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Background and aims: Ovarian cancer (OC) is the seventh most commonly detected

cancer among women. This study aimed to map the hub and core genes and potential

pathways that might be involved in the molecular pathogenesis of OC.

Methods: In the present work, we analyzed a microarray dataset (GSE126519) from

the Gene Expression Omnibus (GEO) database and used the GEO2R tool to screen

OC cells and ovarian SINE-resistant cancer cells for differentially expressed genes

(DEGs). For the functional annotation of the DEGs, we conducted Gene Ontology

(GO) and pathway enrichment analyses (KEGG) using the DAVID v6.8 online server

and GenoGo MetacoreTM, Cortellis Solution software. Protein–protein interaction (PPI)

networks were constructed using the STRING database, and Cytoscape software was

used for visualization. The survival analysis was performed using the online platform

GEPIA2 to determine the prognostic value of the expression of hub genes in cell lines

from OC patients.

Results: We identified a total of 809 upregulated and 700 downregulated DEGs. GO

analysis revealed that the genes with statistically significant differences in expression

were mainly associated with biological processes involved in the cell cycle, the mitotic

cell cycle, mitotic nuclear division, organ morphogenesis, cell development, and cell

morphogenesis. By using the Analyze Networks (AN) algorithm in GeneGo, we identified

the most relevant biological networks involving DEGs that were mainly enriched in the cell

cycle (in metaphase checkpoints) and revealed the role of APC in cell cycle regulation

pathways. We found 10 hub genes and four core genes (FZD6, FZD8, CDK2, and

RBBP8) that are strongly linked to OC.

Conclusion: This study sheds light on the molecular pathogenesis of OC and is

expected to provide potential molecular biomarkers that are beneficial for the treatment

and clinical molecular diagnosis of OC.

Keywords: ovarian cancer, protein–protein interactions, Metacore, biomarkers, functional enrichment analysis,

expression profiling data, microarray
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INTRODUCTION

Ovarian cancer (OC) is the seventh most frequently detected
cancer among women worldwide (Reid et al., 2017). Epithelial
cancers represent∼90% of OC in patients with different ailments
(Cancer Genome Atlas Research Network, 2011) comprising five
distinct histological subtypes that have various distinguishable
complications, sources of cells, molecular compositions, clinical
signs, and symptoms and treatments (Matulonis et al., 2016).
Matulonis et al. (2016) reported that OC is typically detected at
the late stage, and no successful screening approaches have been
found thus far. However, patients with an increased risk of OC
with germline mutations in BRCA1, BRCA2, or additional genes
can be identified (Pennington and Swisher, 2012; Younes and
Zayed, 2019).

Proteins transported by exportin 1 (XPO1 or CMR1), such
as IkB, p53, pRb, p21, p27, and FOXO, play significant roles
as tumor suppressors. When restricted to the nucleus, they
inhibit the growth of cells and cell survival unless they are
transferred to the cytoplasm (Senapedis et al., 2014). A selective
inhibitor of nuclear export (SINE) acts along with CMR1 to block
its interaction with nuclear proteins intended to be exported
to the cytoplasm; inhibitors of CMR1 are known as SINE
compounds (Gerecitano, 2014). Recent work has also revealed
that SINE compounds enhance the proteasomal deterioration
of CMR1, increase the nuclear retention of FOXO and p53,
and contribute to enhanced apoptosis in prostate cancer cell
lines (Mendonca et al., 2014). As an outcome of resistance to
treatment, the elevated annual mortality rate is due to a variety
of diagnoses at advanced phases of the disease and recurrence
of the disease. Additionally, OC comprises several subtypes
with distinct etiologies and molecular profiles that result in
considerable variations in the inherent sensitivity to treatment
(Zyl et al., 2018). To overcome treatment resistance, there is a
need to understand the complete set of molecular mechanisms
underlying SINE resistance in OC cell lines. Therefore, the
development of OC and associated phenomena need to be
investigated, and there is an urgent need to find candidate early
diagnostic biomarkers.

Microarray-based gene expression assessment is the most
commonly used high-throughput and successful technique
used to study complicated disease pathogenesis. However,
studies performed that utilize human OC gene expression
profiling are very uncommon. In the current research, we
tried to explore the differentially expressed genes (DEGs), gene
network, pathways, and protein interactions that are unique to
OC. To detect the DEGs between OC and SINE-resistant OC
cell lines (GSE126519), we utilized a bioinformatics approach
to analyze DEG data retrieved from the Gene Expression
Omnibus (GEO) database. For the screened DEGs, functional
annotation assessment with Gene Ontology (GO) and pathway
enrichment assessment with the Kyoto Encyclopedia of Genes
and Genomes (KEGG) were carried out using the Database
for Annotation, Visualization, and Integrated Discovery
and GeneGo MetacoreTM software. Ultimately, we found 10
potential hub genes and four core genes that were strongly
linked to OC.

