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Mass transport represents the most fundamental process in living organisms. It includes

delivery of nutrients, oxygen, drugs, and other substances from the vascular system

to tissue and transport of waste and other products from cells back to vascular and

lymphatic network and organs. Furthermore, movement is achieved by mechanical

forces generated by muscles in coordination with the nervous system. The signals

coming from the brain, which have the character of electrical waves, produce activation

within muscle cells. Therefore, from a physics perspective, there exist a number of

physical fields within the body, such as velocities of transport, pressures, concentrations

of substances, and electrical potential, which is directly coupled to biochemical

processes of transforming the chemical intomechanical energy and further internal forces

for motion. The overall problems of mass transport and electrophysiology coupled to

mechanics can be investigated theoretically by developing appropriate computational

models. Due to the enormous complexity of the biological system, it would be almost

impossible to establish a detailed computational model for the physical fields related to

mass transport, electrophysiology, and coupled fields. To make computational models

feasible for applications, we here summarize a concept of smeared physical fields, with

coupling among them, and muscle mechanics, which includes dependence on the

electrical potential. Accuracy of the smeared computational models, also with coupling

to muscle mechanics, is illustrated with simple example, while their applicability is

demonstrated on a liver model with tumors present. The last example shows that the

introduced methodology is applicable to large biological systems.

Keywords: mass transport, drug delivery, electrophysiology, muscle mechanics, tumor model, liver, composite

smeared finite element

INTRODUCTION

Convection and diffusion are the fundamental processes regarding transport of molecules or
particles (e.g., nanoparticles used in drug delivery) from the cardiovascular system to tissue and
interior (cytosol and organelles) (Rushmer, 1976; Hall, 2016). The route of this mass transport
goes from blood or lymph to (microenvironment), from extracellular space to intracellular space,
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and finally to organelles. Along that bidirectional path,
molecules/particles pass through the well-known biological
barriers: vessel walls and cell and organelle membranes.

The interdisciplinary scientific field where the mass transport
is studied, related to drug delivery by applying nanoparticles
as the drug carriers to tumor sites, is named oncophysics
(Ferrari, 2010; Koay and Ferrari, 2014; Blanco et al., 2015).
The fundamental physical principles that govern the mass
transport rely on the pressure gradient in case of convection
and on concentration gradient in case of diffusion. Of course,
the physical process is affected by the physical and chemical
characteristics of the transported molecules or particles and the
surrounding medium (Reulen et al., 1977; Popel and Pittman,
1998).

Blood as the basic fluid carrying nutrients, oxygen, drugs,
and so on is a complex medium, and in computational models,
certain approximations have to be adopted. In large vessels, this
approximation is made by modeling blood as a homogenous
fluid with certain viscosity properties (Shi et al., 2011), where
the molecular transport is governed by convective-diffusive
laws. This approximation is less valid in small vessels, such as
capillaries (diameter size on the order of 10µm; Mathura et al.,
2001) where the presence of cells, mainly red blood cells (RBCs),
affects transport (D’Apolito et al., 2015); still, in a simplified
analysis, blood may be considered as a homogenous fluid with
appropriate viscosity (Sevick and Jain, 1989b; Cinar et al., 1999).
Complexity of the capillary network can be seen in various
references (e.g., Skinner et al., 1990; Ma and Zhang, 1998), and
images are available today on the Internet.

Tissue is a complexmedium throughwhich themass transport
occurs, but, regarding the computational modeling, it has to
be approximated; the degree of approximation goes from an
isotropic continuum to detailed description of extracellular
space, cells, and cell interior. Extensive experimental research
has been carried out over decades; we cite few recent, as
molecule transport within brain tissue (Nicholson, 2001) or
(Swabb et al., 1974) where tissue glycosaminoglycan content and
drug molecular weight were found to be important parameters
determining whether extravascular transport is governed by
diffusion or convection. Khaled and Vafai (2003) presented a
review of models used for convection and diffusion, including
heat transfer, whereas Nugent and Jain (1984) and Gerlowski
and Jain (1986) studied diffusivity of dextran molecules in
tumor interstitium.

Transport through biological barriers as vessel walls, or cell
and organelle membranes, depends on the transport properties
of these barriers, as hydraulic or diffusion coefficients, and on the
size of the surface that separates the continuum domains. As an
illustration, we cite here measurements of the volumes and cross-
sectional areas of blood vessels of a dog (Rushmer, 1976), which
show that the mass exchange occurs mostly at the capillary–
tissue level. The capillary volumetric fraction (capillary density)
is one of the important characteristics in the mass exchange
(Kojic et al., 2017b), which will represent a basic parameter in
our computational models.

As will be seen in the formulation of our computational
models, we will rely on the usually adopted governing laws for

transport within extracellular space: the Darcy velocity–pressure
relationship for convection and Fick’s law for diffusion (Kojic
et al., 2008). Transport within tumors has additional complexities
due to variability of vessel diameters and lengths (Roberts and
Palade, 1997) and irregular blood vessel branching (Less et al.,
1991), as well as due to geometric resistance (Sevick and Jain,
1989a) (a measure of network irregularities), viscous resistance
(Sevick and Jain, 1989b), and RBC mechanical properties (Sevick
and Jain, 1991). Jain (1988) summarized basic properties of blood
flow within tumors, while data specifically related to transport
through capillary walls are given in Jain (1987).

The fundamental process in living organisms represents
mass exchange and transport within cells. Cell interior is very
complex, composed of different compartments or entities, such
as organelles, which are, together with the cell cytoskeleton,
immersed into the cell fluid–cytosol (Keener and Sneyd, 2009).
Mass transport within cells is a particular branch of biomedical
research, and here we cite a few references addressing some
aspects of mass transport and exchange. The factors that
affect the transport within cells range from biochemical to
mechanical to signaling pathways (Rangamani and Iyengar,
2007). Theoretical basis of biochemical processes within different
intracellular compartments is formulated (Lauffenburger and
Horwitz, 1996; Sun and Pang, 2008; Chu et al., 2013). A
computational framework for modeling mass exchange within
cells, formulated as a virtual cell, is presented (Schaff et al., 1997;
Moraru et al., 2008), which was further used inmany applications
(Slepchenko et al., 2003).

