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While it has been postulated that tissue-specific bioscaffolds derived from the
extracellular matrix (ECM) can direct stem cell differentiation, systematic comparisons
of multiple ECM sources are needed to more fully assess the benefits of incorporating
tissue-specific ECM in stem cell culture and delivery platforms. To probe the effects
of ECM sourced from decellularized adipose tissue (DAT) or decellularized trabecular
bone (DTB) on the adipogenic and osteogenic differentiation of human adipose-derived
stem/stromal cells (ASCs), a novel detergent-free decellularization protocol was
developed for bovine trabecular bone that complemented our established detergent-free
decellularization protocol for human adipose tissue and did not require specialized
equipment or prolonged incubation times. Immunohistochemical and biochemical
characterization revealed enhanced sulphated glycosaminoglycan content in the DTB,
while the DAT contained higher levels of collagen IV, collagen VI and laminin. To generate
platforms with similar structural and biomechanical properties to enable assessment of
the compositional effects of the ECM on ASC differentiation, micronized DAT and DTB
were encapsulated with human ASCs within methacrylated chondroitin sulfate (MCS)
hydrogels through UV-initiated crosslinking. High ASC viability (>~90%) was observed
over 14 days in culture. Adipogenic differentiation was enhanced in the MCS+DAT
composites relative to the MCS+DTB composites and MCS controls after 14 days
of culture in adipogenic medium. Osteogenic differentiation studies revealed a peak in
alkaline phosphatase (ALP) enzyme activity at 7 days in the MCS+DTB group cultured in
osteogenic medium, suggesting that the DTB had bioactive effects on osteogenic protein
expression. Overall, the current study suggests that tissue-specific ECM sourced from
DAT or DTB can act synergistically with soluble differentiation factors to enhance the
lineage-specific differentiation of human ASCs within 3-D hydrogel systems.

Keywords: adipose-derived stromal cells, cell culture models, decellularization, extracellular matrix (ECM),
hydrogel composites, methacrylated chondroitin sulfate, lineage-specific differentiation
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INTRODUCTION
The extracellular matrix (ECM) provides a complex
microenvironment  that has tissue-specific  structural,

biochemical, and biomechanical properties, which can direct cell
function (Scott, 1995). Recognizing the biological importance of
the ECM, there is growing emphasis on the design of cell culture
platforms that integrate compositional elements of the native
cellular milieu (He et al., 2008; Kasten et al., 2014; Beringer et al.,
2016). For example, hydrogel systems have been developed that
incorporate ECM-derived proteins (e.g., collagen, fibronectin),
adhesive peptide sequences [e.g., arginine-glycine-aspartic acid
(RGD) motifs], and/or growth factors in an effort to enhance
bioactivity and tune the response of encapsulated cell populations
(He et al., 2008; Kasten et al., 2014; Beringer et al., 2016).

Decellularization is a useful approach for generating
bioscaffolds with a complex ECM composition that can
mimic the native cellular microenvironment within tissues
(Hoshiba et al., 2010). There is increasing interest in applying
tissue-specific ECM in biomaterials-based strategies to direct
the lineage-specific differentiation of stem or progenitor cell
populations both in vitro and in vivo (Stern et al, 2009;
DeQuach et al, 2011; French et al, 2012). While tissue-
specific compositional effects are often postulated, to date
many studies have focused on characterizing responses to
single ECM sources (Brown et al., 2015; Beck et al, 2016)
or rely on comparisons drawn to control groups such as
collagen gels or tissue culture plastic that differ in multiple
properties that can affect the cellular response (French et al.,
2012; Yu et al, 2013). Hence, there is a need to develop
3-D platforms that enable the systematic comparison of the
compositional effects of decellularized tissues to be able to more
fully assess the mechanisms involved and potential benefits
of applying tissue-specific ECM in cell-instructive culture and
delivery systems.

Hydrogels can be designed to enable cell encapsulation with
high viability and offer great versatility for the development of
customizable 3-D cell culture models (Nicodemus and Bryant,
2008). While ECM-derived hydrogels have been synthesized
from pepsin-digested decellularized tissues, these hydrogels
tend to be mechanically weak and show low stability unless
chemically crosslinked (Turner and Flynn, 2012; Visser et al.,
2015). Further, proteolytic digestion alters the structure and
composition of the ECM, which may affect its bioactivity
(Beachley et al, 2015; Williams et al, 2015). Recognizing
these limitations, hydrogel composites incorporating micronized
ECM as a cell-instructive component represent a promising
alternative (Cheung et al,, 2014; Almeida et al., 2016; Beachley
et al., 2018). Applying a composite approach can combine the
benefits of hydrogel systems with the innate bioactivity of the
ECM. Parameters such as the hydrogel phase, ECM source and
particle size, cell type(s) and seeding density can be altered
to tune the desired cellular response (Cheung et al, 2014;
Brown et al.,, 2015; Hayami et al., 2015; Shridhar et al., 2017).
For example, composites developed in our lab incorporating
5 wt% human decellularized adipose tissue (DAT) particles
within methacrylated glycol chitosan (MGC) and methacrylated

chondroitin sulfate (MCS) hydrogels (Cheung et al., 2014) were
shown to promote the adipogenic differentiation of encapsulated
human adipose-derived stem/stromal cells (ASCs) when cultured
in adipogenic medium, with enhanced viability and adipogenesis
in the MCS-based composites (Cheung et al., 2014). While
not the focus of our study, modifications to the number of
crosslinkable moieties within the hydrogel phase could be used
to adjust scaffold properties such as stiffness (Bryant et al,
2004; Ondeck and Engler, 2016) and degradation (Bryant
et al.,, 2004; Ornell et al., 2019), which can also modulate the
cellular response.