MATERIALS AND METHODS

Data Preprocessing and Screening of
DEGs
The expression profiling was performed on the OC gene
dataset GSE126519, which was retrieved from GEO (Gene
Expression Omnibus database, https://www.ncbi.nlm.nih.gov/
geo/) and includes gene expression datasets from RNA-seq, high-
throughput hybridization array, DNAseq, ChIPs, and microarray
(Barrett et al., 2013). “Ovarian cancer” AND “Homo sapiens”
were the keywords used to search OC-related expression profiles
within the GEO datasets. The GSE126519 expression profiling
was conducted in arrays that included three human OC cell lines
and three SINE (selective inhibitors of nuclear export)-resistant
human OC cell lines. We utilized the GEO2R (http://www.ncbi.
nlm.nih.gov/geo/geo2r/) statistical tool to recalculate and assess
the genes that were expressed differently between the human OC
cell lines and the SINE-resistant human OC cell lines (Ritchie
et al., 2015). The Benjamini and Hochberg (false discovery rate)
and t-test methods were utilized with the GEO2R tool to calculate
the FDR and p-values, respectively, to identify the DEGs. We
considered p < 0.05 and a | log (fold change) | > 1 to be
statistically significant for the DEGs, and logFC≥ 1 and logFC≤

−1 were considered to indicate upregulated and downregulated
DEGs, respectively (Aubert et al., 2004).

By using all of the DEGs identified in the OC cell lines, we
constructed a volcano plot by using the Volcano Plot (https://
paolo.shinyapps.io/ShinyVolcanoPlot/) online server, which is
hosted on shinyapps.io by RStudio. The resultant DEG dataset
was collected and used for further analysis. The initial ontology of
gene (GO) and KEGG pathway enrichment analyses of the DEGs
was annotated (p < 0.05) using the online bioinformatics tool
DAVID v6.8 (https://david.ncifcrf.gov/) (Huang et al., 2009a,b).

PPI Network Construction
The online database STRING (v11.0, http://www.string-db.org/)
was used to visualize the PPIs between the statistically significant
DEG-encoded proteins in the resultant dataset (Szklarczyk et al.,
2015). The dataset contained more than 10,000 DEGs. To avoid
an inaccurate PPI network, we used a cutoff ≥ 0.9 (high-
confidence interaction score) to obtain the significant PPIs. We
used Cytoscape software v3.7.1 (http://www.cytoscape.org/) to
visualize the PPI network obtained from the STRING database
(Shannon et al., 2003). Based on the log fold change values,
the PPI network was plotted for both the upregulated and
downregulated DEGs. The interrelation analysis of the identified
genes was performed by using the GeneMANIA online tool
(Franz et al., 2018).

Analyzing the Backbone Network
The NetworkAnalyzer app in Cytoscape was utilized to explore
the networks of both the upregulated and downregulated DEGs
(Saito et al., 2012). NetworkAnalyzer computes the topological
parameters and centrality measures such as the distribution
of the node degree, the betweenness centrality, the topological
coefficients, the shortest path length, and the closeness centrality
for directed and undirected networks (Assenov et al., 2008).
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TABLE 1 | Patients’ information in GSE126519 derived from the GEO database.

Group Accession Patient no. Organism Disease state Type

OC GSM3602932 Patient 1 Homo sapiens Ovarian cancer Human ovarian cancer cell

GSM3602933 Patient 2 Homo sapiens Ovarian cancer Human ovarian cancer cell

GSM3602934 Patient 3 Homo sapiens Ovarian cancer Human ovarian cancer cell

SINE resistance OC GSM3602935 Patient 4 Homo sapiens Ovarian cancer Human ovarian cancer cell

GSM3602936 Patient 5 Homo sapiens Ovarian cancer Human ovarian cancer cell

GSM3602937 Patient 6 Homo sapiens Ovarian cancer Human ovarian cancer cell

GEO, Gene Expression Omnibus; OC, ovarian cancer; SINE, selective inhibitors of nuclear export.

The distribution of the node degree indicates the number of
nodes with a certain degree and is a comparative measure of the
degree to which a node parameter shares neighbors with other
nodes in terms of the topological coefficient. NetworkAnalyzer
calculates the topological coefficients for all network nodes with
more than one neighbor (Stelzl et al., 2005). The networks that
do not have multiple edges have been determined according
to the betweenness centrality, whereas the closeness centrality
computes this for all nodes and plots it against the number of
neighbors in terms of the closeness centrality (Brandes, 2001;
Newman, 2005).

GeneGo Analysis
The statistically significant DEGs were further analyzed in
Metacore and Cortellis Solution software (https://clarivate.
com/products/metacore/, Clarivate Analytics, London, UK) to
perform the GO function and pathway enrichment analyses.
GeneGo enables the fast analysis of protein networks, metabolic
pathways, and maps for the list of genes and proteins
obtained from experimental high-throughput data (MetaCore
Login|Clarivate Analytics1). We used the pathway maps tool to
identify the enriched pathways involving DEGs in terms of the
hypergeometric distribution, and the p-values were calculated
by using the default database as the background (based on
an FDR p < 0.005). Based on a significant p-value < 0.05,
graphical depictions of the molecular interactions between the
DEGs were generated.