In electrophysiology, the goal is to determine the
electrophysiological properties of all compartments and
signal propagation characteristics within the body. For example,
in heart electrophysiology, the fundamental advancements were
achieved by designing the so-called clamp experiment (Hodkin
and Huxley, 1952) in order to determine characteristics of the
membrane currents and constitutive relations for the conduction
of currents. Following this breakthrough achievement, further
important experiments were performed, with modifications and
extension of the constitutive relations (Noble, 1962; Baer and
Rinzel, 1991; Decker et al., 2009; O’Hara et al., 2011). Based on
these experimental results, a large number of computational
models related to electrical signal propagation, which includes
enormous complexities, have been introduced. For example,
model presented (Noble, 1962) includes the role of various
transmitting molecules—currents carried by ions through
membranes and composite media (Ijiri et al., 2008) include
intricate geometry such as in the case of Purkinje network. Since
heart is a representative organ with electrical signaling coupled
to mechanics, we here refer to a few computational models
particularly related to heart modeling and mainly based on the
finite element method. A review of computational methods for
heart physiology can be found (Clayton and Panfilov, 2008).
Among models discussed (Clayton and Panfilov, 2008) is the
one related to coupling the electrical field with the mechanical
response (Rocha et al., 2011; Lafortune et al., 2012; Dal et al.,
2013).

Finally, in this short overview of mass transport and
electrophysiology fields of research in science, technology, and
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medicine, we note that variation of electrical potential of cell
membranes triggers other vital processes within living cells.
A typical example is that calcium waves within muscle cells
are induced by changes of the membrane potential. Calcium
concentration within cells is fundamental for muscle contraction,
and various mechanical models for muscles based on the calcium
concentration changes are developed (Hunter et al., 1998; Kim
et al., 2010; Mijailovich et al., 2010; Lafortune et al., 2012;
Santiago, 2018). The variation of electrical potential fields also
affects transport of charged particles or drug molecules (Schaff
et al., 1997; Trapp and Horobin, 2005), and this kind of mass
transport is included in our models (Kojic et al., 2019).

Considering the complexity of computational modeling of
physical fields, such as pressure distribution, concentration
of various molecules, or field of electrical potential within
a body, or even within an organ, it is desirable to have a
computational methodology feasible for practical applications. In
our previous research, we have introduced a smeared concept
for mass transport in capillary system and tissue (Kojic et al.,
2017a,b, 2018, 2019; Kojic, 2018; Milosevic et al., 2018a)
and demonstrated its superiority with respect to traditional
modeling methods.

In this study, we summarize our previously formulated
smeared methodology for modeling mass transport in biological
tissue and electrophysiology problems and extend it to coupling
with muscle mechanics. The motivation for the development of
the models, which are applicable to real biomedical problems, is
briefly outlined in the text above.

The paper is organized as follows. In the next section,
we first summarize the governing equations of the gradient-
driven processes: fluid flow through porous media, convective–
diffusive particulate transport (including ions) and electrostatics;
and then introduce a finite element (FE) form for these
governing equations. In Section Smeared Model for Field
Problems, the smeared methodology in a general form is
summarized (Kojic, 2018), followed by specific forms related the
problems described in Section A Summary of the Fundamental
Equations for Gradient-Driven Physical Processes and FE
Formulation. In Section Coupling Electrophysiology and Muscle
Mechanics, we give a short description of coupling the smeared
model for electrical potential with muscle mechanics. In
Section Representative Results, we present several examples to
demonstrate the main features of the smeared concept, including
its accuracy and applicability; and, in the final section, we give a
short summary and concluding remarks.

A SUMMARY OF THE FUNDAMENTAL
EQUATIONS FOR GRADIENT-DRIVEN
PHYSICAL PROCESSES AND FE
FORMULATION

In this section, we first summarize the gradient-driven problems
related to mass transport in blood vessels and tissue and
electrophysiology. Then, we present a finite element formulation
for these partial differential equations.

Fundamental Equations for the Gradient
Driven Field Problems
Flow Through Porous Media
In case of incompressible fluid flow through a porous rigid
medium, the governing relation is represented by Darcy’s law

vi = −kDij

∂p

∂xj
, sum on j : j = 1, 2, 3 (1)

where vi is the Darcy velocity (as fluid flux per unit area of the
continuum) in direction xi, p is fluid pressure, and kDij is the
Darcy tensor. The mass balance equation is

kDij

∂2p

∂xi∂xj
+ qV = 0 (2)

WHERE qV is a source term.

Diffusion
The constitutive law for diffusion is known as Fick’s law

Qi = −Dij
∂c

∂xj
(3)

and the mass balance equation is

−
∂c

∂t
− vi

∂c

∂xi
+

∂

∂xi

(

Dij
∂c

∂xj

)

+ qV = 0,

sum on i, j : i, j = 1, 2, 3 (4)

Here, c is concentration, Qi flux, and Dij is the diffusion tensor.
The generality is kept under the assumption that the diffusion
tensor can be a function of concentration, that is, it can be Dij

= Dij(c).

Electrostatics
The constitutive law is

Ji = −G
∂Ve

∂xi
(5)

whereG is electric conductivity, andVe is electrical potential. The
continuity equation for the current density can be derived from
Maxwell equations in the form

∂

∂t

(

∂Di

∂xi

)

= −
∂Ji

∂xi
, sum on i, i = 1, 2, 3 (6)

where the current density components Di can be related to the
potential Ve as

Di = −ε
∂Ve

∂xi
(7)

where ε is the dielectric constant. Finally, the continuity
equation is

ε
∂

∂t

∂2Ve

∂xi∂xi
= −G

∂2Ve

∂xi∂xi
+ qeV (8)

where qeV is a volumetric source term (coming from ionic
transport; Rangamani and Iyengar, 2007).
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1D Conditions
For further presentation, we give the expressions for the 1D
conditions. For the fluid flow, the 1D conditions follow from the
study of flow within pipes (Smith et al., 2002; Canic and Kim,
2003; Kojic et al., 2014). In case of a rigid pipe, the governing
equation reduces to

kpipe
∂2p

∂ x̄2
= 0 (9)

where x̄ is the pipe direction, and kpipe is the pipe coefficient,
which can be derived from the so-called Hagen-Poiseuille law.
Additional terms are present in the above equation for the case of
deformable pipe (Kojic et al., 2014) but will not be considered in
this work.

In case of diffusion, the 1D conditions follow from Equation
(4). Hence, we have

−
∂c

∂t
− v

∂c

∂ x̄
+

∂

∂ x̄

(

D
∂c

∂ x̄

)

+ qV = 0 (10)

where x̄ is the axis of propagation, and D is diffusion coefficient.
In the case of electrical conduction, the governing equation
has the form (9) with respect to the electric potential Ve,
where instead of kpipe, we have GaA, with A being the neural
fiber cross-section.