Building from this, the current study extends our models
to generate tissue-specific hydrogel composites incorporating
micronized decellularized trabecular bone (DTB). Due to
variability in the reported osteogenic activity of commercially-
available demineralized bone matrix (DBM) (Peterson
et al., 2004) and the widespread use of detergents for bone
decellularization (Gardin et al., 2015; Lee et al., 2016), initial
work focused on the development and validation of a new
detergent-free method to obtain DTB from bovine tissues.
Detergent-free decellularization protocols are advantageous
for preserving ECM components that may be readily extracted
with detergents, and avoid potential cytotoxicity concerns
associated with residual detergents that can be challenging to
remove at the end of processing (Cebotari et al., 2010). The
protocol was designed to complement our patented detergent-
free decellularization process for human adipose tissue (Flynn,
2010), and avoid the requirements for mechanical milling
prior to processing, specialized equipment, and prolonged
incubation times in strong acids (e.g., HCI) used in published
bone decellularization protocols.

Applying our composite hydrogel cell encapsulation strategy
previously established with the DAT, we fabricated composites
incorporating a higher concentration (8 wt%) of micronized
DAT or DTB within MCS hydrogels. The MCS was selected
as it provides a supportive environment for human ASCs
(Cheung et al., 2014; Brown et al, 2015), and because
chondroitin sulfate is a native ECM component within both
adipose tissue and bone (Boskey and Posner, 1984; Zwick
et al.,, 2018). These platforms were then applied to investigate
the effects of the tissue-specific ECM on the viability and
lineage-specific differentiation of encapsulated human ASCs.
While we have previously shown that a variety of DAT-based
scaffolds have pro-adipogenic effects on human ASCs (Flynn,
2010; Yu et al, 2013, 2017; Cheung et al, 2014; Han et al,,
2015), this is the first study to systematically compare the
cellular response within structurally and biomechanically similar
platforms generated with another decellularized tissue source,
as well as the first investigation of osteogenic differentiation
within our hydrogel systems. To test the hypothesis that
the ECM composition has tissue-specific effects in directing
the lineage-specific differentiation of the encapsulated human
ASCs, adipogenesis and osteogenesis were characterized in
vitro within MCS+DAT, MCS+DTB, and MCS hydrogels
under differentiation and proliferation media conditions to
probe the “conductive” and “inductive” effects of the ECM
sources, respectively.
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METHODS

Materials

Unless otherwise specified, all chemicals and reagents were
purchased from Sigma Aldrich and used as received. All studies
were performed within a biohazard level II certified lab facility
with institutional approval from Western University (Permit
# BIO-UWO-0293).

Bovine Bone Procurement and

Decellularization

Bovine trabecular bone was sourced from the vertebrae in
the tail region of fresh food-grade tissues collected from the
abattoir in Mount Brydges, ON, Canada. The trabecular bone was
extracted, cut into pieces (~2 X 2 x 2mm) and subjected to a
new 4-day detergent-free decellularization protocol, which was
developed based on methods used for producing commercially-
available DBM (Pacaccio and Stern, 2005), as well as methods
for adipose tissue decellularization established in our lab (Flynn,
2010). The process was performed at a reagent:starting tissue
ratio of 25 mL/g. First, 3 freeze-thaw cycles were performed
between —80 to 37°C in hypotonic solution [10mM Tris,
5mM EDTA, 1% antibiotic/antimycotic (ABAM) and 0.014 mM
phenylmethylsulfonylfluoride (PMSF)], with replacement of the
solution between each cycle and agitation at 200 rpm on an
orbital shaker during thawing. Next, the tissue was demineralized
at room temperature in 23% formic acid (StatLab, Texas)
for 8h under agitation at 300 rpm. The processed bone was
then incubated in absolute isopropanol supplemented with 1%
ABAM and 0.014 mM PMSF under agitation at 200 rpm and
37°C overnight to extract lipids. Following this, the tissue was
rinsed in Sorensen’s phosphate buffer (SPB) rinse solution [8
g/L NaCl, 200 mg/L KCl, 1 g/L Na,HPO,, and 200 mg/L
KH,POy4 (pH 8.0)], supplemented with 1% ABAM, three times
for 30 min each at room temperature and then incubated in
SPB digest solution (55 mM Na, HPOy, 17 mM KH,POy4, 4.9 mM
MgSO4e7H,0) supplemented with 12.5mg RNase Type III
(from bovine pancreas), 15,000 U DNase Type II (from bovine
pancreas), 2,000U Lipase type VI-S (from porcine pancreas)
and 1% ABAM overnight at 37°C under agitation at 200 rpm.
Finally, the tissue was rinsed in the SPB rinse solution three
times for 30 min each at room temperature, followed by two
30 min rinses in deionized water (dH20) and freezing at —80°C
and lyophilization.

