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Sensor Data Required for Automatic
Recognition of Athletic Tasks Using
Deep Neural Networks
Allison L. Clouthier, Gwyneth B. Ross and Ryan B. Graham*

School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada

Movement screens are used to assess the overall movement quality of an athlete.

However, these rely on visual observation of a series of movements and subjective

scoring. Data-driven methods to provide objective scoring of these movements are

being developed. These currently use optical motion capture and require manual

pre-processing of data to identify the start and end points of each movement. Therefore,

we aimed to use deep learning techniques to automatically identify movements typically

found in movement screens and assess the feasibility of performing the classification

based on wearable sensor data. Optical motion capture data were collected on 417

athletes performing 13 athletic movements. We trained an existing deep neural network

architecture that combines convolutional and recurrent layers on a subset of 278 athletes.

A validation subset of 69 athletes was used to tune the hyperparameters and the final

network was tested on the remaining 70 athletes. Simulated inertial measurement data

were generated based on the optical motion capture data and the network was trained

on this data for different combinations of body segments. Classification accuracy was

similar for networks trained using the optical and full-body simulated inertial measurement

unit data at 90.1 and 90.2%, respectively. A good classification accuracy of 85.9% was

obtained using as few as three simulated sensors placed on the torso and shanks.

However, using three simulated sensors on the torso and upper arms or fewer than

three sensors resulted in poor accuracy. These results for simulated sensor data indicate

the feasibility of classifying athletic movements using a small number of wearable

sensors. This could facilitate objective data-driven methods that automatically score

overall movement quality using wearable sensors to be easily implemented in the field.

Keywords: human activity recognition, wearable sensors, machine learning, neural network, movement screens

INTRODUCTION

Movement screens are used to assess the overall movement quality of an athlete. Typically,
the athlete will perform a series of movements while a trained rater visually observes and
scores the movements. The goals of movement screens are to predict injury risk and identify
performance deficits that can be targeted in training. While interrater and intrarater reliabilities
for movement screens such as the Functional Movement Screen (FMSTM) are good (Minick
et al., 2010; Teyhen et al., 2012), interrater reliability for subtest components can be poor and
dependent on rater experience (Smith et al., 2013; Gulgin and Hoogenboom, 2014; Bonazza et al.,
2017). Furthermore, concerns have been raised that grading criteria can be somewhat ambiguous
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(Frost et al., 2015; Bonazza et al., 2017) and scores may not be
sensitive enough to detect movement abnormalities (Clifton
et al., 2013). Recent work has aimed to develop objective scoring
methods for movement screens (Ross et al., 2018). Data-driven
approaches have the potential to improve the repeatability of
scoring and increase the ability to detect subtle differences in
movement patterns. However, current methods require manual
processing of motion capture data before scoring can be
performed, including cropping trials to isolate each movement.
Additionally, the reliance on optical motion capture could be a
barrier to implementation of these methods in the field.

Wearable sensors are an attractive alternative to optical
motion capture for motion analysis applications. They are cost-
effective and portable, allowing for the collection of motion
data outside of a laboratory and over large capture volumes.
Furthermore, wearable sensors have the potential to be less
cumbersome than optical markers depending on the number
and placement of sensors. Previous work investigated optimal
placement and number of sensors to classify activities of daily
living (Pannurat et al., 2017), everyday activities (Kern et al.,
2003; Olguin and Pentland, 2006; Atallah et al., 2011; Cleland
et al., 2013), and fall detection (Gjoreski et al., 2011). However,
which sensors are necessary to best classify movement screening
tasks remains unclear.

Human activity recognition is an area of research that
seeks to automatically identify human activities by applying
machine learning techniques to motion data. Methods have
been developed to classify movements including hand gestures
(Kim and Toomajian, 2016), activities of daily living (Hammerla
et al., 2016), and movements typical in various sports (Nguyen
et al., 2015; Kautz et al., 2017). Previously, activity recognition
methods employed techniques that required hand-selected
features as input (Bulling et al., 2014). However, convolutional
neural networks (CNNs), a type of deep neural network
(DNN), are now commonly used to automatically generate
features through deep learning (Zeng et al., 2014; Yang et al.,
2015; Lee et al., 2017). CNNs have shown promising results
in activity recognition; however, they are unable to capture
time dependencies. Recurrent neural networks are a type
of neural network that include a memory component that
allows them to model temporal dependencies. The combination
of CNNs to extract features with long-short-term memory
(LSTM) recurrent networks to capture temporal dependences has
provided improved classification performance over CNNs alone
(Ordóñez and Roggen, 2016).