Transport Through Membranes
Continuum domains of a composite media are often separated by
membranes or walls in case of blood vessels or neural fibers. For
the presentation of the smeared methodology, we here give the
fundamental relations for transport through membranes. In case
of fluid flow or diffusion, we have

Q
p
w = kw

(

pin − pout
)

(11)

Qc
w = Dw (cin − cout) (12)

with the flux of fluid Q
p
w and mass due to diffusion Qc

w

oriented outward (from in to out); kw and Dw are wall hydraulic
permeability and wall diffusivity, respectively. In the case of
electrical field, the wall electrical flux relies on the so-called
cable theory (Winslow, 1992). The outlet electrical flux (current
density) Im can be expressed as

Im = Gm

(

V in
e − Vout

e

)

+ Cm

(

∂V in
e

∂t
−

∂Vout
e

∂t

)

(13)

where Gm is membrane conductivity, and Cm is specific
membrane (wall) capacitance.

Finite Element Formulation
The above governing equations can be transformed into the FE
equations of balance for a single finite element by implementing
a standard Galerkin weighting method (Kojic et al., 2008). The
incremental-iterative form of balance for a time step ∆t and
iteration i can be derived in the form

(

1

1t
M+ Kv

+ K

)(i−1)

18(i)
= Qext

+QV

−
1

1t
M(i−1)

(

8(i−1)
− 8t

)

−
(

K+ Kv
)(i−1)

8(i−1)(14)

where

MIJ =

∫

V

cmNINJdV

Kv
IJ =

∫

V

viNINJ,idV , sum on i : i = 1, 2, 3

KIJ =

∫

V

DkmNI,kNJ,mdV , sum on k,m : k,m = 1, 2, 3

QV
I =

∫

V

NIqVdV (15)

whereΦ stands for pressure, concentration, or electrical potential
as nodal variables; NI are interpolation functions, V is element
volume; cm is mass coefficient (= 0 for fluid flow, and = 1 for
diffusion); Dkm for fluid is the Darcy tensor, while it is Gδij (δij
is the Kronecker delta symbol) for electrical field. For the case of
Darcy’s flow or no convection, the convection matrix Kv is equal
to zero. For electrical potential, we have that the “mass” matrix is

MIJ = ε

∫

V

NI,kNJ,kdV , sum on k, k = 1, 2, 3 (16)

and the convection matrix is equal to zero. Note that for 1D
problems, the equations have the same form as the above, with
one index k and no summation; and that the element volume
is V = AL, where A is cross-sectional area and L is the element
length. Note that Equation (14) assumes implicit integration
scheme over time, that is, all variables are evaluated at the
end of time step and at the current equilibrium iteration. This
integration scheme is unconditionally stable and provides the
best accuracy (Kojic and Bathe, 2005).

For modeling transport through the membranes (walls), we
have introduced connectivity 2-node elements for nodes at
membranes (Figure 1A) by using double nodes at the same space
position at the membrane, with one node belonging to one side
and the other to the other side of the boundary between two
domains. The balance equation of the form (14) can be applied.
The “mass” and transport matricesM and K can be written as

M11 = M22 =
1

3
cmmAmhm, M12=M21=

1

6
cmmAmhm

K11 = K22 = −K12 = −K21 = DwAm (17)

where Am is the area of the surface belonging to the node, hm is
the membrane thickness; in case of diffusion, Dw is the diffusion
coefficient, while instead of Dw, we have kw and Gm for fluid flow
and for electrical conduction, respectively; cmm = 0 for fluid flow
and cmm = 1 for diffusion. For the case of electrical conduction,
the non-zero terms of the “mass” matrix are

M11 = M22 = AmCm (18)
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FIGURE 1 | Schematic of detailed model and smeared model. (A) Detailed model of tissue as composite medium with continuum subdomains and capillaries/fibers,

2D representation, with continuum, 1D and connectivity elements. (B) Smeared finite element (FE) representation of the detailed model. (C) Composite smeared finite

element (CSFE) with subdomains and connectivity element at a FE node J. (Used with permission from the Journal of the Serbian Society for Computational
Mechanics from Kojic, 2018).

Finally, in this section, we summarize computational steps related
to the incremental-iterative balance Equation (14). The steps are
as follows:

1. Loop over time steps

1.1 Loop over equilibrium iterations

1.1.1 Loop over finite elements, evaluate, and store into
global system element matrices and nodal vectors

1.1.2 Solve for the nodal variables
1.1.3 Check for the convergence criteria (unbalanced

vector on the right-hand side are small and/or
increments of nodal variables are small).
If the convergence criteria are not satisfied, update
the solution and go to next equilibrium iteration

1.2.1 If convergence criteria are satisfied, store solution
and go to the next time step 1.

END OF SOLUTION.

SMEARED MODEL FOR FIELD PROBLEMS

To introduce the smeared methodology (Kojic et al., 2014),
we first consider a detailed model of a composite medium.
A schematic of a medium composed of continuum domains-
compartments together with a network of fiber-like 1D domain
is shown in Figure 1A. The continuum domains include
extracellular space, cells, and organelles. Capillaries and lymph
vessels, and neural fibers, are represented by 1D elements within
extracellular space, while cells can contain organelles—hence, the
continuum domains have a hierarchical character. Each domain
has its own FE mesh of continuum elements, while 1D domains
have their own 1D finite elements with the coordinate axes along
the elements (x̄ axis depicted at one of these fibers).

Connectivity elements are shown as A, B; C, D; E, F; and
enlarged at the top of the Figure 1A (the nodes C, D, also denoted
as 1, 2). The two nodes, 1 and 2, have nodal values representing
the two domains (φout and φin in the figure). The characteristics
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of the connectivity elements assigned to the boundary common
nodes are membrane (or wall) transport coefficient, cross-section
area Am, and the membrane (wall) thickness hm.

It can be seen from the detailed model description that
significant effort is required to generate the model. The model
generation would be an impractical or even impossible task in
case of a complex medium such as tissue. In case of employing
continuum FEs for membranes instead of connectivity elements,
this task would be more demanding.

To overcome complexity issues, we further introduce a
smeared model by formulating a continuum composite finite
element (CSFE). The CSFE includes all constituents (continuum
and 1D) in a way that the true physical fields, corresponding to
a detailed model, are represented in a kind of average, so-called
“smeared” sense, providing adequate accuracy. The smeared
model for the same detailed model of Figure 1A, and with
continuum elements only, is schematically shown in Figure 1B.