Validation of the Bone Decellularization

Protocol

To confirm the efficacy of the decellularization protocol at
extracting nuclear content and to qualitatively assess collagen
distribution relative to native bone, samples of DTB (n =
3 samples, N = 3 tissue donors) were paraffin-sectioned
and stained with 4’,6-diamidino-2-phenylindole (DAPI) and
Masson’s trichrome using previously published methods (Flynn,
2010; Yu et al, 2017). Native tissue control samples were
demineralized in formic acid overnight prior to sectioning and
staining. For quantitative assessment of decellularization, double
stranded DNA (dsDNA) was extracted using the DNeasy Blood
and Tissue Kit (Qiagen, Germany) and quantified using the

PicoGreen® dsDNA quantification assay (Life technologies)
according to the manufacturers’ protocols. The resulting data was
normalized to the initial dry mass of the processed tissues.

Adipose Tissue Procurement,

Decellularization and ASC Isolation
Subcutaneous adipose tissue was collected with informed consent
from patients undergoing elective lipo-reduction surgeries at
the University Hospital and St. Joseph’s Hospital in London,
ON, Canada with Human Research Ethics Board approval
from Western University (HREB# 105426). The tissue was
either decellularized to obtain DAT (Flynn, 2010) or used for
ASC isolation within 2h of procurement (Flynn et al., 2006)
following previously-published methods. The summary of cell
donor information for all in vitro studies can be found in
Supplementary Table S1.

Comparison of the ECM Composition in

DTB and DAT

The collagen distribution in the DTB and DAT samples (n = 3
samples, N = 2 tissue donors) was qualitatively probed through
Picrosirius red staining using established methods (Junqueira
et al., 1979). Slides were visualized using a Nikon Optiphot-pol
polarizing microscope (Nikon, Tokyo) under circularly polarized
light and images were captured with an Infinity 2-3 CCD camera
(Lumenera, Ottawa, Canada) at 10X magnification.

The hydroxyproline and dimethylmethylene (DMMB) blue
assays were performed to quantitatively measure the total
collagen and sulphated GAG content, respectively, in the DTB
and DAT samples (n = 3 samples, N = 3 tissue donors pooled
prior to the trial) based on published methods (Morissette Martin
et al, 2019). The resulting data was normalized to the initial
dry mass of the processed tissues. To prepare cryo-milled tissue
samples for the assays, two 10 mm milling balls and minced
ECM were loaded into a 25mL cryo-milling chamber (Retsch,
Germany) and submerged in liquid nitrogen for 3 min. The ECM
was then cryo-milled for 3 min at a frequency of 30 Hz using the
Mixer Mill MM 400 milling system (Retsch, Germany). Prior
to performing the assays, the cryo-milled ECM was digested
with 60 mU/mL proteinase K (Promega, Madison, USA) in
Tris-EDTA (200 nM Tris-HCI, 200 nM EDTA, pH 7.5) overnight
under agitation at 1,200 rpm and 65°C, followed by a 10 min
incubation at 95°C to inactivate the enzyme.

To further compare the ECM composition, DTB and DAT
samples (n = 3 samples, N = 2 tissue donors) were processed,
cryo-sectioned and stained for collagen type I (dilution 1:100,
ab34710, Abcam), collagen type IV (dilution 1:100, ab6586,
Abcam), collagen type V (dilution 1:300, ab7046, Abcam),
collagen type VI (dilution 1:300, ab6588, Abcam), laminin
(dilution 1:150, ab23750, Abcam) and fibronectin (dilution
1:200, ab11575, Abcam) according to previously published
methods (Morissette Martin et al., 2019). Positive tissue controls
(Supplementary Figure S1) and controls with no added primary
antibody were included during all experiments. Images were
acquired with a Zeiss Imager M2 microscope (Zeiss Canada,
Toronto, ON, Canada) from 4 to 5 fields of view on each sample.
Semi-quantitative analysis of the relative expression levels was
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performed using ImageJ and results were reported as a percentage
of the positive signal area normalized to the total tissue area.

DTB and DAT Cryo-Milling,

Characterization, and Staining

Bovine DTB (pooled from 3 donors) and human DAT (pooled
from 5 donors) were cryo-milled as described in the previous
section and sieved using stainless steel sieves (W.S. Tyler, St.
Catharines, ON, Canada) to select for particles between 45
and 125 pum. The choice of size was based on previous studies
indicating that smaller particles within MCS+DAT hydrogels
were favorable for adipogenesis by promoting cell-cell and
cell-ECM interactions (Brown et al., 2015). The particle size
distributions of the DAT and DTB particles were analyzed
using a Malvern Mastersizer 2000 (Malvern Instruments Ltd.,
Worcestershire, United Kingdom) using previously published
protocols (Brown et al, 2015) and a Kolmogorov-Smirnov
test with p < 0.05 was performed to assess whether the
particle size distributions for the DAT and DTB particles were
statistically equivalent.

To enable visualization of the ECM particles within the
hydrogels using confocal microscopy, the DAT and DTB particles
were pre-labeled with an amine reactive AlexaFluor® 405
carboxylic acid succinimidyl ester (Life technologies) based
on previously published methods (Yu et al, 2017). Prior
to encapsulation, the ECM particles were decontaminated in
70% ethanol overnight, followed by 3 successive 1h rinses in
phosphate buffered saline (PBS).

Methacrylation of Chondroitin Sulfate

Methacrylated chondroitin sulfate (MCS) was synthesized using
established procedures with chondroitin sulfate (50 kg/mol, LKT
Technologies, St. Louis) and methacrylate anhydride (Shridhar
et al., 2017) to obtain a final degree of substitution of 20%, as
confirmed by 'H NMR spectroscopy with a Varian Inova 400
spectrometer (Varian, USA) (Supplementary Figure S2).