Hub Gene Survival Analysis
A comprehensive online platform called Gene Expression
Profiling Interactive Analysis (GEPIA2, http://gepia2.cancer-
pku.cn/#index) provides fast and customized delivery of
functionalities based on TCGA (The Cancer Genome Atlas)
and genotype-tissue expression (GTEx) data. GEPIA2 evaluates
the survival effect of differentially expressed genes in a given
cancer sample. The overall survival effect of hub genes in OC
was estimated by calculating the log-rank p-value and the HR
(hazard ratio-95% confidence interval) using GEPIA2 Single
Gene Analysis. Then, the validation of the expression of the
core hub genes in OC and normal tissues was performed and
visualized in a boxplot (Tang et al., 2017).

1MetaCore Login | Clarivate Analytics Available at: https://portal.genego.com/

(accessed June 22, 2019).

FIGURE 1 | Volcano plot of the DEGs in OC compared with those in

SINE-resistant OC from the GSE126519 dataset. x-axis: log2FC, large-scale

fold changes; y-axis: –log10 of the p-value showing the statistical significance.

Each black point corresponds to one gene. The black points above the red

line and beside the blue line (left side and right side) represent log2FC ≥ 1 and

p-value < 0.05; all DEGs that were OC-related are shown below the red line,

which represents log2FC < 1 or p-value > 0.05. The position of the core

genes are named and marked in scarlet color.

RESULTS

DEG Identification
We obtained the gene expression profiles for GSE126519,
“Analysis of RNA profiles in parent and selective inhibitors of
nuclear export (SINE)-resistant OC cells” from the GEO datasets.
(Miyake and Sood, 2019) submitted the GSE126519 dataset,
which was generated on the GPL10558 platform (Illumina
HumanHT-12 V4.0 expression bead chip). The GSE126519
dataset was obtained from three patient cell lines that comprised
six samples, including three OC cell lines and three SINE-
resistant OC cell lines (Table 1). To identify the DEGs from
these two groups (OC and SINE-resistant OC), we conducted
GEO2R web-server analysis (https://www.ncbi.nlm.nih.gov/geo/
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geo2r/?acc=GSE126519) to calculate the p-values and |log2FC|
values. The resulting genes that met the cutoff criteria (|log2FC|
≥ 1.0 and p < 0.05) were considered DEGs. Overall, 8,855
genes were identified from the GEO dataset (GSE126519) with
p > 0.05 and p < 0.05 using the GEO2R tool and are
shown in Supplementary Table 1. We constructed a volcano
plot using the Shiny Volcano Plot online server by Rstudio to
compare the two groups; a total of 2708 DEGs were identified
from the GSE126519 dataset (Figure 1). Among them, 809 and
700 genes were upregulated and downregulated, respectively,

between two groups according to their log2FC and p-values
(Supplementary Table 2).

Construction of the PPI Network
To evaluate the PPIs between the DEGs, we used the STRING
tool to identify the PPI networks for both the up- and
downregulated genes. A combined score of ≥0.9 for the nodes
was considered to indicate a significant PPI interaction. Then, we
exported the resulting PPI network as a “.txt” file and imported
it as a.csv file into Cytoscape v3.7.1 software for visualization.

FIGURE 2 | The protein networks of the upregulated DEGs determined using Cytoscape are shown. The representation is as follows: spheres represent the nodes,

and the edges are shown as lines.
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The graphical representations of the PPI networks of the up- and
downregulated DEGs are shown in Figures 2, 3, respectively. The
backbone network of the up- and downregulated genes consist of
794 nodes and 676 nodes with estimated clustering coefficients
of 0.321 and 0.192, respectively. The Cytoscape plug-in Network
Analyzer was used to analyze the networks for both the up- and
downregulated DEGs. Table 2 shows the topological parameters
of the up- and downregulated PPI networks, and the topological
components, including the distribution of the node degree, the

topological coefficient, the shortest path length distribution,
the betweenness centrality, and the closeness centrality for the
individual PPI networks are shown in Figures 4A,B.

GO and Enrichment Analysis
To determine the potential GO classifications and KEGG
pathway-enriched genes from the dataset, we imported all
target DEGs into the online analysis tool DAVID to conduct
the annotation process (Supplementary Table 3). The annotated

FIGURE 3 | The protein networks of the downregulated DEGs determined using Cytoscape are shown. The representation is as follows: spheres represent the nodes,

and the edges are shown as lines.
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TABLE 2 | Topological parameters for the upregulated and downregulated PPI

network.

