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Ground reaction forces are often used by sport scientists and clinicians to analyze
the mechanical risk-factors of running related injuries or athletic performance during
a running analysis. An interesting ground reaction force-derived variable to track is
the maximal vertical instantaneous loading rate (VILR). This impact characteristic is
traditionally derived from a fixed force platform, but wearable inertial sensors nowadays
might approximate its magnitude while running outside the lab. The time-discrete
axial peak tibial acceleration (APTA) has been proposed as a good surrogate that
can be measured using wearable accelerometers in the field. This paper explores
the hypothesis that applying machine learning to time continuous data (generated
from bilateral tri-axial shin mounted accelerometers) would result in a more accurate
estimation of the VILR. Therefore, the purpose of this study was to evaluate the
performance of accelerometer-based predictions of the VILR with various machine
learning models trained on data of 93 rearfoot runners. A subject-dependent gradient
boosted regression trees (XGB) model provided the most accurate estimates (mean
absolute error: 5.39 ± 2.04 BW·s−1, mean absolute percentage error: 6.08%). A similar
subject-independent model had a mean absolute error of 12.41 ± 7.90 BW·s−1 (mean
absolute percentage error: 11.09%). All of our models had a stronger correlation with
the VILR than the APTA (p < 0.01), indicating that multiple 3D acceleration features in a
learning setting showed the highest accuracy in predicting the lab-based impact loading
compared to APTA.

Keywords: running biomechanics, impact loading, tibial shock, machine learning, wearable sensor, gait analysis

INTRODUCTION

Ground reaction forces are relevant parameters for running analysis (Pohl et al., 2009; Crowell
and Davis, 2011; Van Der Worp et al., 2016; Clark et al., 2017). They partially describe the center of
mass’ state of motion during running and are often used by sport scientists and clinicians to analyze
the mechanical risk-factors of running related injuries (Bredeweg et al., 2013; Napier et al., 2018)
and/or athletic performance (Preece et al., 2019).
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A commonly used ground reaction force-derived variable is
the maximal vertical instantaneous loading rate (VILR), which
is calculated as the maximal slope of the rising vertical ground
reaction force – time curve (Ueda et al., 2016). VILR has
been used to characterize the impact (i.e., high rate of force
development due to the rapid deceleration of all body segments
during the foot-ground collision) during running (Gerritsen
et al., 1995). This measure could discriminate groups of rearfoot
runners with a history of stress fractures (Van Der Worp et al.,
2016) and plantar fasciitis (Pohl et al., 2009). Consequently,
VILR has been considered clinically relevant and has been a
main outcome variable in gait retraining studies targeting runners
with high VILR (Crowell and Davis, 2011; Clansey et al., 2014;
Willy et al., 2016).

Ground reaction forces are traditionally measured using
fixed force platforms or instrumented treadmills (Ueda et al.,
2016). Unfortunately, measurements with force platforms are
laboratory-based and require both expensive equipment and
extensive post-processing. These factors limit the potential of
monitoring in-field running biomechanics, whereas wearable
inertial measurement units can accommodate this by predicting
running gait parameters outside the laboratory (Falbriard et al.,
2018; Wouda et al., 2018). In this respect, an ambulatory low-cost
accelerometer was proposed as a potential surrogate candidate
to estimate VILR when force platforms are not available (Ngoh
et al., 2018). Previous research has identified a moderate to
good correlation (range of rmean = 0.64–0.84) between the axial
peak tibial acceleration (APTA) captured by a skin-mounted
accelerometer at the tibia and VILR (Laughton et al., 2003; Pohl
et al., 2009; Greenhalgh et al., 2012; Zhang et al., 2016; Van
den Berghe et al., 2019). Therefore, using APTA as a surrogate
measure for VILR seems justifiable (Sheerin et al., 2019).