Composite Hydrogel Synthesis and

Characterization

Composite MCS hydrogels incorporating cryo-milled DAT
or DTB, along with MCS controls, were synthesized for
characterization of crosslinking efficiency and mechanical
properties. Cryo-milled ECM [8% (w/v)] and Irgacure 2959
photoinitiator [final concentration: 0.05% (w/v)] were combined
with the MCS pre-polymer solution consisting of MCS dissolved
in water (for gel content studies) or PBS (for mechanical testing)
to obtain a final MCS concentration of 10% (w/v). The resulting
pre-gel solution was transferred to a cylindrical mold (I mL
syringe; Diameter: 4.78 mm) and crosslinked for 4 min (2 min
on one side, followed by 2min on the other) using long-
wavelength ultraviolet light (~365nm) at an intensity of 12
mW/cm?. The hydrogels were cut into 50 L gels and used for
subsequent studies.

The gel content was assessed to confirm that the crosslinking
efficiency was similar between the groups (n = 3 samples
per group/trial, N = 3 trials) following previously-published
protocols (Cheung et al., 2014). Mechanical testing was also

performed to compare the bulk compressive properties of the
MCS+DAT, MCS+DTB, and MCS groups. Hydrogels (N =
5) were crosslinked and swollen to equilibrium in PBS (pH
7.4) and maintained at 37°C prior to testing. The diameter of
the hydrogels was measured using calipers immediately before
testing. Unconfined compression measurements were conducted
using a CellScale UniVert system (Waterloo, Canada) equipped
with a 0.5N load cell in a PBS bath maintained at 37°C. Samples
were initially put through 2 cycles of preconditioning to a
maximum of 10% strain at a rate of 0.05%/s (Yahia and Drouin,
1990). Cyclic compression testing was then performed with a
0.01 N preload applied at every cycle and a total strain of 10% at
a rate of 0.05%/s, for a total of 4 cycles (Antoine et al., 2014). The
Young’s modulus (E) was obtained from the slope of the linear
region of the nominal stress-strain curve using the stress at 4 and
10% strain values as boundary conditions.

Photo-Encapsulation of hAASCs Within MCS
Hydrogels

In vitro culture studies were performed to assess ASC viability
and differentiation toward the adipogenic and osteogenic
lineages following encapsulation within the MCS+DAT,
MCS+DTB, and MCS hydrogels. For these studies, passage
3 human ASCs were suspended in proliferation medium
comprised of DMEM:Ham’s F-12 medium supplemented with
10% fetal bovine serum (FBS; Thermo Scientific Hyclone, Cat. #
SH30396) and 100 U/mL penicillin and 0.1 mg/mL streptomycin
(1% pen-strep). The ASCs were then combined with the MCS
pre-gel solution prepared in PBS (20:80 ratio), to obtain a final
concentration of 10 x 10° ASCs/mL of pre-gel, followed by
photo-cross-linking as described in the previous section. The
hydrogels were cut into 50 wL gels, each containing ~500,000
cells, and cultured in 12-well inserts (Greiner Bio-one, Germany).

Cell Viability and Cellularity Analysis of
Encapsulated ASCs

For the cell viability studies, samples were cultured in adipogenic
differentiation medium, osteogenic differentiation medium, and
proliferation medium as a control. Differentiation was induced
after 24 h in culture in proliferation medium, following rinsing
with PBS. In all cases, fresh media was provided to all samples
every 2-3 days. The adipogenic differentiation medium was
composed of DMEM:Ham’s F12 supplemented with 33 pM
biotin, 17 uM pantothenate, 10 pug/mL transferrin, 100 nM
hydrocortisone, 66 nM human insulin, 1nM triiodothyronine,
and 1% pen-strep, with 0.25mM isobutylmethylxanthine
(IBMX) and 1pg/mL troglitazone supplemented for the
first 3 days (Flynn, 2010). The osteogenic medium was
composed of DMEM-low glucose (Gibco, Cat # 11885084)
supplemented with 10% FBS, 150 uM ascorbate-2-phosphate,
10mM B-glycerophosphate, 10nM dexamethasone, 10nM
1,25-dihydroxyvitamin D3, and 1% pen-strep (de Girolamo
et al., 2007).

Cell number and viability within the hydrogels were assessed
by staining using the LIVE/DEAD® Viability/Cytotoxicity Kit
for mammalian cells (Life Technologies Inc., Burlington, ON)
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at 7 and 14 d post-induction of differentiation (n = 3 samples
per group/trial, N = 3 trials with different ASC donors)
following previously published methods (Cheung et al., 2014),
with visualization using a Zeiss Multiphoton LSM 510 META
confocal microscope.

Characterization of Adipogenic
Differentiation Within the Composite
Hydrogels

In vitro studies were performed to probe the effects of
incorporating the tissue-specific ECM within the MCS hydrogels
on the adipogenic differentiation of encapsulated ASCs at
14-days post-induction in adipogenic differentiation medium.
Hydrogels maintained in proliferation medium were included as
non-induced (NI) controls. As additional controls for the GPDH
assay, 12-well tissue culture polystyrene (TCP) plates were seeded
with P3 ASCs at a density of 50,000 cells/cm? and cultured in both
media formulations.