S. no. Topological parameters Comprehended values

Upregulated

genes

Downregulated

genes

(1) Number of nodes 794 676

(2) Clustering co-efficient 0.321 0.192

(3) Network density 0.023 0.003

(4) Network centralization 0.169 0.081

(5) Network heterogeneity 1.748 1.893

(6) Characteristic path length 3.295 4.509

(7) Average number of neighbors 18.544 2.257

results for the GO terms were divided according to the MF
(molecular function), BP (biological process), and CC (cell
component) ontologies (p< 0.05, FDR< 0.05). The results of the
GO biological process (BP) analysis revealed that the upregulated
DEGs were mainly enriched in the cell cycle, mitotic cell
cycle process, and mitotic nuclear division; the downregulated
DEGs were mainly elevated in pathways related to organ
morphogenesis, cell development, and cell morphogenesis, which
are involved in differentiation, mesenchymal development, and
cellular responses to UV. For the GO molecular function
analysis, the upregulated DEGs were significantly enriched in
nucleoside-triphosphatase activity and hydrolase activity, which
acts on acid anhydrides and phosphorus-containing anhydrides,
DNA-dependent ATPase activity, and pyrophosphatase activity,
whereas the downregulated DEGs were largely enriched in
beta-amyloid binding, carbonyl reductase (NADPH) activity,
and collagen, amide, and calcium ion binding. Concerning
the GO cell component analysis, the upregulated DEGs
were mostly enriched in the chromosome and condensed
chromosome, while the downregulated DEGs were enriched
in membrane-bound vesicles, extracellular vesicles, and the
extracellular region and organelles (Supplementary Table 3).
Moreover, we used the DAVID online tool to categorize the
DEGs involved in various signaling pathways according to
the KEGG reference pathways (p < 0.05, FDR < 0.05). By
examining the KEGG pathways, we noticed that the upregulated
DEGs were enriched in DNA replication, the cell cycle, the
nucleotide excision repair mechanism, the Fanconi anemia
pathway, and DNA mismatch repair; the downregulated DEGs
were mostly enriched in the ECM–receptor interaction, the
PI3K–Akt signaling pathway, arginine and proline metabolism,
Oligodontia-colorectal cancer syndrome, and Nevoid basal cell
carcinoma syndrome (Supplementary Table 4).

Enrichment Analysis Using MetacoreTM

Software
To understand the map pathways and the genes that were
differentially expressed in the OC patient cell lines, we
used MetacoreTM software (Calrivate Analytics) to perform
enrichment analysis (EA) using a widely known database

for protein–protein signaling. EA identified the gene IDs
of the potential targets from the DEG sets with gene
IDs via the functional ontology function in MetaCore. The
possibility of a random intersection of a gene set and the
corresponding ontological entities was determined according
to the hypergeometric intersection p-value. A reduced p-value
suggested that the object was more relevant to the dataset, which
indicated that it had a higher rating. Comparative enrichment
analysis of the DEG dataset identified the top 10 enriched
pathways, and the maps, GO cellular processes, networks, and
biomarkers (by disease) are shown in Figures 5A–D. These
are the most statistically significant data for each category
based on a very low p-value. The pictorial representation of
the top-scored pathway map (lowest p-value) is based on
the distribution of gene enrichment, as shown in Figure 6A;
similarly, the second scored map (second-lowest p-value) is
shown in Figure 6B. In Figures 6A,B, the well-characterized
proteins or protein complexes are displayed as individual
symbols; the data from all experiments are shown and linked
on the maps as thermometer-like symbols. A red upward-
facing thermometer indicates the upregulated genes, and a blue
thermometer indicates the expression level of a downregulated
gene. The AN algorithm in GeneGo was used to identify the
most relevant biological networks by prioritizing the number
of fragments of the canonical pathways in the network, as
shown in Table 3. The top regulated network processes are
presented in Supplementary Figures 1A,B, illustrating the two
major pathways involving DEGs that were commonly affected
in both OC groups. We identified several crucial hub genes,
including TCF4, frizzled family proteins (FZD2, FZD8, and
FZD6), RUNX2, CDC25 family protein (CDC25A), protein
kinase family proteins (CDK2), BRCA1, ATM, and RBBP8. The
selected hub genes were mainly involved in the regulation of the
canonical Wnt signaling pathway, cell–cell signaling mediated by
Wnt, cell cycle phase transition, and the positive regulation of the
cell cycle (Figure 6, Supplementary Figures 1A,B).

Survival Analysis and Expression Levels of
Hub Genes
GEPIA survival assessment was used to investigate the overall
association with survival of 10 hub genes from both the low-
and high-expression OC groups. As a result, we noticed that
the high expression of FZD2 (HR = 0.93) (Figure 7C), FZD8
(HR = 0.88) (Figure 7D), CDC25A (HR = 0.83) (Figure 7F),
CDK2 (HR = 0.86) (Figure 7G), and RBBP8 (HR = 0.95)
(Figure 7J) were associated with improved overall survival in
the OC cell line. However, the high expression of TCF4 (HR
= 1) (Figure 7A), FZD6 (HR = 1) (Figure 7B), RUNX2 (HR
= 1) (Figure 7E), BRCA1 (HR = 1.1) (Figure 7H), and ATM
(HR = 1.2) (Figure 7I) were linked with worse overall survival
in the OC cell line. Taken together, the results show that FZD6,
FZD8, CDK2, and RBBP8 function as core genes that have a close
relationship with OC. Furthermore, the GEPIA box plot analysis
investigated the level of expression of the core genes in 426 OC
tissue samples and 88 normal tissue samples. The boxplot in
Figures 8A–D shows a considerable increase in the level of core
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FIGURE 4 | Backbone network topology parameters. (A) The network of upregulated DEGs. (B) The network of downregulated DEGs. (1) Distribution of the node

degree. (2) Topological coefficients. (3) Shortest path length distribution. (4) Betweenness centrality. (5) Closeness centrality.

gene expression (FZD6, FZD8, CDK2, and RBBP8) in the OC
cell line.

