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Bioelectrochemical systems are revolutionary new bioengineering technologies which
integrate microorganisms or enzymes with the electrochemical method to improve
the reducing or oxidizing metabolism. Generally, the bioelectrochemical systems show
the processes referring to electrical power generation or achieving the reducing
reaction with a certain potential poised by means of electron transfer between the
electron acceptor and electron donor. Researchers have focused on the selection and
optimization of the electrode materials, design of electrochemical device, and screening
of electrochemically active or inactive model microorganisms. Notably, all these means
and studies are related to electron transfer: efflux and consumption. Thus, here we
introduce the basic concepts of bioelectrochemical systems, and elaborate on the
extracellular and intracellular electron transfer, and the hypothetical electron transfer
mechanism. Also, intracellular energy generation and coenzyme metabolism along with
electron transfer are analyzed. Finally, the applications of bioelectrochemical systems
and the prospect of microbial electrochemical technologies are discussed.

Keywords: bioelectrochemical system, electron transfer, microbial fuel cells, microbial electrolysis cells, energy
generation, coenzyme metabolism

INTRODUCTION

Bioelectrochemical systems, revolutionary new bioengineering technologies, integrate
microorganisms or other bio-based catalysts with an electrochemical method to improve the
reducing or oxidizing metabolism. Generally, bioelectrochemical systems show the process
of electrical power generation or achieve the reduction reaction with a certain potential
poised by means of electron transfer between the electron acceptor and electron donor
(Fernandez et al., 2015).

Previously, bioelectrochemical systems have been widely applied in the form of microbial fuel
cells (MFCs), since Michael Potter (1911) first studied the generation of an electrical current
by several microorganisms, which convert chemical energy into electrical energy by degradation
of various substrates, especially organic compounds from waste water (Gul and Ahmad, 2019).
As a reversal process compared to MFCs, microbial electrolytic cells (MECs) were used to
convert electrical energy to chemical energy with the help of microorganisms or enzymes to
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produce useful products such as formate, methanol, ethanol,
or hydrocarbons. These molecules were then converted
or used directly as a sustainable alternative to fossil
fuels (Yuan et al., 2019). With the growing desire for
environment-friendly and energy-saving processes (Zhang
and Angelidaki, 2015), bioelectrochemical systems attracted
much attention for their green and sustainable characteristics
(Ghosh and Ghangrekar, 2015).

To expand the application of bioelectrochemical systems,
researchers have focused on the selection and optimization of
the electrode materials, design of the electrochemical devices,
and screening of electrochemically active or inactive model
microorganisms. Recently, bioelectrochemical systems have been
widely applied in nitrate removal, solid waste processing,
desalination and materials science (Zhen et al., 2016). Notably,
all of these uses and studies are related to electron transfer and
energy transformation, i.e., the interchange of chemical energy
and electrical energy.

Here, we first introduce the basic concepts of
bioelectrochemical systems, and elaborate on the mechanisms of
extracellular and intracellular electron transfer. We also analyze
the hypothetical electron transfer mechanism, intracellular
energy generation and coenzyme metabolism. Finally, the
applications of bioelectrochemical systems and prospective
microbial electrochemical technologies are discussed.

CLASSIFICATION OF
BIOELECTROCHEMICAL SYSTEMS

An electrochemical system is a series of electrochemical models,
or devices, in which electronic behaviors occur with different
types of catalysts. In terms of bioelectrochemical systems,
it mainly describes a series of technologies that are used
for biotechnology applications including electricity generation
(Butler et al., 2010) and the production of valuable products
(Villano et al., 2011). Generally, they can be divided into two
categories depending on the catalyst adopted. The first one are
those that use microorganisms as catalysts, and the second are
those that use enzymes as the catalyst.