A few conceptual steps need to be considered to formulate
the CSFE element. First, the 1D balance equations are necessary
to be transformed into the corresponding continuum format.
The derivations of the continuum transport tensor, for a general
physical field, are given (Kojic, 2018) and can be expressed as

Dij =
1

Atot

∑

K

DKAKℓKiℓKj (19)

where Atot is the total area of 1D domains in a reference
volume; AK is cross-sectional area of element K; DK and ℓKi
are transport coefficients along the 1D elements and directional
coefficients, respectively.

Each domain in the CSFE formulation has its own field within
the corresponding volume of the CSFE. Therefore, as shown in
Figure 1C, the FE node of the CSFE has a number of degrees of
freedom φK equal to the number of domains Nd. The domain
volume VK can be expressed as

VK = rKVV , and dVK = rKVdV (20)

where rKV is the volumetric fraction, and V is the total
element volume.

Corresponding domains are coupled using connectivity
elements placed at each node of the CSFE and in accordance to
previously described connectivity elements in the detailed model.
The cross-sectional area AJK of a connectivity element at node J
for the domain K can be expressed in the form

AJK =
(

rKAVVK

)

J
=

(

rKAVr
K
VV

)

J
(21)

where rKAV is the area coefficient expressed as rKAV = AK/VK , and
VJ is the volume of the total space of the continuum belonging to
the node J. This volume can be evaluated as

VJ =

∑

el

∫

Vel

NJdVel (22)

where summation el goes over all finite elements with the
common node J. Note that for convenience of modeling of any
non-homogenous property of the material system, all of the

surfaces, volumes, and volumetric and area ratios are assigned to
FE nodes.

The finite element balance equations for continuum and
connectivity elements are of the same form as in detailed model
(Equation 14) with the matrices

MIJ =

∫

V

cmNINJr
K
VdV

KIJ =

∫

V

DijNI,iNJ,jr
K
VdV , sum on i, j : i, j = 1, 2, 3 (23)

QV
I =

∫

V

NIqVr
K
VdV

where the material parameters are as in Equation (15). In case of
electrical field, the matrixM in Equation (16) is now

MIJ = ε

∫

V

NI,kNJ,kr
K
VdV , sum on k, k = 1, 2, 3 (24)

and the source nodal vector due to ionic transport of a molecule
m is (Kojic et al., 2019)

QmE
I =

DFzm

RT

∫

V

NI
∂

∂xi

(

cm
∂Ve

∂xi

)

rKVdV (25)

where D is diffusion coefficient, zm is the molecule valence, F
is the Faraday constant, R is the gas constant, T is absolute
temperature, and cm is concentration. The surface areas entering
into matrices of the connectivity elements are as given in
Equation (21).

The above concept has been implemented for diffusion and
fluid transport through complex systems consisting of capillary
network and tissue, with inclusion of the hydrophobicity effects
in the connectivity elements (Kojic et al., 2014, 2017a, 2018),
and with improvements of accuracy of the smeared methodology
achieved by the correction function introduced inMilosevic et al.
(2018a). The robustness and applicability of the smeared model
are demonstrated (Milosevic et al., 2018b), where the CSFE is
extended for modeling drug release from a complex mesh of
drug-loaded nanofibers.

COUPLING ELECTROPHYSIOLOGY AND
MUSCLE MECHANICS

Muscles (here assumed skeletal muscles) in the body are activated
by electrical signals transmitted from the central nervous system
to muscle cells. The signals trigger muscle activation since they
produce a change in the cell membrane potentials, which further
leads to flow through membrane of ions vital for cell functioning,
such as potassium, sodium, calcium, and others (Hodkin and
Huxley, 1952; Noble, 1962; O’Hara et al., 2011). The ion flow is
bidirectional through various biological mechanisms. There are
a number of mathematical models that connect the membrane
potential change with activation of muscles. For example, for
cardiac muscle, the mathematical expressions for generation of
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the so-called active stress along the muscle fiber, which produces
the muscle contractile force, the membrane potential is used
directly (Dal et al., 2013) or through the concentration of calcium
Ca2+ within the muscle cell (Hunter et al., 1998; Lafortune et al.,
2012; Berberoglu et al., 2014). The calcium Ca2+ is the crucial
molecule that catalyzes the biochemical cycle of conformational
change of muscle fiber molecules and therefore transformation
of chemical into mechanical energy. Hence, in modeling muscle
mechanical action, it is necessary for these models to have the
calcium concentration change within muscle cells over time. We
will use a widely accepted relation (Hunter et al., 1998)

σact =

[

Ca2+
]n

[

Ca2+
]n

+ Cn
50

σmax [1+ η (λ − 1)] (26)

where σact is the active stress along the fiber, Ca2+is
calcium concentration, σmaxis maximum isometric stress, C50

is concentration for 50% availability of actin sites for the
crossbridge binding, n is related to the rate of this availability to
concentration, η is parameter that is governing the rate of muscle
fiber deformation, and λ is the fiber stretch.

Computational models of skeletal muscles and their
implementation to the physiological conditions have been
the subject of intensive research within the computational
community (e.g., Kojic et al., 1998; Stojanovic et al., 2007;
Mijailovich et al., 2010, and references therein).

We use velocity formulation, that is, the nodal variables
are velocities—convenient to couple solid and fluid mechanics
(Isailovic et al., 2014; Kojić et al., 2015), while stresses in solids
are calculated from strains or stretches. The balance equation of
a finite element can be written in the form (Kojic et al., 2008)

(

1

1t
M+ 1tK

)

1V(i)
= Fext − Fint(i−1)

−
1

1t
M

(

V(i−1)
− Vt

)

(27)

where the mass and stiffness matrices M and K have a standard
form (Kojic et al., 2008), and V and Vt are nodal velocities
at the current (or previous) iteration and at start of time step,
respectively; Fext and Fint are external and internal nodal forces;
nodal variables are one-dimensional arrays. Specific to muscle
deformation is that, besides the material stress dependent on the
state of deformation, there exists the active stressσact entering
into the internal force vector as noted above.

REPRESENTATIVE RESULTS

We have selected two numerical examples to illustrate the
main characteristics of our smeared modeling methodology. The
first example shows applicability of smeared models to large
biological systems; here, a liver with two tumors is modeled. In
the second example, accuracy of solutions is investigated on a
small sample of the heart wall tissue, including coupling between
electrophysiology and mechanics. The models are built into our
FE code PAK (Kojic et al., 2010) with the corresponding CAD
interface developed at R&D Center for Bioengineering BIOIRC.