The use of deep neural networks in movement screens would
allow for a continuous data collection during a movement screen.
Individual movements could then be automatically identified
and segmented as a preparation for further analysis or scoring.
This would decrease the manual effort required for the analysis
process and increase the utility of these objective measurement
techniques. The ability to perform the movement classification
and scoring based on data from aminimal set of wearable sensors
would further increase the applicability of data-drivenmovement
screens. Therefore, our first aim was to use a deep neural network
to identify when movements typical of movement screens occur
within motion data. Our second aim was to compare networks

trained using optical motion capture data with those trained
using data available from wearable sensors.

METHODS

Data Collection and Processing
Optical motion capture data were collected from 417 athletes
performing a series of movement tests by Motus Global
(Rockville Center, NY). The athletes competed in a variety of

FIGURE 1 | Architecture of the deep neural network used to classify athletic

movements. The network combines convolutional and recurrent layers

(Ordóñez and Roggen, 2016). Tensor sizes and function inputs based on the

OPT data and final architecture parameters are shown. PyTorch functions and

inputs are shown for each layer. SWS, sliding window size; C, number of CNN

channels; N, number of columns in the input data; k, CNN kernel size; L,

LSTM cells; Nclasses, number of movements classified.
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sports, including baseball, basketball, soccer, golf, tennis, track
and field, squash, cricket, lacrosse, football, and volleyball. They
ranged in skill level from recreational athletes to those playing in
major professional sports leagues (e.g., NBA, MLB, PGA, etc.).
Participants provided informed consent for future use of their
data for research before completing the protocol. The secondary
use of the data was approved by the University of Ottawa
Research Ethics Board. Forty-five retroreflective markers were
placed on the athlete for motion tracking (Ross et al., 2018) and
data were recorded at 120Hz using an eight-camera Raptor-E
(Motion Analysis, Santa Rosa, CA) motion capture system. Each
athlete performed a series of movement tests consisting of 21
unique movements. The 13 movements most likely to challenge
mobility and stability were selected for analysis in this study,
including hop down right/left (HDR, HDL), bird-dog right/left
(BDR, BDL), drop jump (DJ), T-balance right/left (TBR, TBL),
step-down right/left (SDR, SDL), L-hop right/left (LHR, LHL),
and lunge right/left (LR, LL) (Ross et al., 2018). Individual trials
were collected for each movement.

Start and end time points were manually identified for each
trial (Ross et al., 2018) for use as a ground truth of when each
activity was performed. The optical motion data used in the
analysis (OPT) included global x, y, z coordinates for 45 markers.
To simulate data that can be obtained using inertial measurement
units (sIMU), marker trajectories were processed in Visual3D (C-
Motion, Inc., Germantown, MD) and global angular orientation
Euler angles and the Euclidean norm of the center of mass linear
acceleration and angular velocity for each body segment were
calculated. The Euclidean norm of the velocity and acceleration

TABLE 1 | Learning and architecture parameter values tested for hyperparameter

tuning.

SGD optimizer parameter tuning

Learning Rate 0.0001, 0.001, 0.01, 0.1, 1

Momentum 0.5, 0.7, 0.9, 0.95, 0.98

DNN parameter tuning

Window Size (frames) 24 48

CNN Kernel Size (frames) 5, 6 6, 8

CNN Channels 32, 64, 96

LSTM Cells 64, 128, 192

TABLE 2 | Combination of body segments used to train and test the DNN for the

simulated IMU data.

Data input Body segments

sIMU1 Torso

sIMU2 Torso, pelvis

sIMU3L Torso, shanks (lower body)

sIMU3U Torso, upper arms (upper body)

sIMU4 Torso, pelvis, thighs

sIMU4D Forearms, shanks (distal segments)

sIMU4P Upper arms, thighs (proximal segments)

sIMU5 Torso, forearms, shanks

sIMU13 Head, torso, pelvis, upper arms, forearms, thighs, shanks, feet

was used to reduce the reliance on accurate sensor alignment.
Accelerations and velocities were low-pass filtered at 15Hz with
a zero-lag second order Butterworth filter.