However, the APTA is based on a single, basic feature (i.e.,
the peak value) of the time-continuous 1D tibial acceleration
signal. Consequently, a large amount of data is neglected, which
may lead to missing important information. A combination of
multiple features of the 3D tibial acceleration signals, possibly
including complex and higher-order ones, may result in a
more accurate predictor of VILR than only considering APTA.
Hence, a performant computational model that extracts relevant
features and effectively copes with any non-linear relationships
(between the features of the tibial acceleration signals and
the target VILR) is desired. In that way, machine learning
techniques could help to analyze continuous time-series data
without pre-selecting discrete variables. Holzreiter and Köhle
(1993) introduced the use of neural networks to assess gait
patterns in locomotion biomechanics. Recently more advanced
machine learning techniques have been used to detect pathologic
gait-patterns (Williams et al., 2015; Zeng et al., 2016), fatigue
(Janssen et al., 2011; Op De Beéck et al., 2018) as well as classifying
gender, performance-level (Clermont et al., 2018) and age-related
running patterns (Fukuchi et al., 2011).

To gain a better understanding of the relationship between the
external load and potential injury risk in overground running,
a more accurate estimation of the athlete’s impact loading is an
essential methodological prerequisite. The screening of runners
on impact intensity could be more accurate by estimating

VILR by means of a machine-learned model instead of relying
on the APTA only. Consequently, this study proposes and
evaluates the performance (e.g., predictive accuracy, calculation
time, diagnostic ability) of an inertial sensor-based method to
estimate the runner’s VILR based on bilateral 3D shin-mounted
accelerometer data using a machine learning approach. It was
hypothesized that the incorporation of these extracted features
into a set of machine-learned models would result in stronger
predictive and diagnostic capacities than considering APTA only.

MATERIALS AND METHODS

Ethics Statement and Participants
Ninety three subjects engaged in recreational as well as
competitive running (55 men and 38 women) were recruited
from the local community. Runners were included if they were
free of running-related injuries and ran at least 15 km per week
(Table 1). All subjects signed an informed consent prior to the
testing. Approval for the study was obtained from the ethical
committee of the Ghent University Hospital (2015/0864).

Protocol and Setup
All runners were equipped with a backpack/tablet system
to measure the tibial accelerations (Van den Berghe et al.,
2019). Two tri-axial accelerometers (LIS331, Sparfkun, Colorado,
United States; 1000 Hz/axis), were as tight as tolerable strapped
with sports tape on the antero-medial side of both tibias, 8 cm
above the malleolus medialis (Laughton et al., 2003; Clansey
et al., 2014). The axis of each accelerometer was orientated in
a way that the vertical axis of the accelerometer coincided with
the longitudinal axis of the concerned tibia. The skin around
the lower leg was pre-stretched with sports tape to improve the
rigid coupling between the accelerometers and the tibia (Clansey
et al., 2014; Van den Berghe et al., 2019). Data collection took
place during two different projects, but with an exact same
measurement setup.

The first cohort consisted of 13 subjects who were asked to
run on a 30 m instrumented running track at multiple running
speeds (2.55 ms−1, 3.20 ms−1, 5.10 ms−1, and preferred running
speed). All subjects were habitual rearfoot strikers and were
provided with the same standardized neutral distance running
shoe (Li Ning Magne, ARHF041). The second cohort consisted
of 80 runners running at 3.20 m·s−1. Subjects were not pre-
selected on their habitual footstrike pattern and received no
verbal instruction about the desired footfall pattern. They wore

TABLE 1 | Characteristics of the subjects.

Men Women

Mean SD Mean SD

Age (Yrs.) 35.9 9.2 34.6 10.8

Body height (m) 1.79 0.07 1.67 0.06

Body mass (kg) 76.5 10.2 60.6 7.3

Training volume (km/week) 36.4 16.9 27.9 11.0
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FIGURE 1 | Data example, tri-axial.1pc accelerations (TA) were simultaneously captured for the left (blue) and right (red) lower leg, vertical ground reaction forces
(vGRF) were synchronized in time (black).

their regular training shoes. In both cohorts running speed was
controlled by timing gates. Recorded trials were discarded and the
runners received verbal feedback if their running speed was not
within a 0.2 m·s−1 of the targeted speed. Ground reaction forces
were measured at 1000 Hz by two built-in force platforms (2 and
1.2 m, AMTI, Watertown, MA, United States). Accelerometer
and force data were synchronized in time (Figure 1) by means
of an infrared impulse sent from the motion capture system. The
pulse was captured by an infrared sensor attached to the backpack
system. For a more detailed description of this synchronization
protocol we refer to Van den Berghe et al. (2019).