To quantitatively assess differentiation, intracellular GPDH
enzyme activity was measured using a GPDH Enzyme Activity
Measurement Kit (Kamiya Biomedical Corporation, Cat. #
KT-010, Seattle, WA, USA) (n = 3 samples per group/trial,
N = 3 trials with different ASC donors) as per previously-
published methods (Cheung et al., 2014; Brown et al., 2015).
For each donor, the data was normalized to the non-induced
TCP group for comparative purposes. In addition, Bodipy®
493/503 staining (Thermo Scientific) was performed to visualize
intracellular lipid accumulation in the hydrogels (n = 3 samples
per group/trial, N = 3 trials with different ASC donors) following
the manufacturer’s protocol. The hydrogels were imaged using
a Zeiss Multiphoton LSM 510 META confocal microscope, with
images obtained at 25X magnification.

Characterization of Osteogenic

Differentiation

Similar to the adipogenic differentiation study, osteogenic
differentiation was probed in the MCS+DAT, MCS+DTB, and
MCS hydrogels cultured in osteogenic medium or proliferation
medium as a non-induced control. For the ALP assay, P3 ASCs
seeded at a density of 5,000 cells/cm? on laminin-coated (Sigma,
Cat. # 12020; 1.6 pg/cm?) TCP and cultured in both media
formulations were included as additional controls.

ALP enzyme activity was measured at 7 and 14 d post-
induction of differentiation (n = 3 samples per group/trial, N =
3 trials with different ASC donors), following published methods
(Yu et al., 2017). For each cell donor, the data was normalized
to the TCP group at 7 d under non-induced conditions for
comparative purposes. In addition, matrix mineralization was
qualitatively assessed in the hydrogel groups at 28 d post-
induction using the OsteoImageTM (Lonza, Germany) kit (n =3
samples per group/trial, N = 2 trials with different ASC donors)
as per the manufacturer’s protocol. As a negative control, cell-
free hydrogels without ASCs were also prepared, cultured, and
imaged using a Zeiss Multiphoton LSM 510 META confocal
microscope at 25X magnification.

Statistical Analysis

All numerical data are expressed as mean + standard deviation
(SD). Unless otherwise stated, all statistical analyses were
performed using GraphPad Prism 6 (GraphPad Software, San
Diego, CA) by one-way or two-way ANOVA with a Tukey’s
post-hoc comparison of the means. Differences were considered
statistically significant at p < 0.05 unless otherwise noted.

RESULTS

The Decellularization Protocol Effectively
Extracted Cells From Bovine Trabecular

Bone

At the end of processing, the DTB samples consistently had
a uniform white appearance, suggestive of the successful
removal of cells including bone marrow constituents
(Figure 1A). Similarly, DAPI (Figure1B) and Masson’s
Trichrome (Figure 1C) staining confirmed that no nuclei were
visualized in either the bone marrow compartment or within
the trabeculae, supporting the efficacy of the approach. No
qualitative differences were observed in the collagen staining
patterns between the pre- and post-decellularization samples.
The quantitative assessment of dsDNA content (Figure 1D)
confirmed effective decellularization, with a >100-fold decrease
in dsDNA content in the DTB in comparison with the
native tissues.

The ECM of DTB and DAT Are

Compositionally Distinct

Picrosirius red staining (Figure 2A) was used to compare the
distribution and organization of collagens in the DTB and DAT.
The collagen in the DTB was arranged in a dense woven pattern
that predominantly appeared red/orange, indicative of thicker
fibrillar collagen types. In contrast, the DAT was arranged in a
less dense network that included a blend of thick and thin fibers,
as seen by the green/yellow birefringence patterns. Quantitative
analysis of total collagen content through the hydroxyproline
assay showed that the DTB contained a significantly higher
amount of hydroxyproline on a dry mass basis as compared to
the DAT (Figure 2B). Further, the DMMB assay indicated that
the sulphated GAG content was ~5-fold higher in the DTB as
compared to the DAT (Figure 2B).

Immunohistochemical staining was performed to further
probe the differences in the distribution and abundance of
key ECM constituents in the DTB and DAT (Figure 2C).
Collagen type IV and VI were localized at the periphery
of the collagenous regions of the trabeculae and around the
lacunae in the DTB, while they were more uniformly distributed
throughout the DAT. Semi-quantitative image analysis indicated
that both ECM sources contained similar relative amounts of
collagen type I and collagen type V (Supplementary Figure S3).
Notably, the DAT contained ~4-fold higher collagen type
IV, ~6-fold higher collagen type VI, and ~5-fold higher
laminin expression as compared to the DTB (Figure 2C).
In general, both tissue sources displayed low expression of
laminin, with substantial regional variability in its distribution.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

December 2019 | Volume 7 | Article 402


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Shridhar et al. ASC Differentiation in Tissue-Specific Hydrogel Composites

A NATIVE BONE DTB

240

200

ds DNA content
(ng/img ofECM)

*
—

oON B

A O N O
o O © o

L]
Native Bone DTB

FIGURE 1 | Confirmation that the new detergent-free decellularization protocol effectively extracted the cellular content from the bovine trabecular bone.
(A) Macroscopic evaluation of native and decellularized bone samples suggested the effective removal of bone marrow constituents based on the uniform white
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Although fibronectin appeared to be qualitatively more abundant ~ The MCS Composite Hydrogels Provided a