DISCUSSION

Microarray technology is one of the most important approaches
used by many researchers worldwide to explore the expression
levels of genes involved in complex disorders (Russo et al.,
2003; Babu, 2004; Perez-Diez et al., 2013). Therefore, studying
the expression profiles of DEGs and predicting the target
genes of OC is of the utmost importance. In this study, data

from a total of three OC cell lines and three OC cell lines
with SINE resistance were obtained from the GEO database
(GSE126519). A total of 2708 DEGs were screened, including
809 upregulated and 700 downregulated genes. In silicomethods
have typically shown good efficiency, and networks have been
demonstrated to be a reliable way to depict genomic data. The
topological interpretation of upregulated and downregulated
genes is required for large PPI networks and is thus substantially
based on integrated local components, such as the distribution
node of the degree, the topological coefficient, the shortest
path length distribution, and the betweenness and closeness
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FIGURE 5 | (A) Top 10 pathway profiles; (B) top 10 GO processes; (C) top 10 process networks; (D) top 10 diseases according to biomarkers. GeneGo annotation

of the top 10 pathway profiles, GO cellular processes, process networks, and diseases according to biomarkers for the DEG datasets. (A) The canonical pathway

maps represent a set of signaling and metabolic maps comprehensively covering the relevant pathways in humans. (B) Gene Ontology (GO) cellular processes. As

most GO processes have no gene/protein content, the “empty terms” were excluded from the p-value calculations. (C) The cellular and molecular processes were

defined and annotated; each process represents a preset network of protein interactions characteristic of the process. (D) Disease folders (by biomarkers) were

organized into a hierarchical tree.

centralities (Assenov et al., 2008). These parameters were used
to analyze the nodes in individual PPI networks of the DEG
dataset to deduce their significance in networks with different
characteristics. Furthermore, we implemented GO and KEGG
pathway analyses to determine MF, BP, CC, and pathways
involving the DEGs using the DAVID online tool. The GO
BP terms and KEGG assessment indicated that the upregulated
DEGs were enriched primarily in the cell cycle, mitotic cell cycle
process, mitotic nuclear division, DNA replication, cell cycle,
nucleotide excision repair, DNA mismatch repair, and Fanconi
anemia pathways. Interestingly, mutations in mismatch repair
(MMR) and Fanconi anemia pathway-related genes in women
have been shown to be one of the primary causes of hereditary
OC (Norquist et al., 2016). Therefore, our observed results
are consistent with the role of upregulated genes in pathways
that cause OC. Similarly, the downregulated DEGs were
mainly enriched in organ morphogenesis, cell development, cell

morphogenesis, mesenchymal development and the interaction
of the ECM receptor, PI3K-Akt signaling, and arginine and
prolinemetabolism pathways. In line with this, a significant cause
of cancer would appear to be the abnormal functioning of the
cell cycle and mitosis (Kastan and Bartek, 2004; Malumbres and
Barbacid, 2009).

The findings from the STRING, Cytoscape, GO, and KEGG
analyses indicated that many pathways were primarily affected
in OC. Several studies have used Cytoscape plugins such as
MCODE, cytoHubba, CytoCluster, CytoKegg, and CytoNCA to
elucidate the core interactions in PPI networks (Lan et al., 2015;
Villaveces et al., 2015; Sriroopreddy and Sudandiradoss, 2018;
Zhang et al., 2019). To delineate the molecular interactions
and pathways identified from the STRING, GO, and KEGG
analyses, we utilized GeneGo Metacore, which has a massive
amount of information about regulatory and metabolic pathways
and contains precisely curated biological networks. To obtain a
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FIGURE 6 | (A) The cell cycle metaphase checkpoint pathway. (B) The APC cell cycle regulation pathway. The two top-scored regulated pathways were activated in

the OC cell lines. The pathway images were generated by GeneGo MetacoreTM enrichment analysis. Well-characterized proteins or protein complexes are shown as

individual symbols within the image; experimental data from all the records are connected and depicted as thermometer-like figures on the maps. Upward-facing

thermometers are shown in red and indicate upregulated gene transcripts. The linkage of proteins by arrows depicts the stimulatory and inhibitory effects or

interaction of the encoded protein on the desired protein. The hub genes (protein families) that were involved in the canonical signaling pathways are marked in a circle

(scarlet). Further explanations are provided at https://portal.genego.com/help/MC_legend.pdf.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 December 2019 | Volume 7 | Article 391

https://portal.genego.com/help/MC_legend.pdf
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Kumar et al. Novel Genes and Pathways Involved in Ovarian Cancer

TABLE 3 | Most relevant biological networks were generated using GeneGo Analyze Networks (AN) algorithm.