Deep Neural Network
Athletes were randomly separated into training (67%, n = 278),
validation (33%, n= 69), and test (33%, n= 70) subsets. A single
matrix was created for each subset by concatenating data from
all movement trials performed by all athletes in the subset. Each
variable was normalized by subtracting the mean and dividing
by the standard deviation of all data frames across athletes and
movements in the training set for that variable. A sliding window
approach was used to divide the subset data into data segments
containing an equal number of data frames. The stride for the
sliding window was 1/4 the window size. Each data segment was

FIGURE 2 | Hyperparameter tuning was performed in two steps: learning

parameters (A) and architecture parameters (B). (A) Effect of learning rate and

momentum on micro-averaged F1 score. (B) Effect of sliding window size,

CNN kernel size, CNN channels, and LSTM cells on micro-averaged F1 score.

Mean and standard deviation of all DNNs at each parameter level are shown.
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assigned a label according to the movement that was performed
for the majority of the data segment. A “Null” label was included
to describe times when none of the movements were being
performed for a total of 14 classes.

A deep neural network based on the work of Ordóñez and
Roggen (2016) was implemented in PyTorch (Paszke et al.,
2017). The architecture combines convolutional layers to extract
features with recurrent layers to model the temporal dynamics.
The network includes four convolutional layers, two long-short-
term memory (LSTM) recurrent layers, a linear fully connected
layer, and a softmax classifier (Figure 1). The input to the
network is the windowed time series data. The length of the input
data was the sliding window size and the number of columns
depended on the data used: 3∗45 for OPT (x, y, and z component
of each trajectory) and 5 ∗ number of body segments for the
sIMU data (3 Euler angles + 1 angular velocity norm + 1 linear
acceleration norm).

For network training, a mini-batch size of 100 was used. A
stochastic gradient descent (SGD) optimizer with momentum
was used for training with a cross-entropy loss criterion. The
DNN was trained to classify the movement performed during a
given windowed data segment.

Hyperparameter Tuning
Hyperparameter tuning was performed using a grid search
with the validation set of the optical motion data (OPT). The
learning parameters were tuned first as these have a larger
impact on classifier performance (Hammerla et al., 2016). The
learning parameters were the learning rate and momentum of
the SGD optimizer. Five values of each were explored (Table 1)

resulting in 25 DNNs trained on the OPT training set. The
micro-averaged F1 score was calculated for the validation set
to assess the performance of each DNN. The F1 score is a
measure of classification accuracy that is the harmonic mean

of precision and recall (F1 = 2 ·
precision · recall
precision + recall

). The micro-

averaged F1 score calculates the mean across the classes by
considering all individual predictions, which is suitable for classes
of different sizes. The micro-averaged F1 score is equivalent
to the micro-averaged precision, micro-averaged recall, and
classification accuracy.

After selecting the learning rate and momentum that
produced the best F1 score, the architecture parameters were
tuned. Two to three values were tested for each of the
following parameters: sliding window size, CNN kernel filter size,
CNN channels, and LSTM cells (Table 1). Note that CNN kernels
of size 5 and 6 were used with window size 24 and CNN kernels of
size 6 and 8 were used with window size 48. Models were assessed
based on the micro-averaged F1 score.

Comparison of Simulated IMU Sensor Data
Once the final learning and architecture parameters were
determined, the final model was used to identify movements
in the test set. In this case, the DNN was used individually on
each athlete. All trials of athlete’s data were combined and then
segmented using sliding windows and the DNN was used to
classify each window. Then for each frame of data, the class
probabilities from each window containing that frame were
averaged, and a final classification was made for that frame
of data.
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FIGURE 3 | (A) Micro-averaged F1 score for DNNs trained using simulated IMU (sIMU) data from various combinations of body segments. (B) F1 score for each

movement for a selection of DNNs trained on sIMU data. Scores were calculated on the test set based on classification of individual data frames. Movements are

HDR/L, hop down right/left; BDR/L, bird-dog right/left; SDR/L, step-down right/left; LHR/L, L-hop right/left; DJ, drop jump; LR/L, lunge right/left; TBR/L, T-balance

right/left.
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DNNs using the final learning and architecture parameters
were also trained for the simulated IMU data on the training
subset. Different combinations of simulated sensor locations
were examined (Table 2). DNNs were evaluated on the test subset
following the procedure outlined above. For each DNN, the
confusion matrix, accuracy, precision, recall, and F1 score were
calculated. Micro and macro averages and metrics for each class
were produced.