in the DAT, there was regional variability that resulted in  Controlled Platform for 3-D Cell Culture
the levels not being significantly different from the DTB  Initial testing focused on confirming that the DTB and DAT
(Figure 2C). particles could be incorporated at a high concentration (8
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wt%) within the MCS hydrogels to generate stable constructs
with similar crosslinking efficiencies and bulk compressive
properties so that they could be applied as controlled 3-D
platforms for exploring the effects of the ECM composition
on ASC differentiation. Prior to encapsulation, particle size
analyses confirmed that the size distributions of the DAT and
DTB particles were statistically equivalent, eliminating size as a
potential confounding variable (Supplementary Figure S4).
Based on visual inspection, the ECM particles were
homogenously distributed throughout the hydrogel phase
(Figure 3A) and the platforms remained stable over the
maximum period (28 days) of cell culture. The gel content, an
indicator of crosslinking efficiency, was statistically equivalent
for the different hydrogel groups (Figure 3B), suggesting that the
ECM particles did not interfere with the cross-linking process.
Further, there were no significant differences in the measured
hydrogel bulk compressive moduli, with values of 114 £ 5 kPa
for the MCS group, 123 £ 17 kPa for the MCS+DAT group, and
135 =+ 26 kPa for the MCS+DTB group (Figure 3A).

The MCS Composite Hydrogels Provided a
Cell-Supportive Platform for Long-Term

Culture Studies

LIVE/DEAD® staining with confocal image analysis showed
high cell viability (>90%) for all of the hydrogel groups and
culture media conditions at both 7 and 14 days, indicating
that the hydrogels provided a cell-supportive microenvironment

for the human ASCs (Figure4A). Further, there were no
significant differences in the total number of live cells per x-
y plane between the groups for any of the media conditions at
either time point (Figure 4B). Representative confocal images
of LIVE/DEAD®stained hydrogel groups at 7 d are shown in
Supplementary Figure S5.

Incorporating the DAT Enhanced the
Adipogenic Differentiation of the Human
ASCs Encapsulated Within the Hydrogel

Composites

Under the induced conditions, significantly higher GPDH
enzyme activity was observed at 14 days in the MCS+DAT
hydrogels relative to all other groups for all three ASC
donors studied (Figure5A). No differences were observed
between the groups for the non-induced samples maintained
in proliferation medium, suggesting that there was a synergistic
effect of the tissue-specific ECM in combination with the
soluble differentiation factors present in the adipogenic medium.
The qualitative assessment of intracellular lipid accumulation
(Figure 5B) indicated that there were a higher number of
differentiating cells in the MCS+DAT group as compared to
the MCS+DTB and MCS groups under both induced and non-
induced conditions. Notably, a qualitatively higher response
with larger lipid droplets consistent with a more mature
adipocyte phenotype was observed in the MCS+DAT samples
cultured in adipogenic medium. These results again support the
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synergistic effects of the tissue-specific ECM and the soluble
differentiation factors in the media, although the qualitatively
enhanced intracellular lipid accumulation in the MCS+DAT
group relative to the MCS+DTB and MCS groups cultured in
proliferation media does suggest that the adipose-derived ECM
had some adipo-inductive capacity.

Incorporating the DTB Modulated
Osteogenic Marker Expression in the
Human ASCs Encapsulated Within the
Hydrogel Composites

For all three cell donors, ALP enzyme activity was enhanced at
7 days in the ASCs encapsulated within the hydrogels relative
to the TCP controls under both induced and non-induced
conditions, indicating that culturing within the 3-D platforms
modulated ASC osteogenic protein expression (Figure 6A). In
general, ALP enzyme activity levels were higher in the induced
hydrogel samples cultured in osteogenic differentiation medium
as compared to their corresponding non-induced controls,
supporting that the combination of the ECM and the soluble
factors present in the osteogenic medium induced a more potent
response. In fact, in assessing the response in the samples
cultured in proliferation medium, no notable osteo-inductive
effects were observed in any of the scaffold groups over the
time frame of the current study. However, significantly higher
ALP activity was observed in the MCS+DTB group cultured
in osteogenic medium at 7 days (compared to all other groups
for cell donors 1 & 3 and compared to all other groups except
MCS+DAT for cell donor 2), followed by a significant decline in

activity from 7 to 14 d for all three ASC donors. These findings
suggest that the DTB may have had bioactive effects on the
progression of osteogenic differentiation when combined with
soluble factors in the osteogenic medium.

Over 28 d, the hydrogel constructs became increasingly
opaque and macroscopically more rigid, suggestive of matrix
mineralization (Figure 6B). Osteolmage™ stained hydrogels
showed positive staining in all three groups when cultured under
osteogenic medium conditions, with qualitatively enhanced
mineral deposition around the ECM particles in the MCS+DTB
group (Figure 6C). The lack of detectable positive staining
for mineralization in the non-induced samples maintained in
proliferation medium indicated that there was no residual
mineral content in the DTB that was contributing to the positive
signal in that group. Consistent with the ALP findings, these
results also support that the DTB alone was not sufficient to
induce mineralized matrix production by the encapsulated ASCs,
but that there were synergistic effects of the tissue-specific ECM
with the soluble osteogenic differentiation factors in the media.
However, marked positive staining was observed in the ASC-free
control hydrogels cultured in osteogenic medium for 28 days,
indicating that there was non-physiological calcium phosphate
precipitation induced by the culture conditions.

DISCUSSION

Recognizing that there is an inverse relationship between
adipogenesis and osteogenesis (Chen et al, 2016a), in the
current study we expanded our hydrogel composite platform
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to explore the effects of tissue-specific ECM on the adipogenic
and osteogenic differentiation of encapsulated human ASCs.
As a first step in this study, a straightforward decellularization
method was developed for bovine trabecular bone that avoided
the use of potentially cytotoxic detergents, strong acids and
specialized equipment (e.g., isostatic pressurization machines)
and complemented our established detergent-free adipose
decellularization approach. Our new protocol reproducibly
extracted the cellular content from both within the trabeculae and
the bone marrow compartment. While it is acknowledged that
the bovine sourcing of the bone may have impacted the cellular
response, bovine bone is physiochemically similar to human bone
(Figueiredo et al., 2010), and ECM macromolecules are generally
well-conserved across species (Scott, 1995).