Microbial Electrochemical Systems
According to the direction of electron transfer and the
type of reaction, microbial electrochemical systems can be
divided into MFCs and microbial electrolysis or electro-
synthesis cells (MECs). MFCs, are electrochemical systems with
microorganisms acting as biocatalysts in the anode chamber, have
been widely used for electricity generation with various substrates
(Table 1). In MFCs, electrons released through intracellular
metabolism (substrate oxidation) transfer to the anode, and
are finally captured by the cathode electrode via an external
circuit to be used for the reduction of oxygen, or another
electron accepter, with the generation of current (Logan et al.,
2006). Recently, many MFCs have been reported that act as an
innovative wastewater treatment technique for pollution removal
and energy generation, due to their high degradation rate (He
et al., 2015; Yazdi et al., 2015; Zhao et al., 2015a).

Bioelectrochemical systems have been successfully applied
in MFCs using diverse microorganisms such as Shewanella
putrefaciens (Yang et al., 2017), Shewanella oneidensis MR-
1 (Bretschger et al., 2007) and Escherichia coli DH5α (Li
et al., 2018), which can produce a maximum power density
range from 3800 to 4400 mW/m2. However, these fuel cells
have a low cost-effectiveness due to high material costs
and mediocre power generation, which are still the major
limitations to extending the range of applications (Zhou et al.,
2013). Also, some electrodes are manufactured with gold,
platinum and other expensive materials which raises the cost
(Sadeghifar and Rashid-Nadimi, 2017).

Microbial fuel cells systems adopt bacteria as catalysts, and
the biofilm is formed on the surface of the anode, which can
improve the electron transfer. Thus, the practical application of
MFCs may be further confined by microorganisms - since the
efficiency and stability of microbial reactions mainly relies on the
external environment which is far different from their indigenous
environments (Pareek et al., 2019), due to issues such as low
temperatures, high salinity and high toxicity (Zhang et al., 2017).
Another limitation is the internal resistance of the fuel cell caused
mainly by the proton exchange membrane, which results in low
current density and power density (Shreeram et al., 2018). Table 1
lists the recent research on MFCs.

Microbial electrolytic cells also use microorganisms as
catalysts, and the cells are inoculated into the cathode chamber
which acts as an electron acceptor and gains electrons, thus
accelerating the intracellular reduction metabolism (Villano
et al., 2011; Ding et al., 2012; Jafary et al., 2015). Essentially,
MECs are a reverse process compared to MFCs. In MFCs, the
oxidation reaction occurs in the anode chamber, after which
the released electrons are transferred to the cathode chamber
in a process that involves substrate reduction. For MECs, the
potential poised on the cathode chamber is the most important
factor and is determined by the bacteria and electron shuttles
added, as they can have different potential differences (Table 2).
However, the potential poised on the cathode is not equal to
the theoretical potential difference of electron shuttles as the
electron or energy losses in bioelectrochemical system (Zhen
et al., 2016). There are also many issues restraining the scale
up of MECs, especially as most of the microbial electrosynthesis
systems suffer from low energy efficiencies and low production
rates (Su and Ajo-Franklin, 2019). Another limitation on MECs is
chemical incompatibility between the abiotic and biotic catalysis,
for example, fouling of the electrode by microbes, or toxicity
to the microbes caused by electrode leaching (Gildemyn et al.,
2017). A vital index in the application of MECs is the long-
term stability, which suffers from low turnover frequencies and
oxygen sensitivity of certain enzymes relevant to CO2 reduction
(Yuan et al., 2019).

By using cyclic voltammogram detection, it was found that
the potential poised cathode can drive the electron shuttle
reduction at high rates and then the intracellular reducing
metabolism can be accomplished by current stimulation. During
the whole process, the cathode provides electrons to pump
intracellular reducing power and energy generation (She et al.,
2006). However, it remains to be investigated whether the
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TABLE 1 | Brief summary of microbial fuel cells.