RESULTS

Hyperparameter Tuning
The learning rate and momentum of the SGD optimizer both
had a large effect on the micro-averaged F1 score for the OPT
validation set (Figure 2A). The best F1 score was obtained for a
learning rate of 0.001 and momentum of 0.9, and these values
were used for all subsequent models. The DNN parameters had a
relatively small effect on the F1 scores, with values ranging from
0.895 to 0.911 (Figure 2B). The best results were obtained for a
sliding window size of 48 (0.04 s), CNN kernel size of 6 frames,
32 CNN channels, and 64 LSTM cells. These parameters were
selected for use in the final DNN.

Comparison of Simulated IMU Sensor Data
Deep neural networks trained using optical data (OPT) and
all 13 body segments of sIMU data (sIMU13) had similar
micro-averaged F1 scores (0.901 and 0.902, respectively). In
general, including more body segments improved performance
(Figure 3), although only small improvements were obtained
by including more than four body segments. Bird-dog (BDR/L)
movements were predicted well (F1 score > 0.76) for all
networks, while drop jumps (DJ) tended to be more poorly
identified in general.

The effect of including upper or lower limb data can be
observed in the confusion matrices for the sIMU3U and sIMU3L
models (Figure 4). With the torso and upper arms included
(sIMU3U), the DNN frequently confuses left and right versions
of tasks. Tasks involving jumping were also confused. The
network using the torso and shanks (sIMU3L) is better able
to distinguish between left and right, but occasionally confuses
the T-balance (TBR/L) and lunge tasks (LR/L). L-hops (LHR/L)
are sometimes classified as hop downs (HDR/L) in both three-
segment networks (sIMU3L, sIMU3U).

The true and predicted movements over time for the OPT,
sIMU1, sIMU3L, and sIMU13 models are shown in Figure 5 for
a representative athlete. OPT, sIMU13, and sIMU3L were better
able to predict the entire duration of movements. Networks with
fewer body segments tended to switch between predictions. The
misclassification between movements and Null largely occurs at
the beginning and end of a movement.

The complete set of precision, recall, F1 scores, and confusion
matrices are included in the Supplementary Material.

DISCUSSION

The deep neural network (DNN) combining convolutional
and recurrent layers was able to successfully identify athletic

FIGURE 4 | Confusion matrices for the sIMU3U (A) and sIMU3L (B) DNNs.

Values are percentage of the frames of the true movement classified as the

predicted movement.

movements for both optical motion capture trajectories and
simulated inertial measurement unit (sIMU) data. DNNs trained
using optical motion capture data (OPT) and full body simulated
IMU (sIMU13) data had similar performance with F1 scores of
approximately 0.90. Classification accuracy was poor (<70%) if
fewer than three body segments were included or the lower limbs
were not included in the sIMU data.

There was minimal difference between micro-averaged F1
scores for the DNNs trained using five or 13 body segments.
This indicates that it is not necessary to include measurements
from the head or more than one segment from each upper or
lower limb. This is encouraging as the use of fewer sensors would
simplify the set-up before a movement screen and would be less
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FIGURE 5 | Example of movement classification for a representative athlete using DNNs trained using different sets of input data. Data collected in separate trials for

each movement have been concatenated and displayed continuously.

of a hindrance to the athlete’s motion. The F1 score for sIMU3L,
which used the torso and shanks, was only∼0.04 less than for the
full body DNN. Therefore, depending on the desired accuracy,
classification rates may be sufficient using only three sensors.