Data Processing
Example Construction and Data Preprocessing
Ground reaction force data were filtered using a zero-lag
second-order low-pass Butterworth filter with a cutoff frequency
of 60 Hz. VILR was calculated as the maximal value of
the first derivative of the vertical ground reaction force
component following initial contact (vertical ground reaction
forces exceeding a 5N threshold) (Ueda et al., 2016). This
was subsequently normalized to the subject’s body weight. The
acceleration signals were filtered in order to separate the linear
acceleration from the gravity component and remove high-
frequency noise using the approach of van Hees et al. (2013). The
filtering settings were selected using a tuning procedure where
2/3 of the data was used to train a model and 1/3 to evaluate
the model. First, to find a sensible range for the parameters,
a manual exploration was performed using Chebyshev (type I
and type II) and Butterworth filters with settings derived from
related research. Subsequently, a grid search of Butterworth
filters [(0.2, 1.0; step = 0.2)×(40.0, 70.0; step = 5)] was applied
to the acceleration signals and the filter which resulted in the
best performance on the evaluation set was selected, which

was a second-order band-pass filter with cutoff frequencies
of 0.8 and 45 Hz (Figure 2).

We extracted individual strides by splitting the collected
signals at the take-off events of the opposite feet. This guarantees
that each window contains the part of the acceleration signal
that is relevant for determining the VILR. Next, we mirrored the
data from the right and left leg, such that each of these strides
starts with the right leg making ground contact. This procedure
effectively doubled the amount of training data.

Each of the 93 subjects completed on average 16 trials (range:
6 to 67 trials), with each trial containing 2.67 strides on average.
In total, 23 trials were removed from the data set due to
clear errors in measured ground reaction forces and/or tibial
accelerations. This resulted in 4037 examples in total.

Feature Construction
A large set of features consisting of three broad categories
was considered: (1) auto-generated statistical features of the
3D acceleration waveforms, (2) trial-specific features, and
(3) subject-describing features (Figure 2).

Auto-generated statistical features
First, from the tri-axial filtered acceleration signals of both feet,
we extracted the window between the initial ground contact
event and the event where the vertical acceleration component
reaches 0 g. Next, we calculated a comprehensive set of time-
series features from these windows using the TsFresh Python
package (Christ et al., 2018). The extracted features include both
basic characteristics of the signals (e.g., mean, maximum, number
of peaks, timing of peak values) and more complex features (e.g.,
continuous wavelet coefficients, coefficients of an autoregressive
model, the time reversal symmetry statistic, Fourier coefficients).
We refer to the TsFresh paper (Christ et al., 2018) for a full
description and list of features.
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FIGURE 2 | Data preprocessing and feature engineering part of the machine learning pipeline. First, the raw acceleration signals were filtered using a Butterworth
bandpass filter. The optimal filter configuration was determined by training multiple models, using different filter configurations. The configuration which enabled the
most accurate predictions was used henceforth. Second, feature engineering was used to derive a lower-dimensional representation of the data. The generated
features were a combination of automatically generated statistical features and manually crafted domain-specific features. The set of automatically generated
features was reduced using a univariate feature selection technique.

The FRESH procedure (Christ et al., 2017) was used for
feature selection. First, this procedure evaluates the influence
of every feature on the target (VILR) using a univariate
test (i.e., Kendall rank test for real-valued features and
Kolmogorov-Smirnov for binary features) and computes the
p-value. So, it tests whether the feature and the target are
not statistically independent. Subsequently, the Benjamini-
Yekutieli procedure was carried out to control for the false
discovery rate. This procedure reduced the set of auto-generated
features to 1662.