We prepared animations for both examples, which are given
in Supplementary Material.

Liver Model With Tumors—Application of
the CSFE
Liver model is based on geometry used (Kojic et al., 2017b),
with two additional spheres modeled to mimic two tumor

FIGURE 2 | Liver model: geometry, tumor domains, and pressures within large vessels.
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domains. Micro computed tomography (micro-CT) was used by
the Preclinical Imaging Core at the Houston Methodist Research
Institute to scan the vascular structure of a mouse liver. The
geometry of the liver and blood vessel network is generated
frommicro-CT scan using procedure presented (Zagorchev et al.,
2010). The geometry of the model is shown in Figure 2.

The FE model consists of 39,832 3D CSFEs, 7,736 1D pipe
FEs for larger vessels, 726 connectivity elements for connecting
large vessels with continuum nodes of smeared FEs. Two separate
tumors within liver are with a total of 316 3D FE elements. The
total number of nodes is 54,590. Data for this example are the
same as in Kojic et al. (2017b).

Prescribed conditions in larger vessels (at input/output nodes
of 1D pipe elements mesh) are: Inlet Pressure is 3,999.7 Pa
(30 mmHg), Outlet Pressure is 1,333.2 Pa (10 mmHg), Inlet
Concentration is bolus type c(t), presented in Figure 6, and outlet
concentration is set to be 0.

Characteristics of fluid/diffusion flow through blood vessels
(large vessels and capillaries) are: viscosity is 10−3 Pa s, and
diffusion coefficient is 1,000 mm2/s.

Characteristics of blood vessel walls are: hydraulic
permeability coefficient is 10−12 mm/(Pa s), diffusion coefficient
is 0.1 mm2/s, and thickness is 10% of the vessel diameter.

Characteristics of tissue are: diffusion coefficient is 0.1 mm2/s,
and Darcy coefficient is 10−12 mm2/(Pa s).

Parameters of smeared model are: average capillary diameter
is 0.025mm, capillary wall thickness is 0.0025mm, volume
fraction is 10%, diffusion coefficient of capillary wall is 10−6

mm2/s, and hydraulic permeability of capillary wall is 10−12

mm/(Pa s). The adopted values of material and geometric
parameters are according to literature data, for example,
Rushmer (1976), Gerlowski and Jain (1986), Jain (1988), Keener
and Sneyd (2009).

Time steps used in simulations are: 40× 2.5 s.
Additionally, there are two tumors in the model with the

following characteristics:

Tumor 1 Tumor 2

Diff. coeff in extracellular space [mm2/s] 100 10

Darcy coefficient [mm2/(Pa s)] 1 0.1

Hydraulic coefficient [mm/(Pa s)] 1 0.1

Diffusion coefficient in small

capillaries [mm2/s] 100 10

Diff. coeff of capillary wall [mm2/s] 100 10

Partitioning of capillary wall 0.8 0.7

Diff. coeff within cells [mm2/s] 100 100

Diff. coeff of cell membrane [mm2/s] 100 100

As can be seen from these data, we assumed 10 times smaller
diffusion coefficient within tumor 2 than in tumor 1 to show the
difference in concentration between these tumors.

With these material data and boundary conditions, we have
solved for pressures and concentrations within the liver and two
tumors using our smeared methodology. Some of the results are
summarized below.

Pressure fields for two views of the model are shown
in Figure 3 for the outer surface of 3D smeared elements,
cross-section, and a dotted representation of large vessels and
continuum. Tumor surfaces are indicated by dashed lines. As can
be seen from this figure, there is evident reduction in pressures,
starting from large vessels to capillaries and further to tumors and
healthy tissue.

Vectors of velocities, field of velocity on the outer surface
with a clipping plane, and vectors of velocities within tumors,
for two different views on the model, are shown in Figure 4.
For one of the tumors, T1, there is a positive pressure difference
with respect to the surrounding tissue, which induces velocity
vectors pointing out of tumor, that is, fluid is flowing out of tumor
(Figure 4C–T1).

The concentration field within large vessels, liver tissue,
and tumors is shown in Figure 5 for three time points. The
largest values of the concentrations are noticeable in blood
vessels, following a decrease going to capillaries and tissue. Also,
concentration within tumor T2 is smaller compared to that of
tumor T1 due to reduced diffusion coefficients.

Change of the mean concentration within capillaries, tissue
of liver, and tumors T1 and T2, is shown in Figure 6. In the
first period of the process of drug transport within the liver,
concentration within capillaries, tissue, and tumors is increasing
according to increase of the entering mass (concentration). The
concentration within capillaries reaches maximum with respect
to the maximum of the entering c(t), which is also the case for
tissue and tumor domains. It is evident that concentration in
tumor T1 is higher than in tumor T2 due to the larger diffusion
and partitioning coefficients.

Electrophysiological and Mechanical
Model of the Heart Wall
To investigate accuracy of our CSFE model, a small sample of
heart wall tissue is selected (Figure 7) following data (Blausen
Medical, 2014; Santiago, 2018). From this model, we extract the
first layer of muscle cells in myocardium, which is close to the
sub-endocardium: the domain that includes the Purkinje fibers.

According to the image in Figure 7 (right panel), the detailed
2Dmodel is generated (Figure 8A), which consists of the mesh of
1D Purkinje fibers and 25 cells. Dimension of the model is 230×
150µm, volume fraction of cells is rV = 0.71, and area/volume
ratio of cell is rAV = 0.18. Based on the detailed model, we
generated the smeared model (Figure 8B) for calculation of
the electrical potential and calcium current and concentration
(O’Hara et al., 2011). FE nodes of 1D Purkinje fibers are
connected with 2D FE nodes of extracellular space domain using
connective 1D elements. As shown in Figure 8, it is assumed
that the left vertical boundary of the tissue is constrained to
displacements in x direction, and lower horizontal boundary is
constrained to displacements in y direction. We assumed that
muscle fibers have longitudinal direction with respect to the
muscle cells, that is, they are aligned to the x direction.

Data used in themodel are: electric conductance (Gi, I= x,y,z)
of extracellular space (further called tissue), cells, and in neural
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FIGURE 3 | Pressure fields for two views: (A) full mesh; (B) clipped mesh; (C) dotted representation of results in tissue, and with full mesh in tumors.