Strains Anode electrode Cathode electrode Substrate Electrode
surface
(cm2)

Electron
shuttles

Power output References

Anaerobic sludge Graphite felt Graphite felt Glucose 10 NAa 28.6 mW/m2 Song et al., 2016

Anaerobic sludge Activated carbon cloth Carbon cloth Waste water 66.5 NA 142 mW/m2 Yazdi et al., 2015

Activated sludge Modified carbon cloth Modified carbon cloth Sodium acetate 2.5 NA 2355 mW/m2 Yuan et al., 2016

Activated sludge Carbon brush Bilirubin oxidase Acetate 9 NA 6530 mW/m2 Santoro et al., 2016

Consortium Ammonia-treated
carbon cloth

Carbon fiber Cellulose 1.13 NA 5.4 mW/m2 Farzaneh et al., 2009

Geobacter biofilm Modified graphite rod Modified graphite rod Acetate 5.81 NA 100 mW/m2 Commault et al., 2015

Geobacter
sulfurreducens
Escherichia coli

PTEE carbon cloth PTEE carbon cloth Acetate 7 NA 9.8 mW/m2 Qu et al., 2012

Shewanella oneidensis CP/G/Au CP/G/Au Lactate 6 - 508 mW/m2 Zhao C. et al., 2015

Spartina anglica Plant root Plant root Waste water 27 NA 679 mW/m2 Wetser et al., 2015

Recombinant
consortium

Carbon cloth Carbon cloth Glucose Xylose 6.25 Flavins 104.7 mW/m2 Li et al., 2019

Shewanella oneidensis Carbon cloth Carbon cloth Lactate 1 Flavins 2630 mW/m2 Lin et al., 2018

aNo electron shuttles added in electrochemical system.

TABLE 2 | The standard potential of electrons shuttles.

Electron shuttles Standard
potential (E0′

/V)
Electron

mediators
Standard

potential (E0′

/V)

Methyl viologen −0.446 NAD+/NADH −0.315

H2 −0.414 Methane/HCO3
−

−0.24

Neutral red −0.325 FAD/FADH2 −0.219

Riboflavin −0.208 MK/MKH2 −0.074

Anthraquinone-2,6-
disulfonate
(AQDS)

−0.184 Fumarate/
Succinate

+0.031

electrons released from the cathode can be efficiently transferred
between the cathode and bacteria (Schroder, 2007). In a word,
in these two microbial electrochemical systems, the possibility of
electron transfer and the rate of electron transfer between cells
and electrodes are the key factors used to determine the efficiency
of the entire system (Li et al., 2015; Santoro et al., 2015).

Enzymatic Electrochemical Systems
Another type of bioelectrochemical system is that using
enzymes as catalysts. The electrodes with enzymes serve as
external electron donors or electron acceptors (Amano et al.,
2016; Lee et al., 2016). Since the enzymatic reaction is
the sole reaction occurring in this electrochemical system,
and the electron transfer kinetic potential is predetermined,
and the oxidoreductase can be regenerated by capturing or
releasing electrons at the surface of electrode, the enzymatic
electrochemical system is widely used in the study of electron
transfer mechanisms in vitro (Kracher et al., 2016).

Since previous studies have applied electrochemical methods
to study the biological electron and ion transfer and proved
its high sensitivity and reliability, it would be an efficient
and convenient strategy to analyze the mechanism of enzyme

reaction. When NADH:quinone complex I was fixed on the
surface of a gold modified electrode, the process of electron and
proton transfer recurred effectively in vivo with the electrode as
the sole electron acceptor (Oscar et al., 2014). Moreover, in order
to increase the load of the enzyme for a higher catalytic rate, high
surface area materials were introduced into this system with a
high density current output (Bari et al., 2016).

Although all these electrochemical systems have been studied
for decades, upgraded electrochemical devices and novel
biocompatible electrode materials are absolutely imperative.
Moreover, the mechanisms of energy output and electron transfer
are still in their infancy.