Applying the DAT and DTB, we successfully established
conditions for generating stable composites containing higher

concentrations of ECM as compared to our previous studies (8
vs. 5 wt%), while retaining similar crosslinking efficiencies and
bulk mechanical properties to pure MCS controls, providing a
controlled basis for the comparative studies. The ECM particle
size was also controlled, based on previous findings that the
DAT particle size can influence ASC adipogenesis (Brown et al.,
2015). Of note, while the bulk mechanical properties were similar
between the hydrogel groups, it is recognized that cells in
contact with the ECM particles may have experienced different
mechanical properties at the cellular level, which may have
influenced the cellular response. Another potential limitation
is that cryomilling the decellularized tissues alters the ECM
structure, creating a more homogenous mixture of particles
as compared to the heterogeneous regional distribution of the
ECM within native stem cell niches, which provides complex
spatially-organized cues that play important roles in directing
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cell fate (Cortiella et al., 2010; Nakayama et al., 2013). However,  separating the basement membrane-rich region of the adipose-
there is a growing body of evidence to support that the ECM  derived ECM from the dense fibrous collagens that likely play a
composition retained within scaffolds derived from processed  more structural role within the tissues (Flynn, 2010).

decellularized tissues, including hydrogels, foams, and particles, All three hydrogel systems provided a highly supportive
can be harnessed to help direct stem cell differentiation. The = microenvironment for the encapsulated ASCs. Cell density is an
ability to source ECM from bulk tissues is attractive in terms of =~ important mediator of both adipogenesis and osteogenesis, with
scale-up and translation, although it may be interesting in future ~ high cell densities shown to promote adipogenesis and low cell
studies to explore whether bioactivity could be modulated by  densities shown to promote osteogenesis in both 2-D and 3-D
decellularizing more selective regions of certain tissues, such as  systems (Bitar et al., 2008; Xue et al., 2013; Brown et al., 2015).
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The similar live cell densities between the three groups under all
media formulations tested eliminated cell density as a possible
confounding factor that may have impacted the cellular response.

The current study clearly demonstrated that adipogenesis
was enhanced in the ASCs encapsulated in the MCS+DAT
composites cultured in adipogenic differentiation medium,
suggesting there was a synergistic effect of the tissue-specific
ECM with the soluble factors present in the medium.
The pro-adipogenic effects were specific to the DAT, with
similar and lower levels of adipogenesis observed in the
MCS+DTB composites and MCS controls. The higher levels
of collagen type IV, collagen type VI and laminin in the
DAT may have had instructive effects in mediating adipogenic
differentiation, as the basement membrane is known to play
a fundamental role in adipogenesis (Kawaguchi et al., 1999;
Uriel et al., 2008; Hsueh et al., 2017). Further supporting
this possibility, chitosan and alginate composite hydrogels
incorporating purified laminin or laminin-derived sequences
have successfully enhanced the adipogenic differentiation of pre-
adipocytes and ASCs in vitro (Chen et al., 2015, 2016b; Hsueh
etal., 2017).

Interestingly, all of the platforms supported intracellular lipid
accumulation under proliferation medium conditions containing
serum, known to suppress adipogenic differentiation in ASCs
(Park et al., 2013), with the MCS+DAT group demonstrating
qualitatively the most consistent and uniform distribution of
maturing adipocytes. Similar findings were observed in our
previous study of MCS and MCS+DAT hydrogels (Brown et al.,
2015), and may be related to the 3-D culture environment
promoting a more rounded cellular morphology favorable for
adipogenesis (McBeath et al., 2004), as no lipid accumulation
was observed in the non-induced TCP controls. The qualitatively
enhanced intracellular lipid staining in the non-induced
MCS+DAT group suggests that the adipose-derived ECM had
an adipo-inductive effect on the encapsulated ASCs, although
there was no observed difference in the GPDH enzyme activity
levels between the groups at 14 days. Future studies could focus
on further probing these effects at later timepoints, including
additional markers of adipogenic differentiation at both the gene
and protein level, to develop a better understanding of the
instructive capacity of the adipose-derived ECM.

Similar to our previous findings supporting the adipo-
conductive and adipo-inductive effects of the DAT (Flynn, 2010;
Yu et al., 2013, 2017; Cheung et al., 2014; Brown et al., 2015),
a number of studies have highlighted that decellularized bone
ECM can enhance mesenchymal stromal cell (MSC) osteogenesis
under differentiation medium conditions (Ravindran et al,
2015; Hung et al, 2016; Paduano et al, 2017), and in the
absence of soluble osteo-inductive factors (Hung et al., 2016;
Paduano et al., 2017). Glycosaminoglycans (GAGs), abundantly
expressed in bone tissue (Boskey and Posner, 1984), are known to
modulate osteoblast attachment and mineralization, potentially
through the action of GAG-sequestered growth factors (Slater
et al., 2009). As such, the elevated levels of GAG content in
the DTB, combined with the GAG-rich environment of the
MCS, may be favorable for the osteogenic differentiation of the
encapsulated ASCs.