FIGURE 4 | Velocities within liver model for two views: (A) vectors of velocities; (B) outer surface with clipped mesh; (C) vectors of velocity within tumors (enlarged

images).

fibers is 1,000 [AV−1m−1]; specific membrane conductance
(Cm) of Purkinje fibers is 1,000 [S/µm2]; specific membrane
capacitance of Purkinje fiber’s membrane and cell membrane

is 1,000 [AsV−1
µm−2], and Gm = 0 for the fiber membrane.

Diffusion coefficient of Ca2+ for tissue and cell is assumed to
be 1,000 [µm2/s], while it is assumed that there is no diffusive
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FIGURE 5 | Concentration field in liver with tumors (marked with dashed lines), dotted results in tissue domain and with full mesh in tumors, for times t = 10, 20, and

50 s.

FIGURE 6 | Concentration evolution in liver. The inlet concentration c(t) at

large vessel has a bolus character and generates bolus-type profiles of mean

concentrations in capillaries and tissue of the liver and within tumors—reduced

with respect to c(t). The lowest concentration is in tumor T2 with the smallest

diffusion and partitioning coefficient.

transport through cell membrane. Material parameters of the
muscle mechanical model (Equation 28), used in this example,
are: n= 0.4, Cn

50 = 0.5, η = 0.2, and σmax = 100kPa.

The function of the electric potential is taken from Noble
(1962): it consists of two identical cycles and is prescribed at inlet
nodes of the Purkinje mesh [Ve(t) in Figure 8]. We assumed
constant potential inside cells (Ve = −20mV). Accumulated
current density (IORd) in cell membrane is calculated according
to ORd model (O’Hara et al., 2011) and added to Equation (13)
of the FE solution procedure. For these conditions, change of
the mean electric potential within tissue is shown in Figure 9A.
Results are almost identical for both detailed and smeared
models. Currents of ORd model that affect concentration
of the Ca2+ in myoplasmic compartment are: IpCa,ICab, and
INaCa,i; while currents that affect concentration of Ca2+ in
the subspace compartment are ICaL and INaCa,ss. Mean current
density ICa for transport of the Ca2+ ions can be calculated as
(O’Hara et al., 2011):

ICa = −
(

IpCa + ICab − 2 · INaCa,i
) Vmyo

Vmyo + Vss

−
(

ICaL − 2 · INaCa,ss
) Vss

Vmyo + Vss
(28)

whereVmyo andVss are volumes of themyoplasmic compartment
and subspace compartment, respectively. Change with time of
the mean current density obtained by using detailed and smeared
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FIGURE 7 | Small domain of heart wall tissue according to Blausen Medical (2014) (Left panel) and first layer of muscle cells close to sub-endocardium with mesh of

Purkinje fibers projected on it (Right panel).

FIGURE 8 | (A) The detailed heart wall model with cells and a network of Purkinje fibers. (B) Smeared model with tissue and Purkinje fibers associated to nodes of the

CSFEs in a smeared manner.

model is shown in Figure 9B, where Ica for the detailed model is
calculated as average over all cells.

Mean concentration in cells,
[

Ca2+
]

mean
, is calculated as

average concentration in cells composed of myoplasmic (denoted
by index “i”), subspace (“ss”), network SR (“nsr”), and junctional
SR (“jsr”) compartments, according to O’Hara et al. (2011)

[

Ca2+
]

mean
=

([

Ca2+
]

i
· Vmyo +

[

Ca2+
]

ss
· Vss

+
[

Ca2+
]

nsr
· Vnsr +

[

Ca2+
]

jsr
· Vjsr

)

/Vcell

(29)

where Vmyo = 0.68 Vcell, Vss = 0.02 Vcell, Vnsr = 0.0552 Vcell,
and Vjsr = 0.048 Vcell. Concentrations of Ca2+ in each

compartment (i, ss, nsr and jsr) of ORd model are calculated
according to equations provided in Supplementary of Reference
(O’Hara et al., 2011). Change of the mean concentration within
cells (cell domain), for both detailed and smeared models, is
shown in Figure 10A.

Muscle contraction occurs from the generation of active
stress according to Equation (26), where concentration of
calcium is evaluated by our transport models (detailed and
smeared). The mechanical response is calculated using the
equation of motion (27). Mean contraction (displacement) of
the right vertical tissue boundary is shown in Figure 10B.
The largest contractions occur at t = 0.9 s and 1.6 s,
which are in accordance with the Ca2+ concentration
within cells.
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FIGURE 9 | (A) Change of electric potential over time in extracellular space (tissue) domain—detailed and smeared model, with prescribed Ve(t) at inlet nodes of

Purkinje fibers and prescribed Ve = −20V within cells (green). (B) Change of mean current density Ica [µA/µm2 ], which affects transport of Ca2+ through cell

membrane, according to detailed and smeared models.

FIGURE 10 | (A) Concentration change of Ca2+ in cells due to cell membrane currents. (B) Mean contraction (displacement) of the right vertical boundary of heart

tissue segment due to Ca2+ change in muscle cells.

Effective contraction (modulus of the displacement vector)
field of the tissue for the first cycle of action potential function
Ve(t) is shown in Figure 11. It can be seen that the largest
contraction occurs at t = 0.9 s. Good agreement is observed
between the results of the two models.

Electric field potentials within extracellular space for four
time points, according to detailed and smeared model, are
shown in Figure 12. Potential within cells is kept constant Ve

= −20mV. Agreement between solutions of the two models
is noted.

DISCUSSION

Themain aims of the study were first to demonstrate applicability
of our previously published general smeared finite element
formulation for the physical fields to large-scale biological

problems and second to include electromechanical coupling as
the fundamental process for the muscle activation.

Considering the first aim, we note that, by using the today
available computational models, software, and hardware, it is
practically impossible to calculate drug distribution within an
entire organ with different scales, from macro- to nano-, and
modeling in detail blood vessels, cells, extracellular space, and
even cell interior. On the contrary, our smeared FE methodology
offers a platform to achieve solutions for this multiscale problem.
We have selected for demonstration a liver of a mouse and
generated continuum model with the geometry obtained from
images. The model is simple since it consists of 3D continuum
finite elements, with the 1D FEs for larger blood vessels as the
only addition. The model, for the sake of generality, includes
two tumors with different transport properties. The transport
parameters data, including hydraulic and diffusive components,
are taken according to available references (Gerlowski and Jain,
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FIGURE 11 | Effective contractions (displacements) according to the detailed model (Left panel) and smeared model (Right panel) for four time points (0.4, 0.9, 1.0,

and 1.1 s) of first cycle of action potential function (inlet Ve (t) in Figure 10A).