Trial-specific features
Running speed, derived from timing gates (Van den Berghe
et al., 2019), and ground contact time, derived from tibial
accelerations, were included as trial-specific features for each
stride. Because the ground contact time cannot be inferred
directly from the tibial acceleration signals, we modeled this
as a separate prediction problem. Specifically, we solved the
related task of predicting the timings of the initial contact
and toe off gait events. The ground contact time can then be
inferred from the time difference between both events. Due to
the interrelations between both gait events (e.g., a toe off event
follows 160 to 350 ms after an initial contact event), we framed
this as a structured prediction task. In this framework, a function
between the acceleration profile and a sequence of initial contact
and toe off timings was learned. Specifically, a deep structured
recurrent neural network architecture was used. The neural
network component of the model used the raw acceleration
signals, the jerk (first order derivative of acceleration signals),
roll (arctan

(
ay · az

)
) and pitch (arctan

(
−ax

√
a2

y + a2
z

)
) of both

legs to infer the likelihood of a gait event happening for each

sample. Subsequently, the structured component consisted of a
constrained peak detection algorithm on the likelihood function
that finds the most likely combination of initial contact and toe off
timings. Both components were optimized jointly. For a detailed
description of this model, see Robberechts et al. (2019).

Subject-describing features
Third, the body weight and the shoe type were included.
The weight of each subject is a logical feature to consider
since the loading rate is expressed as a function of body
weight. Furthermore, earlier research has found that footwear
properties may affect VILR, even with similar foot-strike patterns
(Kulmala et al., 2018). When testing the second cohort (n = 80),
the subjects reported their shoe brand and type. The shoe’s
properties were verified through online databases (running shoes
guru, solereview, runner’s world, manufacturer’s website, etc.)
and subsequently categorized as being neutral, stabilization
or racing flats.

Learning Approach
We considered two different learning settings, each learned on
different subsets of the data (Figure 3):

Subject-independent model
This setting trained a model using the data from all runners
except for one. The model was then evaluated on the trials from
the one held-aside runner. That is, at training time the model
has no access to any data about the runner for whom predictions
will be made. As such, this setup estimates the model’s accuracy
when making predictions for new runners for whom there is
no available data, which is interesting in practice. Moreover, the
model remains valid if a runner adapts his running style.
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FIGURE 3 | Model selection, training and evaluation part of the machine learning pipeline. Two different learning settings were considered, differing in how the data
were split into training and test sets. In the subject-dependent setting, we trained a model on the data of one specific runner, including all trials except one.
Subsequently, the model was evaluated on the data of the one held-aside trial. In the subject-independent setting, we trained a model on the data of all runners
except for one and evaluated the model on all data of the one held-aside runner. This procedure was repeated for each trial and subject, such that we obtained
performance metrics for each fold. Last, the average MAE and R2 score per subject were reported.

Subject-dependent model
This setting trained a unique personalized model for each subject
using only data from that subject. This model would work well if
the relationship between the tibial acceleration and the VILR is
unique to each subject.

For both settings, we compared the performance of three
regression techniques: (1) Linear Regression with Elastic Net
regularization (EN), (2) Linear Regression with Least Absolute
Shrinkage and Selection Operator regularization (LASSO) and
(3) Gradient Boosted Regression Trees (XGB). We used the
implementations available in scikit-learn (Pedregosa et al., 2012)
for the first two models. For the third regression technique, we
used the XGBoost Python package (Chen and Guestrin, 2016).

All models were trained and evaluated in a leave-one-out
cross-validation analysis. The subject independent model was
iteratively trained on all but one of the subjects to be evaluated
on the remaining subject. Similarly, the subject-dependent model

is trained on all but one trial of the same subject to be evaluated
on the remaining trial. This procedure was repeated for all
possible subjects and trials, and the mean accuracy across all
folds is reported. As such, this procedure determines the average
performance of the models on a group level.

Model Evaluation and Statistical Analysis
The model’s accuracy was assessed using both the mean absolute
error (MAE) and the coefficient of determination (R2 score). The
MAE was calculated as the absolute difference between the force
platform based VILR and the machine learning predicted VILR.
It measures the average magnitude of the errors in the same unit
as the VILR and is therefore an easily interpretable measure for
the quality of a model. This metric is mainly useful to compare
across two models and for domain experts that have insight into
the range of VILR values and the magnitude of acceptable errors.
The R2 score was computed as R2

= 1 −
∑

i yi − fi∑
i yi − ȳ , where yi
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are the force plate based VILR values and fi are the machine
learning predicted values. It has the advantage of being scale-
free, thereby indicating how a model performs compared to a
constant baseline.