ELECTRON TRANSFER IN THE
BIOELECTROCHEMICAL SYSTEM

Extracellular Electron Transfer
Electron Transfer in Enzyme Electrochemical Systems
In enzyme electrochemical systems, the oxidoreductases are
selected, purified and fixed on the surface of modified electrodes,
which act as electron donors or electron acceptors and participate
in enzymatic reactions along with the interaction of an electrode
(Compagnone and Guilbault, 1997; Bari et al., 2016). So, the
key problem to be solved is the bidirectional electron transfer
from the electrode to the active site of the enzymes. However,
the transition and transfer of electrons between the electron
carriers have certain restrictions, as the relative distance between
the two given electron carriers within the enzyme increases,
the electron transfer rate will decline rapidly and affect the
efficiency of the enzymatic reaction. When the distance is longer
than 10 angstroms, electron transfer will only be achieved
through the presence of electron mediators (Mayo et al.,
1986). Therefore, the electrodes are modified to facilitate the
immobilization of the enzyme and thus effectively accelerate
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electron transfer between oxidases and the electrodes (Freguia
et al., 2012; Oscar et al., 2014). Furthermore, conductive nano-
particles can also be used to assist the long distance transfer
of electrons. In this way, a long distance electron transfer from
FAD/FADH2 (glucose oxidase) to an electrode was achieved
(Degani and Heller, 1987).

Although efficient electron transfer can be achieved by
various means, the applications of enzyme electrochemical are
restricted to a small field by taking into consideration the
decreasing activity of enzymes during recycling. Among them,
enzyme electrochemical sensor systems is a relatively mature
field and widely used for substance detection, such as heavy
metals (Ruecha et al., 2015), glucose (Gutierrez et al., 2016)
and other organic substances (Wang et al., 2016). Additionally,
enzyme electrochemical systems have also been successfully
applied to studying the mechanism of electron transfer during
enzyme reactions. By cyclic voltammetry detection, Kracher
et al. (2016) verified the mechanism of electron transfer in lytic
polysaccharide monooxygenases (LPMOs) during the oxidative
degradation of cellulose with multi-enzyme modified electrodes.

Extracellular Electron Transfer in Microbial
Electrochemical Systems
Unlike enzyme electrochemical systems, microorganisms act as
catalysts in MFCs and MECs. In MFCs, reducing equivalents
stored in the organic substrate are released in the form
of electrons, which are captured by the anode and then
transferred to the cathode through the external circuit with
the generation of electricity (Santoro et al., 2016). In MECs, a
given voltage is poised at the cathode. The electrons involved
in intracellular reduction and energy metabolism are released
from the cathode electrode and captured by strains (Carmona-
Martínez et al., 2015; Yin et al., 2016). Since the cell membrane
is insulated, a necessary prerequisite for the electrochemical
reactions to occur is that the electrons can smoothly transfer
across the membrane (Kracher et al., 2016). Due to reactions
occurring on the electrodes of different substances exhibiting
different electrochemical behaviors and the different mechanisms
of electron transfer between microorganisms and electrodes,
three major mechanisms exist in electron transfer between the
electrodes and the microorganisms (Figure 1). They are reling on
nanowires (conductive pili), relying on outer membrane proteins
and/or mediated by endogenous or exogenous electron shuttles
(Choi and Sang, 2016).

For the electrochemical active strains, different groups of
strains evolved different conductive mechanisms. Shewanella
has a complete set of extracellular electron transport chains.
The electron transport channels which were formed by outer
membrane cytochromes (Mtr and CymA system) mediate the
direct electron transfer between cells and electrodes (Ross et al.,
2012; Carmona-Martínez et al., 2013). Meanwhile, the synthesis
and release of riboflavin assists electron transmembrane transfer,
but this process requires a specific transport system (Brutinel
and Gralnick, 2012). Another model electrochemical active
strain, Geobacter, can synthesize conductive pili (nanowires)
through cell growth and is directed involved in the extracellular
electron transfer between cell and electrodes (Schroder, 2007;

FIGURE 1 | Mechanisms for bidirectional electron transfer between bacteria
and electrodes. (A) Represents two mechanisms of direct electron transfer,
one is mediated by nanowire, the other is mediated by outer membrane
cytochromes with or without electron shuttles; (B) Shows the indirect electron
transfer mediated by electron shuttles.