Some movements, such as the bird-dogs, were more easily
identified by the DNN, even for networks trained on sIMU data
from one or two segments. This is likely because trunkmotion for
these movements is substantially different from that of the other
movements, with the trunk horizontal and relatively stationary
throughout the motion. Including arm segments prevented
confusion between T-balances and lunges. The drop jump was
classified particularly poorly when few segments were used, often
being classified as the null condition. This may in part be due to
the way the start and end of the L-hop motion was defined. The
L-hop involved the athlete jumping horizontally forward, landing
on one foot, then jumping laterally and landing on the opposite
foot. This movement was defined to begin when the athlete had
reached their maximum height during the initial jump. Without
sufficient data, the DNN was unable to differentiate between the
end of the drop jump movement, which involved a vertical jump,
and the initial jump of the L-hop which was included in the
null condition.

The F1 score we achieved in classifying athletic movements
is similar to previously reported human activity classification
results. The architecture of the DNN used in this study was
based on the work of Ordóñez and Roggen (2016), who achieved
an F1 score of 0.895 on a dataset including various modes of
locomotion. Other work has reported classification accuracies
ranging from 83 to 100% for everyday activities (Pärkkä et al.,
2006; Yeoh et al., 2008; Attal et al., 2015; Yang et al., 2015) and
79–93% for movements involved in various sports (Schuldhaus
et al., 2015; Groh et al., 2016; Anand et al., 2017; Cust et al., 2019).

Previous work on classification of everyday activities, such as
walking, jogging, sitting, stair climbing, etc., has identified one
sensor placed at the waist as producing the best classification
accuracy (Cleland et al., 2013; Pannurat et al., 2017). In the
current study, we found that a single simulated torso sensor

resulted in a poor classification accuracy of 48%. This discrepancy
can likely be attributed to the differences in activities included, as
optimal sensor placement depends on the activity (Atallah et al.,
2011; Attal et al., 2015). The activities classified in the previous
studies involve activities that are repetitive and take place
over a relatively long period of time. The athletic movements
included in our study, however, are short single movements.
Furthermore, the need to differentiate right and left versions of
the movements makes classification with a single torso-mounted
sensor more challenging.

The sIMU DNNs relied on simulated IMU data generated
based on optical motion tracking markers. Therefore, these
results likely represent a best-case scenario for classification of
these athletic movements using wearable sensors. Sensor drift
is a common issue with IMUs and therefore it is possible that
misclassification rates would be larger using real sensor data,
particularly for long data collections as drift increases over time.
Care would also need to be taken to standardize sensor placement
on each body segment. While we have used the Euclidean norm
of the angular velocity and linear acceleration, error would be
introduced into the angular orientation of the body segments by
misaligned sensors. Additionally, it may be possible to mitigate
sensor misalignment issues using a static or dynamic calibration
at the beginning of the data collection. Despite the reliance on
simulated sensor data, the results presented here highlight the
potential for movement classification using wearable sensors and
provide guidance for sensor placement in future work.

In this study, separate data trials were recorded for each
motion and these were combined for the classification. As a
result, the amount of null data frames included was relatively
small. It may be necessary to included more null condition
training data, including transitions between movements, for the
DNN to be used successfully on continuously collected data.

Accurate classification of movements is critical for this DNN
approach to be used with nomanual intervention in combination
with data-driven assessments of movement quality, as the quality
could only be assessed on properly identified movements. Some
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errors may be possible to correct with additional processing,
such as when the classification jumps to another movement for
a few frames in the middle of an otherwise accurately classified
movement. We observed that a large source of error was over-
or under-estimating the start or end points of a movement with
misclassification between the movement and the null condition.
It is possible that movement quality could still be quantified with
these slight errors in start and end points, but future work will
be required to verify this. Alternately, a small amount of manual
intervention could be used to verify task identification before
proceeding to quantification of movement quality.

The favorable classification rates obtained in this work using
simulated sensor data demonstrates the feasibility of classifying
athletic tasks typical of movement screens using wearable
sensors. Using simulated IMU data, we observed the best
classification accuracy by including data from all body segments;
however, we obtained good results using as few as three simulated
sensors. This indicates that classification of these athletic
movements using real IMU data would require at least three
sensors and should include the torso and legs. Implementation of
a movement classification DNNwith wearable sensor data would
facilitate automatic data-driven assessment of movement quality,
eliminating subjective scoring, and increasing the ability to detect
subtle differences.
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