S. no. Network name Processes Size Target Pathways p-value z score g score

1 TCF7L2 (TCF4),

Tcf(Lef), Frizzled,

RUNX2, p21

Canonical Wnt signaling pathway (50.0%), regulation of

Wnt signaling pathway (58.0%), cell-cell signaling by Wnt

(56.0%), Wnt signaling pathway (56.0%), regulation of

canonical Wnt signaling pathway (50.0%)

50 17 262 1.12e-20 21.47 348.97

2 CDC25A, CDK2,

Brca1, ATM, RBBP8

(CtIP)

Mitotic cell cycle (57.1%), mitotic cell cycle process

(53.1%), mitotic cell cycle phase transition (42.9%), cell

cycle phase transition (42.9%), positive regulation of cell

cycle (46.9%)

50 32 24 2.61e-49 41.10 71.10

3 KRMP1, FAM83D,

LMO1, CBWD1, PSF1

cGMP catabolic process (6.4%), response to

macrophage colony-stimulating factor (6.4%), cellular

response to macrophage colony-stimulating factor

stimulus (6.4%), purine ribonucleotide catabolic process

(8.5%), ribonucleotide catabolic process (8.5%)

50 35 0 5.36e-56 45.03 45.03

In this workflow, the networks were prioritized based on the number of fragments of canonical pathways on the network.

comprehensive picture of the DEGs involved in OC, we used
GeneGo MetacoreTM software to identify the most significant
genes and signaling pathways based on the calculated p-
values. Among the top 10 enriched pathways, the cell cycle
metaphase checkpoint, APC in cell cycle regulation, chromosome
separation, spindle assembly, and DNA damage/ATR regulation
of G2/M phase checkpoint/ATM were highly significant in
the DEG datasets from both groups (Figure 5A). The GO
cellular processes showed that the DEGs were enriched in a
variety of cellular processes (Figure 5B), and these processes are
mainly utilized in the enrichment analysis and to prioritize the
genes in the constructed networks. The GO process networks
were enriched in various groups. Among the top 10 process
networks, we selected the four that were the most significant
based on the calculated p-values, which included the mitotic
cell cycle, the S phase in the cell cycle, and cytoskeleton-
spindlemicrotubules (Figure 5C). The biomarkers of the diseases
distinctly showed that the DEGs with the highest representation
in the dataset were also known to contribute to other cancer
types (Figure 5D). Additionally, there were two top-scored
regulated pathways that were activated in the OC cell line that
were involved in the cell cycle: the metaphase checkpoint and
APC cell cycle regulation pathways (Figure 6). Furthermore,
we analyzed the biological network of the upregulated DEGs
in the signaling pathways by utilizing the AN algorithm in
GeneGo. As a result, we determined the two most significant
networks that were commonly affected in both of the OC groups.
The components of these networks included several crucial
hub genes, including TCF4, the frizzled family proteins (FZD2,
FZD8, and FZD6), RUNX2, a CDC25 family protein (CDC25A),
the protein kinase family proteins (CDK2), BRCA1, ATM, and
RBBP8. Among them, the TCF4, frizzled, and RUNX2 genes
are primarily involved in the regulation of the canonical WNT
signaling pathway (58%) and cell–cell signaling mediated by
WNT (56%). Genes such as CDC25A, CDK2, BRCA1, ATM,
and RBBP8 are mostly involved in the mitotic cell cycle process
(53.1%), mitotic cell cycle phase transition (42.9%), positive
regulation of the cell cycle (46.9%), and cell cycle phase transition
(42.9%). Finally, the GEPIA web server was used to assess the

association between hub gene expression and OC prognosis.
The overall survival analysis indicated that high expression of
FZD2, FZD8, CDC25A, CDK2, and RBBP8 were associated with
better survival, and high expression of TCF4, FZD6, RUNX2,
BRCA1, and ATM were associated with decreased survival in the
OC cell line. Collectively, FZD6, FZD8, CDK2, and RBBP8 were
identified as core genes that were strongly associated with overall
survival in OC. Therefore, these four genes could contribute to
OC metastasis.