Lovley, 2008). Also, outer membrane cytochromes are necessary
for electron capturing (Butler et al., 2010).

Nanowires, outer membrane cytochromes and other
appendages are key components for effective electron capture
in electrochemical active strains. In order to improve the
extracellular electron transfer efficiency, the development of
biofilms can benefit the whole process (Verea et al., 2014; Laura
et al., 2015). The presence of biofilm ensures direct long distance
electron transfer, high catalytic rates and high power outputs. In
recent years, newly developed and modified porous conductive
materials have been used for facilitating biofilm formation on
electrode surfaces (Karthikeyan et al., 2015; Yuan et al., 2016).
Although the electrodes that have porous or three-dimensional
surfaces in MFCs will improve the performance of the whole
system with enhanced efficiency of electricity output, it also
depends on the conductive characteristic of the selected electrode
material (Ledezma et al., 2015). When using stainless steel and
carbon felt as electrodes for current generation, Dumas et al.
(2008) found that carbon felt has high porosity characteristics
for microbial attachment, but weaker conductivity compared
to stainless steel electrodes which caused lower level current
generation. However, in terms of other electrochemical active or
inactive strains, the electrons cannot transfer directly between
the cells and electrodes, and biofilm on electrode surfaces
limited the electron and mass transfer (Rabaey et al., 2007;
Freguia et al., 2008).

The electrochemically inactive bacteria do not have a fully
functional extracellular electron transfer system and almost all
the strains of this type are not able to secret electron carriers
(Masuda et al., 2010). However, electrochemically inactive
bacteria can react with electrodes through the addition of an
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electron shuttle. In the majority of model strains, such as
Escherichia coli, Actinobacillus succinogenes (Park et al., 1999)
and Clostridium (He et al., 2016), bidirectional electron transfer
can be achieved in the presence of electron shuttles. With
neutral red, A. succinogenes can gain electrons from a cathode
and use these for intracellular metabolism (Park et al., 1999).
Although bacteria can be divided into electrochemically active
and inactive types, the boundary is not so clear. For example,
one study has demonstrated that the screened E. coli gained
the ability of direct electron transfer from intracellular to
extracellular and achieved electricity generation without electron
shuttles (Park et al., 1999). However, that does not mean all the
electrochemically inactive bacteria can gain the same ability of
direct electron transfer.

Interspecies Electron Transfer
After the microorganisms were incubated into electrochemical
systems, a start-up period was needed to activate the process
of electricity generation. During this period, electrochemically
active strains, in which electrons could be transferred directly
were absorbed onto the surface of the electrode to form biofilm.
And thus, a shorter start-up period of MFC could be obtained as
the distance of electron transfer decreased (Zhao et al., 2015b).

A co-culture of Geobacter and Methanosaeta or
Methanosarcina species has been confirmed to promote the
electro-synthesis of methane as strains shared electrons via direct
interspecies electron transfer (Zheng et al., 2015). In this way,
interspecies electron transfer can promote and strengthen the
symbiotic electrochemical behavior with microbial co-culture
fermentation, which was beneficial to achieve synergy between
different microbial species and the production of bio-gas or other
high value biofuels from cheap raw materials (Zheng et al., 2015).

The more general concept is that conductive materials can
promote interspecies electron transfer and strengthen co-culture
fermentation. In order to introduce more species to symbiotic
co-culture systems and expand the application of interspecies
electron transfer, electron shuttles can also be used for indirect
electron transfer among strains. It is demonstrated that electron
transfer mediated by active carbon particles within cells does
not need to rely on cellular conductive structures (such as
conductive pili or nanowires) or the assistance of cytochromes
(Liu et al., 2012; Amelia-Elena et al., 2014). Moreover, the
interspecific electron transfer can be achieved in the presence
of activated carbon particles, and the catalytic properties of the
mixed bacteria can be strengthened even when co-cultured with
electrochemically inactive bacteria (Qu et al., 2012).