1986; Sevick and Jain, 1989b, 1991; Less et al., 1991; Mathura
et al., 2001; Hall, 2016). The results displayed here show the
concentration field, pressure distribution, and fluid velocities
in different domains that are quantitatively correct. Accuracy
of the solutions can be examined by, first of all, comparison
with experiments. Comparison with other available numerical
solutions in literature, such as those related to one domain only
(e.g., tumor), would be possible with imposing the appropriate
boundary conditions in our smeared model. This is not done
here, since accuracy of our smeared models was examined in
detail in our previous references (Kojic et al., 2017a,b, 2018, 2019;
Milosevic et al., 2018b).

Detailed comparison of the smeared models in
electrophysiology with the traditional models is given (Kojic
et al., 2019). It was found in that analysis that the smeared model
is advantageous with respect to the traditional monodomain
and bidomain models (e.g., Roth and Wikswo, 1986; Henriquez,
1993; Henriquez et al., 1996; Keener and Panfilov, 1996)
(reviewed in Clayton and Panfilov, 2008; Clayton et al., 2011).
The defficiency of the traditional models also is that they
do not include volumetric fractions of the distinct domains,
which obviously must affect the solution. On the other

hand, our smeared model relies on the multiple continuum
domains coupled by the appropriate connectivity elements.
Furthermore, smeared models are simple for application as,
for example, in case of the heart: instead to model in detail
neural fibers, the entire His-Purkinje system of the heart
(Vigmond and Stuyvers, 2016) can be modeled by using the
conductivity tensor of the form (19) within continuum 3D
finite elements.

With the field of electrical potential within Purkinje
network, extracellular and cell interior domain, coupled by
the connectivity elements, it is possible to calculate membrane
potential that governs the change of the calcium concentration
within muscle cells according to Equation (29). It is further
straightforward to compute the active stress within muscle
cells by employing Equation (26), as one of the commonly
used relationships.

CONCLUDING REMARKS

The presented smeared finite element formulation offers a
platform for multiscale modeling of physical field within a
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FIGURE 12 | Electric potential according to detailed model (Left panel) and extracellular space of smeared model (Right panel) for four time moments (0.4, 0.9, 1.0,

and 1.1 s) of the first cycle of action potential function.

complex medium. Being simple for application, it is suitable
for modeling large biological systems, such as liver with tumors
used as an example in this study. It is straightforward to
implement this approach to other organs, as lung, heart,
pancreas, and so on and even brain. The brain has additional
complexities related to signal transmission, but the presented
model of the Purkinje network and electrical field within
tissue shows that a brain model can be developed. The
demonstrated electromechanical coupling demonstrates that
this methodology can be implemented to muscle modeling
in general.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

MK formulated the methodology. MM designed the examples
and analyzed results. VS, BM, and VG performed the numerical
simulations and prepared results. SN, AZ, NF, and MF

provided the data and images for reconstructing the liver and
electrophysiology examples.

FUNDING

This work was supported by the SILICOFCM project that has
received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement
No. 777204.

ACKNOWLEDGMENTS

The authors acknowledge support from the City of Kragujevac,
Serbia, Ministry of Education and Science of Serbia (Grants OI
174028 and III 41007), and also from National Cancer Institute
under grant U54 CA210187.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbioe.
2019.00381/full#supplementary-material

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 14 December 2019 | Volume 7 | Article 381

https://www.frontiersin.org/articles/10.3389/fbioe.2019.00381/full#supplementary-material
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Kojic et al. Smeared Multiscale Finite Element

REFERENCES

Baer, S. M., and Rinzel, J. (1991). Propagation of dendritic spikes mediated

by excitable spines: a continuum theory. J. Neurophysiol. 65, 874–890.

doi: 10.1152/jn.1991.65.4.874

Berberoglu, E., Solmaz, H. O., and Göktepe, S. (2014). Computational modeling

of coupled cardiac electromechanics incorporating cardiac dysfunctions. Eur.

J. Mech. Solids 48, 60–73. doi: 10.1016/j.euromechsol.2014.02.021

Blanco, E., Shen, H., and Ferrari, M. (2015). Principles of nanoparticle design for

overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951.

doi: 10.1038/nbt.3330

BlausenMedical (2014). Medical gallery of BlausenMedical 2014.WikiJ. Med. 1:10.

doi: 10.15347/wjm/2014.010

Canic, S., and Kim, E. H. (2003). Mathematical analysis of the quasilinear e ects in

a hyperbolic model blood ow through compliant axi-symmetric vessels. Math.

Meth. Appl. Sci. 26, 1161–1186. doi: 10.1002/mma.407

Chu, X., Korzekwa, K., Elsby, R., Fenner, K., Galetin, A., Lai, Y., et al.

(2013). Intracellular drug concentrations and transporters: measurement,

modeling, and implications for the liver. Clin. Pharmacol. Ther. 94, 126–141.

doi: 10.1038/clpt.2013.78

Cinar, Y., Demir, G., Paç, M., and Cinar, A. B. (1999). Effect of hematocrit

on blood pressure via hyperviscosity. Am. J. Hypertens. 12, 739–743.

doi: 10.1016/S0895-7061(99)00011-4

Clayton, R. H., Bernus, O., Cherry, E. M., Dierckx, H., Fenton, F. H.,

Mirabella, L., et al. (2011). Models of cardiac tissue electrophysiology:

progress,challenges and open questions. Prog. Biophys Mol. Biol. 104, 22–48.

doi: 10.1016/j.pbiomolbio.2010.05.008

Clayton, R. H., and Panfilov, A. V. (2008). A guide to modelling cardiac electrical

activity in anatomically detailed ventricles. Prog. Biophys Mol. Biol. 96, 19–43.

doi: 10.1016/j.pbiomolbio.2007.07.004

Dal, H., Göktepe, S., Kaliske, M., and Kuhl, E. (2013). A fully implicit finite element

method for bidomain models of cardiac electromechanics. Comput. Methods

Appl. Mech. Eng. 253, 323–336. doi: 10.1016/j.cma.2012.07.004

D’Apolito, R., Tomaiuolo, G., Taraballi, F., Minardi, S., Kirui, D., Liu, X., et al.

(2015). Red blood cells affect the margination of microparticles in synthetic

microcapillaries and intravital microcirculation as a function of their size and

shape. J. Control Release. 217, 263–272. doi: 10.1016/j.jconrel.2015.09.013

Decker, K. F., Heijman, J., Silva, J. R., Hund, T. J., and Rudy, Y. (2009).

