 2017) in the future.
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