Using alkaline phosphatase activity as a marker of bone
formation (Boskey and Posner, 1984), the ASCs encapsulated
within the MCS hydrogel platforms showed an enhanced
response as compared to the TCP controls, suggesting that
the 3-D culture systems may be advantageous for osteogenesis.
Indeed, other types of 3-D hydrogels have been reported
to promote osteogenic differentiation as compared to TCP
(Nguyen et al., 2017), with GAG-based hydrogels promoting
osteogenesis both in vitro and in vivo (Bae et al, 2014).
The enhanced ALP activity levels at 7 days, followed by a
decline at 14 days in the MCS+DTB composites cultured
in osteogenic differentiation medium suggested that the DTB
may have modulated the progression of differentiation in the
presence of soluble osteogenic factors. During differentiation,
ASCs go through an initial proliferative phase, followed by
the synthesis and organization of collagen type I and finally,
matrix mineralization (Boskey and Posner, 1984). ALP enzyme
activity peaks during the initial stages, after which it declines
before peaking again prior to matrix mineralization (Boskey and
Posner, 1984). Since osteogenic markers can be upregulated at
multiple stages throughout the differentiation process (Huang
et al, 2007), a detailed time-course investigation including
osteogenic markers at both the gene and protein level would be
recommended for future studies. These studies may reveal more
subtle osteo-inductive effects of the DTB not observed in the
current study.

The qualitatively greater matrix mineralization around the
DTB particles suggested a possible benefit of the tissue-specific
ECM in enhancing mineralization when combined with soluble
osteogenic factors. Mineralization was also observed around the
DAT particles, consistent with collagen type I fibrils serving
as nucleation sites for calcium phosphate deposition and
crystallization (Boskey and Posner, 1984). However, the non-
physiological matrix mineralization within the cell-free hydrogels
cultured in osteogenic medium confounded the interpretation
of the mineralization data. Notably, it has been reported
that media supplementation with >2mM f-glycerol phosphate
(BGP) led to over 70% non-physiological precipitation of mineral
within in vitro cell cultures (Chung et al,, 1992). The high
concentrations of phosphates included in standard osteogenic
formulations in the form of ascorbate-2-phosphate (>50 M)
and BGP (10mM) is a concern (Ravindran et al., 2015; Hung
et al,, 2016; Paduano et al,, 2017). Further, many studies have
reported matrix mineralization without showing cell-free scaffold
controls. Interestingly, it has been shown that the initiation
and progression of mineralization work independently and the
sustained presence of organic phosphates may not be required for
bone nodule mineralization (Bellows et al., 1991). The alternative
supplementation of phosphates through inorganic means (e.g.,
sodium dihydrogen phosphate) has also shown greater matrix
mineralization despite use at lower concentrations (Schick et al.,
2013). Hence, these findings emphasize the broader need in the
field to refine current osteogenic media formulations, and enforce
the use of proper controls to be able to accurately interpret the
differentiation response.

Overall, our study has provided evidence to support there is a
synergistic effect of applying tissue-specific ECM in combination
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with soluble factors to modulate ASC differentiation within
3-D hydrogel composites, with the DAT having clear cell-
instructive effects in mediating ASC adipogenesis. Notably, ASCs
are known to be more predisposed toward the adipogenic lineage
as compared to bone marrow-derived MSCs (Strioga et al., 2012),
which may have contributed to the potent adipogenic response
and responsiveness to the DAT. In contrast, bone marrow-
derived MSCs have been reported to show enhanced osteogenic
potential, as evaluated by gene expression data, ALP activity and
matrix mineralization (Strioga et al., 2012). As such, in future
studies it would be interesting to compare the adipogenic and
osteogenic responses of ASCs vs. bone marrow-derived MSCs
within the hydrogel composites under refined culture conditions,
to explore the possibility of cell-type mediated effects.

CONCLUSION

In the current study, a reproducible detergent-free
decellularization method was developed for bovine trabecular
bone that did not require excessive physical pre-processing,
specialized equipment, strong acids, or prolonged incubation
times. Hydrogel composites were fabricated that allowed for the
stable encapsulation of a high density of cryo-milled ECM and
human ASCs, with high ASC viability sustained over 14 days in
culture. The platforms could be extended to include a range of
ECM types and could function as injectable cell delivery systems.
This strategy offers versatility as the hydrogel composition, ECM
particle size and concentration, mechanical properties, and cell
density could be tuned to enable screening of multiple parameters
on the response of encapsulated cell populations. The platforms
were designed to have similar structural and biomechanical
properties, to facilitate assessment of the compositional effects
of the ECM on ASC differentiation. Our findings indicated
that the MCS+DAT composites provided a pro-adipogenic
microenvironment for human ASCs, further supporting the
rationale for applying a tissue-specific approach in designing cell
culture and delivery systems for adipose regeneration. While the
interpretation of the osteogenic response was more challenging,
the ALP and matrix mineralization suggested that the DTB had
bioactive effects and may have modulated ASC osteogenesis in
the presence of soluble differentiation factors. Future studies
should focus on refining the osteogenic media conditions to
avoid the issues with non-physiological mineralization, likely
due to the high phosphate concentrations in the formulation.
Further, time course studies assessing additional markers at the
gene and protein expression levels would be valuable for probing
the conductive and inductive effects of the tissue-specific ECM.
In addition, the models could be extended to include other ECM
sources and regenerative cell types, such as bone marrow-derived
MSCs or induced pluripotent cells (iPSCs), to assess the broader
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