The number of trials completed by each runner varies
substantially. In order to avoid that one runner has an excessively
large influence on the accuracy of our models, we computed
the global MAE and R2 score in a two-step procedure. First,
the average MAE and R2 score were calculated over all
strides of that runner. Second, the global metrics were then
calculated as the average values of these metrics over all
runners that completed at least ten trials. This helps prevent
the results from being unduly influenced by a single trial or
a single runner.

Additionally, we considered two baseline models: a first
model that always predicts a runner’s average VILR for the
corresponding landing foot; and a second linear regression model
that only includes the APTA as a covariate.

Repeated measures analysis of variance (ANOVA) was used
to examine the effect of various learning settings and regression
techniques on the estimated VILR. Post hoc testing was conducted
using a Tuckey HSD test on the relative errors. Additionally,
Cohen’s drm effect sizes (Lakens, 2013) were computed for the
differences in MAE between each machine learning model and
the APTA baseline model. We refer to effect sizes as small
(d ≤ 0.2), medium (0.2 < d ≤ 0.8) and large (d > 0.8) as
suggested by Cohen (2013). Statistical analysis was done in
Python using the SciPy (ANOVA) and statsmodels (Tuckey HSD)
libraries, with the significance level set at p = 0.05.

To assess the diagnostic ability of each model, it was opted
to express the model accuracy in the proportion of correct
classifications of high impact runners at a common running
speed. Because a cut-off for high impact running at the speed of
3.2 m·s−1 was lacking, those runners with a mean VILR within
the highest 33% of our database were selected. The diagnostic
ability of the models was assessed by calculating their sensitivity
and specificity. Sensitivity is the proportion of runners who are
correctly categorized as having a high VILR among those who
truly have a high VILR. Similarly, specificity is the proportion
of runners who are correctly categorized as not having a high
VILR among all runners who truly do not have a high VILR.
The Receiver Operating Characteristic curves were constructed
to demonstrate the trade-off between both metrics using various
cut-off values for the predictions.

RESULTS

Predictive Performance of the Machine
Learning Models
Table 2 summarizes the predictive performance (MAE and R2

scores) of all learned models. In terms of regression techniques,
XGB consistently outperformed the other learners (p < 0.05; in
all but the subject-independent model with subject-describing
features setting). Therefore, the results of the XGB learner is
reported in the remainder of this section. The differences between
the different learning settings were all statistically significant

TABLE 2 | Mean absolute error (MAE) ±SD, coefficient of determination R2 scores
and effect sizes of MAE’s versus the axial peak tibial acceleration (APTA) baseline
for the estimation of the vertical instantaneous loading rate (VILR) by three different
regression models.

Model MAE [BW·s−1] R2 drm Effect size

Subject-independent (without subject-describing features)

APTA 21.07 ± 8.13 0.6027 /

LASSO 13.13 ± 8.79 0.7789 0.3576 Medium

EN 12.91 ± 7.73 0.7811 0.3749 Medium

XGB 12.71 ± 7.57 0.7397 0.4187 Medium

Subject-independent (with subject-describing features)

APTA 18.68 ± 8.44 0.6090 /

LASSO 12.75 ± 9.01 0.7682 0.3468 Medium

EN 12.48 ± 8.28 0.7713 0.3707 Medium

XGB 12.41 ± 7.90 0.7741 0.4061 Medium

Subject-dependent

APTA 7.39 ± 4.03 0.8500 /

LASSO 7.50 ± 3.45 0.8657 0.0168 Small

EN 7.36 ± 3.40 0.9124 0.0719 Small

XGB 5.39 ± 2.04 0.9461 0.2900 Medium

Linear Regression with Elastic Net regularization (EN), Linear Regression with
Least Absolute Shrinkage and Selection Operator regularization (LASSO), and
Gradient Boosted Regression Trees (XGB) in the subject-independent and subject-
dependent learning settings.