It is worthy of notice that co-cultures of bacteria with different
electron shuttles may have different functions. In the presence of
AQDS, co-cultures of Geobacter metallireducens and Geobacter
sulfurreducens can achieve higher rates of ethanol consumption
and better cell growth as more energy is generated (Smith
et al., 2015). When the co-cultured bacteria were Geobacter
metallireducens and Monascus barkeri, no obvious effects on the
synthesis of methane from ethanol was obtained because of the
higher potential of AQDS (Table 2; Liu et al., 2012). This can be
explained due to the differing levels of intracellular energy that
can be gained along with electron transfer from electron donor

to electron acceptor via various electron shuttles and electron
transfer chains.

Intracellular Electron Transfer Chain
The only goal of nanowires, electron shuttles and modified
electrodes is to strengthen the interaction between cells and
electrodes, and to increase the rate of extracellular electron
transfer. The intracellular electron transfer chain (ETC, also
called the respiratory chain) consists of a series of electron or
proton carriers, including cytochromes, coenzyme Q and lots of
oxidoreductases. Within the ETC, electrons are transferred from
high potential electron donor to a low potential electron acceptor
along with ATP synthesis (Hara and Kondo, 2015).

For electrochemically active bacteria, cytochromes that are
anchored at the membrane can facilitate electron transfer
and intracellular metabolism (Richter et al., 2009). As
electrochemically active bacteria, Shewanella and Geobacter
have an excellent ability for intracellular electron transfer, and
thus are widely used in MFCs (Lovley, 2012). Previous studies
have demonstrated that some strains can change electron transfer
routes depending on the potential difference of available electron
donors or acceptors (Kracke et al., 2015), and Shewanella can
achieve bidirectional electron transfer with only one intracellular
electron transfer system in MFCs and MECs (Figure 2; Shi et al.,
2010; Ross et al., 2012). The only difference was the electron
mediator that was used. The MFC adopted ubiquinone, while
the MEC adopted menaquinone, as it has a lower potential
difference to ubiquinone. Compared with Shewanella, three
electron leaking mechanisms exist in Geobacter: electron transfer
OmcZ between cells, OmcE/OmcS used for Fe (III) reduction,
and nanowire used for interactions with electrodes (Richter et al.,
2009; Shi et al., 2010; Ross et al., 2012; Sturm et al., 2015).

Electrochemically inactive bacteria can interact with
electrodes in the presence of electron shuttles (Table 2).
Bio-based electron shuttles, such as riboflavin, coenzyme Q or
its analogs, can integrate into inherent electron transfer chains
directly via membrane transporters or diffusion, and participate
in intracellular reducing and energy metabolism (Schroder,
2007). Compared with bio-based electron shuttles, chemical
based electron shuttles have a faster diffusion rate, and their
high polarization characteristics ensure effective bidirectional
transportation across membranes (Federico et al., 2007; Pandit
and Mahadevan, 2011). However, the relationship between
chemical-based electron shuttles and intracellular ETC is not
clear. Some studies showed that neutral red can integrate into
membranes and execute the function of native electron transfer
mediators (Park et al., 1999). Recently, Harrington et al. (2015)
verified that neutral red can interact with menaquinone and
then transfer the electrons into intracellular ETC. Another type
of electron shuttles are reduced chemical substances, such as
hydrogen and formate (Zhao et al., 2006).