Supplementary Figure 1A shows that the frizzled family
of proteins is involved in canonical Wnt signaling pathway
regulation. FZD6, also known as frizzled class receptor 6, is
a member of the “frizzled” gene family, which consists of 7-
transmembrane domain proteins that are Wnt signaling protein
receptors. Many studies have observed through mutagenesis
experiments that several residues in the intracellular loops and
the C-terminus of FZD play a prominent role in signaling (Cong
et al., 2004; Wallingford and Habas, 2005). Kim et al. (2015)
found that the expression of FZD6 was increased in colorectal
cancer (CRC) patients when compared to that in nontumor
tissues. Furthermore, they discovered that FZD6 expression in
CRC cells was negatively regulated by miR199a-5p (Kim et al.,
2015). In recent research, Corda et al. (2017) observed that the
Wnt receptor-encoding gene FZD6 is often duplicated in breast
cancer and confers a higher risk of triple-negative breast cancer.
For the assembly of the fibronectin matrix, FZD6 signaling
is intrinsically required and interferes with actin cytoskeletal
organization. The researchers concluded that in highly metastatic
forms of breast cancer, such as TNBC, the FZD6-fibronectin actin
axis could be targeted for drug treatment (Corda et al., 2017).
In our study, we observed the overexpression of frizzled class
receptor 6 in OC cell lines, and the overexpression of FZD6,
which acts as an adverse prognostic factor, was associated with
decreased survival in OC patients.

Frizzled class receptor 8 is also a “frizzled” gene family
member that serves as a Wnt signaling protein receptor (Bhanot
et al., 1996). Most frizzled receptors are also associated with the
canonical signaling pathway of beta-catenin (Dann et al., 2001).
Li et al. (2017) reported a higher level of FZD8 expression in
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FIGURE 7 | Kaplan–Meier overall survival analysis of the hub genes expressed

in OC and SINE-resistant OC cell lines. (A) TCF4 (Transcription factor 4), (B)

(Continued)

FIGURE 7 | FZD6 (Frizzled class receptor 6), (C) FZD2 (Frizzled class receptor

2), (D) FZD8 (Frizzled class receptor 8), (E) RUNX2 (Runt related transcription

factor 2), (F) CDC25A (Cell division cycle 25A), (G) CDK2 (Cyclin-dependent

kinase 2), (H) BRCA1 (Breast cancer type 1 susceptibility protein), (I) ATM

(ATM serine/threonine kinase), and (J) RBBP8 (Retinoblastoma-binding protein

8). The survival curves were plotted using the GEPIA2 web server. The genes

with high expression in the cohorts are shown in red, and the blue line

indicates the low-expression cohort. The survival curves are represented as

dotted lines, and the solid line represents the 95% confidence interval. HR

stands for hazard ratio; patient number (n) = 212. The p-values were

calculated using log-rank statistics.

bone metastases in prostate cancer (PCa), which is frequently
diagnosed among men. This research group also found that
the silencing of FZD8 suppressed the migration and invasion
of cells and the occurrence of PCa bone metastasis in vitro
and in vivo by activating the canonical β-catenin/Wnt signaling
pathway, and the data suggest that FZD8 could be a potential
therapeutic target for the treatment of bone metastasis in PCa
(Li et al., 2017). Chakravarthi et al. (2018) reported that ETS-
related gene (ERS) specifically targets and activates FZD8 directly
by binding to its promoter region rather than ETV1 and
suggested that the overexpression of ERG in PCa leads to FZD8
induction and the activation of the Wnt pathway (Chakravarthi
et al., 2018). The research group led by He et al. recently
found that miR-520b overexpression results in the inhibition
of cell proliferation, migration, and invasion in human spinal
osteosarcoma (OS) tissues and cell lines by inactivating the
Wnt/β-catenin signaling pathway through the downregulation
of FZD8 and thus provides a new spinal OS therapeutic target
(Wang et al., 2017). Similarly, Liu et al. (2019) reported a reduced
level of miR-99b-5p in non-small cell lung cancer (NSCLC) cell
lines. They validated FZD8 as a specific target of miR-99b-5p and
found that increased expression of miR-99b-5p inhibited NSCLC
proliferation, migration, and invasion in vitro (Liu et al., 2019).
The findings of our study suggest that the overexpression of FZDs
in OC results in the anomalous activation of the canonical Wnt
signaling pathway and may increase their function during the
development of OC.

As seen in Figure 6B, CDK2 is mainly involved in the APC
cell cycle regulation pathway, and the overexpression of CDK2
results in the upregulation of the G1/S phase transition, resulting
in cancer cell proliferation. CDK2 and other relevant genes that
are upregulated in OC (red circles in Supplementary Figure 1B)
are shown in the closed network of the APC cell cycle regulation
pathway; because of the increase in CDKs, APC failed to
inactivate the CDK complexes by inducing their degradation.
Liu et al. (2011) revealed that CDK2 expression was significantly
higher in laryngeal squamous cell cancer tissues when compared
to that in paired adjacent normal laryngeal tissues (Liu et al.,
2011). Duong et al. (2012) reported that low-molecular-weight
cyclin E (LMW-E) required kinase activity associated with CDK2
to induce the formation of mammary tumors by disrupting the
growth of acinar cells. They used a combination of therapy with
a CDK inhibitor (roscovitine) plus a b-Raf-targeting pan-kinase
inhibitor (sorafenib) or an mTOR inhibitor (rapamycin) to arrest
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FIGURE 8 | Based on TCGA and GTEx data in GEPIA, we validated the expression levels of the four core genes in ovarian cancer (n = 426) and normal tissues (n =