Properties and ionic mechanisms of action potential adaptation, restitution,

and accommodation in canine epicardium. Am. J. Physiol. Heart Circ. Physiol.

296, H1017–H1026. doi: 10.1152/ajpheart.01216.2008

Ferrari, M. (2010). Frontiers in cancer nanomedicine: directing mass

transport through biological barriers. Trends Biotechnol. 28, 181–188.

doi: 10.1016/j.tibtech.2009.12.007

Gerlowski, L. E., and Jain, R. K. (1986). Microvascular permeability

of normal and neoplastic tissues. Microvasc. Res. 31, 288–305.

doi: 10.1016/0026-2862(86)90018-X

Hall, J. E. (2016). Guyton and Hall Textbook of Medical Physiology, 13th Edn.

Philadelphia, PA: Elsevier.

Henriquez, C. S. (1993). Simulating the electrical behavior of cardiac tissue using

the bidomain model. Crit. Rev. Biomed. Engrg. 21, 1–77.

Henriquez, C. S., Muzikant, A. L., and Smoak, C. K. (1996). Anisotropy, fiber

curvature, and bath loading effects on activation in thin and thick cardiac

tissue preparations: simulations in a three-dimensional bidomain model. J.

Cardiovacs. Eiectrophysiol. 7, 424–444. doi: 10.1111/j.1540-8167.1996.tb00548.x

Hodkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. Physiol.

117, 500–544. doi: 10.1113/jphysiol.1952.sp004764

Hunter, P. J., McCulloch, A. D., and ter Keurs, H. E. (1998). Modelling the

mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69, 289–331.

doi: 10.1016/S0079-6107(98)00013-3

Ijiri, T., Ashihara, T., Yamaguchi, T., Takayama, K., Igarashi, T., and Shimada, T.

(2008). A procedural method for modeling the Purkinje fibers of the heart. J.

Physiol. Sci. 58, 481–486. doi: 10.2170/physiolsci.RP003208

Isailovic, V., Kojic, M., Milosevic, M., Filipovic, N., Kojic, N., Ziemys, A., et al.

(2014). A computational study of trajectories of micro- and nano-particles with

different shapes in flow through small channels. J. Serb. Soc. Comp. Mech. 8,

14–28. doi: 10.5937/jsscm1402014I

Jain, R. (1987). Transport of molecules across tumor vasculature.CancerMetastasis

Rev. 6, 559–593. doi: 10.1007/BF00047468

Jain, R. (1988). Determinants of tumor blood flow: a review. Cancer Res. 48,

2641–2658.

Keener, J., and Sneyd, J. (2009). Mathematical Physiology I: Cellular Physiology, II:

Systems Physiology, 2nd Edn. New York, NY: Springer.

Keener, J. P., and Panfilov, A. V. (1996). A biophysical modelfor defibrillation of

cardiac tissue. Biophys. J. 71, 1335–1345. doi: 10.1016/S0006-3495(96)79333-5

Khaled, A.-R. A., and Vafai, K. (2003). The role of porous media in modeling flow

and heat transfer in biological tissues. Int. J. Heat Mass Transfer 46, 4989–5003.

doi: 10.1016/S0017-9310(03)00301-6

Kim, N., Cannell, M. B., and Hunter, P. J. (2010). Changes in the

calcium current among different transmural regions contributes to action

potential heterogeneity in rat heart. Prog. Biophys. Mol. Biol. 103, 28–34.

doi: 10.1016/j.pbiomolbio.2010.05.004

Koay, E. J., and Ferrari, M. (2014). Transport oncophysics in silico, in vitro, and in

vivo. Preface Phys. Biol. 11:060201. doi: 10.1088/1478-3975/11/6/060201

Kojic, M. (2018). Smeared concept as a general methodology in finite element

modeling of physical fields and mechanical problems in composite media. J.

Serbian Soc. Comput. Mech. 12, 1–16. doi: 10.24874/jsscm.2018.12.02.01

Kojic, M., and Bathe, K. J. (2005). Inelastic Analysis of Solids and Structures. Berlin,

Heidelberg; New York, NY: Springer.

Kojic, M., Filipovic, N., Stojanovic, B., and Kojic, N. (2008). Computer Modeling in

Bioengineering - Theoretical Background, Examples and Software. Chichester:

John Wiley and Sons.

Kojic, M., Mijailovic, S., and Zdravkovic, N. (1998). Modelling of muscle

behavior by the finite element method using Hill’s three-element

model. Int. J. Num. Meth. Engng. 43, 941–953. doi: 10.1002/(SICI)1097-

0207(19981115)43:5<941::AID-NME435>3.0.CO;2-3

Kojic, M., Milosevic, M., Simic, V., and Ferrari, M. (2014). A 1D pipe finite

element with rigid and deformable walls. J. Serb. Soc. Comp. Mech. 8, 38–53.

doi: 10.5937/jsscm1402038K

Kojic, M., Milosevic, M., Simic, V., Geroski, V., Ziemys, A., Filipovic, N.

(2019). Smeared multiscale finite element model for electrophysiology and

ionic transport in biological tissue. Comput Biol. Med. 108, 288–304.

doi: 10.1016/j.compbiomed.2019.03.023

Kojic, M., Milosevic, M., Simic, V., Koay, E. J., Fleming, J. B., Nizzero, S., et al.

(2017b). A composite smeared finite element for mass transport in capillary

systems and biological tissue. Comp. Meth. Appl. Mech. Engrg. 324, 413–437.

doi: 10.1016/j.cma.2017.06.019

Kojic, M., Milosevic, M., Simic, V., Koay, E. J., Kojic, N., Ziemys, A.,

et al. (2017a). Extension of the Composite Smeared Finite Element (CSFE)

to include lymphatic system in modeling mass transport in capillary

systems and biological tissue. J. Serb. Soc. Comp. Mech. 11, 108–120.

doi: 10.24874/jsscm.2017.11.02.09

Kojic, M., Milosevic, M., Simic, V., Koay, E. J., Kojic, N., Ziemys, A., et al. (2018).

Multiscale smeared finite element model for mass transport in biological tissue:

from blood vessels to cells and cellular organelles. Comput. Biol. Med. 99, 7–23.

doi: 10.1016/j.compbiomed.2018.05.022

Kojic, M., Slavkovic, R., Zivkovic, M., Grujovic, N., Filipovic, N., and Milosevic,

M. (2010). PAK - Finite Element Program for Linear and Nonlinear Analysis.

Kragujevac: Univ Kragujevac and R&D Center for Bioengineering.
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