Until now, it has been confirmed that electron shuttles can
capture or release electrons between electrodes and intracellular
ETC even though the mechanism is not clear. Compared with
electrochemically active strains, the electron transfer efficiency
of intracellular ETC in electrochemically inactive strains in
not effective. Thus, metabolic engineering strategies have been
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FIGURE 2 | Intracellular electron transfer chains in Shewanella and Geobacter. (A) Describes the process of electron leaking from intracellular metabolism via Mtr
and CymA systems in Shewanella, (B) Describes the process of electron capturing by strains from cathodes and used for fumarate reduction. (C,D) describe the
ETCs of Geobacter in MFC and MEC systems, respectively.

applied to reconstruct the intracellular ETC to promote electron
transfer in electrochemically inactive bacteria. Sturm-Richter
et al. (Sturm et al., 2015) found that heterologous expression of
intracellular ETC from Shewanella (CymA and Mtr system) in
E. coli can reprogram the intracellular metabolism and accelerate
the intracellular electron transfer rate by 183% (Sturm et al.,
2015). In addition, higher electricity power output was achieved
with the assistance of methylene blue. Similar results showed that
the rate of extracellular electron transfer can also be increased
by heterologous introduction of a synthetic flavin pathway in
Shewanella (Yang et al., 2015).

THE EFFECTS AND APPLICATIONS OF
BIOELECTROCHEMICAL SYSTEMS IN
MICROBIAL METABOLISM

Electrons are not simply transferred along with the potential
gradient between the electrode and cell, or by intracellular
electron transfer chains in bioelectrochemical systems, and
the reason for the presence of electron carriers is not just
to transfer electrons by a simple pattern from an electrode
to intracellular ETC. The capturing of electrons is often
accompanied by the cotransport of protons (Pandit and
Mahadevan, 2011), which can be released and involved in
intracellular reduction and energy metabolism. In addition, the

reducing power (NADH or FADH2) and ATP play a vital
role in intracellular redox metabolism, metabolite synthesis and
transportation, stress responses and transcriptional regulation
(Balzer et al., 2013; Man et al., 2016). The perturbation
of intracellular ATP and NADH levels has effects on the
whole cellular metabolism and redirects the metabolic flux
(Holm et al., 2010).

Energy Metabolism
In bioelectrochemical systems, bacteria can gain energy in
two ways. First, the native respiration chain is the main
route of energy generation. For electrochemically active strains,
insoluble metals act as electron acceptors and participate in
extracellular ETC in nature. When Geobacter and Shewanella
were inoculated in MFC system, they could gain energy
continuously by degrading organic acids for cell growth and
metabolism. And the redox balance was maintained by releasing
electrons to the anode, which replaces insoluble metals as
the final electron accepter (Lin et al., 2018; Li et al., 2019;
Wang et al., 2019).

The second way is also derived from electron transfer.
As electrons transferred from cathodes into an intracellular
environment, along with the cotransport of protons, the
hypothetical mechanism of ATP generation is that the released
proton will promote the formation of proton motive force (PMF)
and drive ATP synthesis (Rose and Regan, 2015).
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Compared with aerobic respiration, the energy generated
by oxidative phosphorylation is not enough for cell growth
at high rates under anaerobic conditions. The main reason is
that due to the low supply level of intracellular ATP, as the
intermediate metabolites acted as electron acceptors they were
not matched by oxygen levels (Unden and Bongaerts, 1997).
Generally, as synthesis of the cell appendages is an energy
consuming process, an electron shuttle can be used for supplying
more energy through highly effective electron transfer under the
same conditions (Liu et al., 2012). In some cases, bacteria can gain
enough energy to maintain cell growth and metabolism in MEC
systems, even though they do not have a complete native electron
transfer chain (Smith et al., 2015).

Co-enzyme Metabolism
The concentration of co-enzymes, NADH or NADPH, represents
the level of intracellular reducing power and are involved in
many oxidation-reduction reactions. As redox reactions occur
inevitably along with electron generation and consumption, the
release or capture of electrons in bioelectrochemical systems will
disturb the intracellular steady state environment and cause a
shift of metabolic flux (Chen et al., 2012).