88). (A) FZD6. (B) FZD8. (C) CDK2. (D) RBBP8.

the G1/S cell cycle in breast cancer cells; thus, the b-Raf-ERK1/2-
mTOR signaling pathway could be suppressed (Duong et al.,
2012). Kanwal et al. (2016) found that the expression of CDK2
is significantly increased in OC tissues when compared to that
in normal ovarian tissues (Kanwal et al., 2016). The pathways
involving cyclin-dependent kinase (CDK) are significant and
well-established cancer treatment targets. The role of CDK2
remains controversial in several cancer types (McCurdy et al.,
2017). Many studies have suggested that CDK2 could be a crucial
factor in the progression of cancer by regulating several pathways
andmight be a prospective biomarker and indicator of prognosis.
Therefore, CDK2 and its cyclin binding partners are possible

therapeutic targets for future cancer treatments (Yin et al., 2018;
Zhang et al., 2018; Wood et al., 2019).

RBBP8, also known as retinoblastoma-binding protein 8, aids
in regulating cell proliferation and DNA repair by homologous
recombination (Fusco et al., 1998). Soria-Bretones et al. (2013)
observed decreased or no expression of RBBP8 in paraffin-
embedded breast cancer biopsy tissues from high-grade breast
cancer and nodal metastases that were acquired during tumor
removal surgery (Soria-Bretones et al., 2013). The research
group led by Rose et al. suggested that RBBP8 was significantly
hypermethylated in bladder cancer (BLCA) and was associated
with more prolonged overall survival, and they indicated that
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it may be used as a complementary marker for the detection
of BLCA in urine (Mijnes et al., 2018). Miao et al. (2019)
reported that the downregulation of the long noncoding RNA
(lncRNA) cancer susceptibility candidate 2 (CASC2, enhanced
tumor development, increased miR-18a-5p levels, and reduced
the expression of RBBP8 in nasopharyngeal carcinoma (NPC).
The upregulation of CASC2 resulted in decreased proliferation
and increased apoptotic cell death in vivo (Miao et al., 2019).
Our data clearly showed that RBBP8 was differentially expressed
and involved in cell cycle regulation (Supplementary Figure 1B).
Additionally, it contributes to the development of OC in both
groups. However, the role of RBBP8 in OC is unclear and requires
further research.

Furthermore, we conducted an interrelation analysis of the
identified hub genes to elucidate the interactions between them,
primarily among the genes that interacted with one another
directly or indirectly. As shown in Figure 9, the mitotic cell cycle
phase transition pathway interacts with the regulation of G1/S
phase transition and APC in the cell cycle regulating pathway
via the essential genes RBBP8, BRCA1, CDC25A, ATM, and
CDK2 (D’Andrilli et al., 2004; Soria-Bretones et al., 2013; Xiao

et al., 2019). In contrast, frizzled family proteins (FZD2, FZD6,
and FZD8) are directly involved in the Wnt signaling pathways
because they are receptors of Wnt proteins (Janda et al., 2012).
The TCF4 and RUNX2 genes are involved directly or indirectly
in the Wnt signaling network, resulting in tumorigenesis (Gaur
et al., 2005; Hrckulak et al., 2018; Komori, 2019). Taken
together, these findings showed that node genes involved in the
development of OC could be significant factors in cell cycle
regulation and the Wnt signaling pathway.

Overall, our systematic bioinformatics assessment
demonstrated that DEGs might play a pivotal role in the
incidence, prognosis, growth, and development of OC. In this
study, a total of 2708 DEGs and 10 hub genes were identified,
and FZD6, FZD8, CDK2, and RBBP8 could be the core genes
involved in OC and SINE-resistant OC. Expression analysis
and the correlation of the multiple genes will undoubtedly
aid in the understanding of the roles of such genes in the
growth and development of OC. Several research groups have
demonstrated that preclinical models have showed some success
in reducing tumor growth and decreasing the side effects of
existing chemotherapy drugs (Cicenas et al., 2015; Whittaker

FIGURE 9 | Interrelation analysis of the hub genes identified from different pathways. GeneMANIA was used to plot the network, which was visualized in Cytoscape.

Color code: physical interaction shown in red, coexpression shown in violet, predicted interaction shown in orange, common pathway shown in cyan, and

colocalization shown in blue. The genes FZD2, FZD6, FZD8, RUNX2, and TCF4 were involved in the frizzled and Wnt signaling network; BRCA1, RBBP8, and ATM

were involved in the mitotic cell cycle phase transition pathway; and CDC25A and CDK2 were involved in the APC cell cycle regulation pathway.
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et al., 2017; Xia et al., 2018). We need to conduct a series of
experimental studies to prove this hypothesis to obtain more
precise correlation reports. However, the findings from this study
could enhance the understanding of the molecular pathogenesis
of OC. Furthermore, the core genes and pathways might be
potential biomarkers that could be used for the detection and
targeting of OC and SINE-resistant OC cells for therapy.
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