(p < 0.05). A subject-independent model without subject-
describing features resulted in the least accurate estimations
of VILR (MAE: 12.71 ± 7.57 BW·s−1; R2: 0.7397). Including
the subject’s weight and shoe type improved the subject-
independent model (MAE: 12.41 ± 7.90 BW·s−1; R2: 0.7741).
Training a unique model for each subject further improved the
predictions by a significant margin (MAE: 5.39 ± 2.04 BW·s−1;
R2: 0.9461; p < 0.01).

Predictive Performance of the Single
Metric Linear Regression Models
Table 3 shows the predictive performance of linear models
that include a single feature in the subject-independent model
learning setting. For comparison purposes was the predictive
performance of the subject-independent XGB model added as
well. Notwithstanding the moderate correlation between the
APTA and the VILR, 32 of the extracted features had a higher
predictive accuracy than the currently used proxy. Of these
32 features, the mean over the absolute differences between

TABLE 3 | Mean absolute error (MAE) ±SD and coefficient of determination R2

scores for the estimation of the VILR by linear regression models using a single
variable in the subject-independent model (SIM) learning setting.

Statistical model MAE R2

APTA 21.07 ± 8.13 0.60

Standard deviation on linear trend 18.06 ± 7.28 0.67

Mean over the absolute differences between
subsequent acceleration values

17.47 ± 7.98 0.71

SIM XGB model 12.41 ± 7.90 0.77
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subsequent values of the vertical acceleration signal had the
highest correlation with the VILR. A comprehensive overview of
all 32 features was made available (Supplementary Table A). The
previously discussed regression models that combine multiple
of these features still outperform these single-feature models
by a large margin.

Diagnostic Ability
The models’ ability to identify runners with a high VILR is shown
in Figure 4. With an area under the curve of 0.92, the subject-
independent model XGB had a stronger diagnostic ability than
the APTA which has an area under the curve of only 0.82.

Figure 5 shows cumulatively the percentage of predictions
for which the relative error is below a threshold. The subject-
independent model outperformed both baselines by a significant
margin. However, the predicted VILR has still an error larger than
25% for 12% of the samples in the test set. The subject-dependent
fails for only 3% of the examples.

Computing Time
The mean calculation time for each prediction was 142 ms
(2.3 GHz Intel Core i5), of which the majority (140 ms) is spent
on estimating the ground contact time. Meaning a prediction of
the VILR can be made within one foot contact (160 - 350 ms).

DISCUSSION

The overall aim of this study was to predict the VILR during
overground running by creating performant machine learning

FIGURE 4 | The Receiver Operating Characteristic curve reflects the ability of
the subject-independent model XGB (SIM) and APTA models to identify
runners with a high VILR. The sensitivity was plotted in function of the false
positive rate (1 – specificity). The subject-independent model XGB model had
a stronger diagnostic ability than the APTA.

models. Advanced signal processing was used to identify
time-discrete features of the 3D acceleration waveforms that
discriminate between subtle changes in running biomechanics.
Machine-learned models were subsequently built to estimate
the VILR and the performance (predictive accuracy, diagnostic
ability) of those models were compared to a traditional approach.
Two other machine learning techniques not discussed in this
study were attempted, but gave unsatisfactory results. First,
a data-driven deep recurrent neural network would require much
more data than available to learn the complex relations between
the tibial acceleration signals and VILR. Second, dynamic time
warping was used as a tool for gait-curve matching, incorrectly
assuming that runners with similar acceleration profiles have
a similar VILR. Moreover, the feature engineering approach is
preferable, since the learned models are interpretable (to a certain
extend) and have a much lower computational cost.

The findings point out that applying machine learning to
multiple 3D tibial acceleration features results in a more accurate
prediction of the VILR than the frequently used APTA, which is
a single time-discrete variable of tibial acceleration. Additionally,
this prediction can be made in real-time, because the data pre-
processing (i.e., filtering and feature construction) and prediction
requires less calculation time than the typical duration of a single
foot contact (∼250 ms).

Overall, the XGB models systematically outperformed the
other learners, suggesting that the XGB model can cope
more effectively with the large number of features or that
the relationship among the features and target are non-linear
(Hepp et al., 2016).