In electrochemical systems, oxidation and reduction reactions
are performed in the anode and cathode chamber, respectively.
In MECs, Geobacter can catalyze fumarate reduction with
the cathode electrode as the sole electron donor, and this
reduction was catalyzed by fumarate dehydrogenase (NADH-
dependent) (Mahadevan et al., 2006). For electrochemically
inactive bacteria, previous studies have also found that
the electrons can be transferred from the cathode to ferric
iron via NADH generation when using ferric citrate as
the electron acceptor by E. coli, and the whole process
can be achieved without any membrane electron transport
carriers (Emde et al., 1989). Meanwhile, an analysis of
the theory revealed that the intracellular reducing power
(NADH) could be enhanced through biological electrolytic
synthesis, and the increased concentration of NADH
could affect the intracellular reducing and energy reaction
(Pandit and Mahadevan, 2011).

Reversely, the efflux of electrons from the anode chamber
may create a relative oxidizing intracellular environment. In an
MFC system with Lactococcus lactis, homolactic fermentation
switched to mixed acid fermentation to keep the balance of
intracellular reducing power along with the electricity power
output (Freguia et al., 2009).

The Applications of Bioelectrochemical
Systems
Based on the effects of bioelectrochemical systems in microbial
metabolism, diverse microbial electrochemical technologies were
mainly applied to the production of valuable compounds and the
generation of power (Fan et al., 2018).

Microbial electrosynthesis is a novel hybrid of biobased
and electrochemical approaches to utilize microbial cells to
convert dissolved CO2 into value-added organic compounds,
such as CH4 production with Methanococcus maripaludis

through a self-secreted compounds to promote CO2 reduction
(Deutzmann et al., 2015), and acetate production with
Sporomusa ovata using a novel cathode to facilitate direct
delivery of CO2 to microbes (Bian et al., 2018).

Electro-fermentation (EF) also uses electrochemistry to affect
microbial metabolism. The electron transfer in either anodic EF
or cathodic EF can regulate the ORP and the NAD+/NADH
ratio and then affect the intracellular metabolism (Moscoviz et al.,
2016). Recently, an anodic electro-fermentation was carried out
using Corynebacterium glutamicum to produce L-lysine, and the
results showed that adoption of anodic electro-fermentation can
balance the redox and energy states of C. glutamicum and thus
improve the anaerobic production of L-lysine (Vassilev et al.,
2018). Cathodic electro-fermentation was also performed for
simultaneous biogas upgrading and biochemical production, and
the highest biogas content [96% (v/v)] and acetate production
(358 mg/L) were achieved (Omar et al., 2018).

Photosynthetic MFCs that combined photosynthesis and
generation of electric energy, have also gained much attention
recently due to their more sustainable energy production
than that of non-photosynthetic MFCs (Pillot et al., 2019).
The microbes in photosynthetic MFCs usually contain certain
specialized light harvesting complexes that function as the units
of photosynthesis. These light harvesting units can sustainably
convert solar energy into chemical energy, which are then
utilized by traditional exoelectrogens to produce electric energy
(Rashid et al., 2019). The integration of photosynthesis with
MFC technology has opened several neoteric possibilities for
sustainable bioenergy generation.

FUTURE PROSPECTS AND
CONCLUSION

All types of microbial electrochemical technologies are based
on the energy interchange: chemical energy into electrical
energy (MFCs), electric energy into chemical energy (MECs)
and solar energy into electrical energy (Photosynthetic MFCs).
For all types of bioelectrochemical systems, energy conversion
efficiency is the key factor that determines bioelectrochemical
system performance, especially the energy conversion step in
which electrical energy is involved. Electron transfer plays an
important role in this step, which it is implied is a future
direction for METs research. The electron’s behavior, intracellular
reducing power and energy metabolism in bioelectrochemical
systems is of increasing concern in the context of precise
regulation of fermentation and degradation. Understanding the
mechanism of electron transfer via extracellular and intracellular
electron transfer chains would extend the future application of
bioelectrochemical systems.
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