From a machine learning setting perspective, building
a subject-dependent model resulted in the most accurate
predictions compared to the subject-independent models. The
difference in predictive performance between the subject-
independent model and subject-dependent model may partially
be explained by the fact that all runners of the second cohort wore
their own habitual running footwear, which might influence the
measured impact loading. This assumption is further reinforced
by the fact that the performance of the subject-independent
model can be further improved by incorporating subject-
describing features (body weight and shoe type). However,
the phenotypical variability and choice of footwear can only
partly explain the differences in accuracy between a subject-
dependent and independent model. Although all runners ran in
a similar environment, the ranked order of variable importance
for predicting the VILR is unique for each runner in a
subject-dependent learned model. Moreover, we observed a large
asymmetry between the average VILR for most subject’s left and
right legs, suggesting that the subject-dependent models could
be further improved by building separate models for both legs.
However, in our study not mirroring the data resulted in a worse
predictive accuracy due to the limited amount of data available
for each subject.

The better predictive performance for a subject-dependent
model compared to a subject-independent model is in line
with previous findings described by Wouda et al. (2018) and
Ahamed et al. (2019). However, our subject-independent model
is more practical toward real-world applications. It is applicable
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FIGURE 5 | Cumulative percentage (y-axis) of predictions for which the relative error is below a threshold (x-axis). For example, a relative error of at most 20% on the
true VILR can be achieved for 97% of all predictions using the subject-dependent model (SDM), 83% of all strides using the subject-independent model (SIM), 66%
using the APTA and 65% by predicting a runner’s average max VILR for the corresponding landing foot (baseline model). The subject-independent model
outperformed the baseline and APTA by a significant margin. Similarly, the subject-dependent model outperformed all others, but is less applicable in practice.

to any runner, regardless of whether prior data is available about
the respective runner, which makes this approach generalizable
over different subjects. Supporting our hypothesis, the subject-
independent XGB model still outperformed the linear APTA
model in terms of prediction accuracy and diagnostic ability.

By incorporating multiple running speeds we were able to
create a machine learning algorithm that is capable of making
accurate predictions across a broad range of running speeds,
making it more usable in practice. As a consequence of this
design choice, we observe relatively high R2 scores for these
models in comparison with previous research that considered a
single running speed (Laughton et al., 2003; Pohl et al., 2009;
Greenhalgh et al., 2012; Zhang et al., 2016) due to the restricted
range effect (Bland and Altman, 2011): the inclusion of multiple
speeds increases the range of the maximal VILR and makes
it easier to see the global trend. However, this applies to all
models discussed here and therefore does not affect the inter-
model differences. For comparison, the evaluation metrics for all
models trained on exclusively the most frequent running speed of
3.2 m·s−1 are provided as Supplementary Table B.

The VILR was predicted accurately, using a broad range of
variables derived from filtered 3D accelerations. In order to
screen runners on their VILR at a common training speed of
3.2 m·s−1 (e.g., identifying runners with a high VILR, during
a simple overground running test without the need of an
expensive force plate) the classification of runners on impact
intensity is preferably done by estimating VILR by means of a
machine-learned model instead of relying on the APTA only.

Because VILR is the maximum increase in acceleration of the
lower extremity and of the rest of the body during stance
(Clark et al., 2017), the predictive accuracy may be further
improved by adding trunk acceleration to the accelerometer-
derived input data.

This study has several limitations. Firstly, we trained the
models only on habitual rearfoot strikers. Since machine learning
can only be used to memorize patterns that are present in
the training data, the trained models can only be applied to
other rearfoot strikers and our findings do not necessarily
generalize to other foot strike patterns. Secondly, all data
was recorded in a laboratory environment. Previous research
identified significant variations in APTA or contact time among
different running surfaces (Tessutti et al., 2012; Boey et al., 2017).
Hence, the findings should be transferred with caution to running
on other surfaces.

CONCLUSION

This study proposes an advanced method to predict VILR
during overground running by using only tri-axial shin mounted
accelerometers derived data and an XGB machine learning
approach. These algorithms, which incorporate time-continuous
variables, are able to predict the VILR more accurately than
currently possible using a time-discrete variable (e.g., APTA).
Since these algorithms do not require significant computational
power, they could be implemented on wearables worn by the
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runner in order to screen, monitor or provide biofeedback on the
predicted VILR whilst running overground.
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