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Lysine acetylation is a reversible post-translational modification (PTM) vastly employed in
many biological events, including regulating gene expression and dynamic transitions in
chromatin remodeling. We have developed the first one-pot bio-orthogonal flexizyme
system in which both acetyl-lysine (AcK) and non-hydrolysable thioacetyl-lysine
(ThioAcK) were site-specifically incorporated into human histone H3 and H4 at different
lysine positions in vitro, either individually or in pairs. In addition, the high accuracy of this
system moving toward one-pot synthesis of desired histone variants is also reported.

Keywords: genetic encoding, post-translational modifications, cell-free translation, flexizyme, acetyl-lysine,
histone

INTRODUCTION

Mononucleosomes, the fundamental repeating unit of chromatin, have successfully colonized
eukaryotic cells. Each mononucleosome consists of genomic DNA wrapped around an octamer
of four core histones (H2A, H2B, H3, and H4) (Luger et al., 1997; Chatterjee and Muir, 2010;
Liszczak et al., 2018). The core histones are decorated by several post-translational modifications
(PTMs) at their N-terminal tails. Core histones also have global effects on dynamic modulation
of chromatin structure and function. As a result, they are thought to have had a major effect
in the cellular gene expression program (Kouzarides, 2007; Huang et al., 2015). Over the years
numerous reports have been published on the histone acetylation sites and their contribution to
diverse biological processes. It is now widely accepted that lysine acetylation has broad regulatory
functions (Choudhary et al., 2009; Tan et al., 2011; Saredi et al., 2016; Chirichella et al., 2017).
The genetic code expansion strategy has been utilized to co-translationally incorporate individual
non-canonical amino acids (ncAAs) into histone proteins at specific lysine residue sites, which are
later subject to PTM studies (Liu and Schultz, 2010; Lang and Chin, 2014; Fan et al., 2015; Chin,
2017; Wang, 2017; Liu et al., 2018; Zhang et al., 2018; Oller-Salvia and Chin, 2019; Reille-Seroussi
et al,, 2019). It has been reported that the crosstalk between histone lysine acetylation and other
PTMs is momentous in chromatin-based control and in shaping inheritable epigenetic programs
(Suganuma and Workman, 2008; Zippo et al., 2009; Liu et al., 2014). Moreover, the simultaneous
incorporation of multiple distinct ncAAs of PTMs into one protein is desirable. As noted above,
for simultaneous site-specific incorporation of several ncAAs into proteins, the dual genetic code
expansion strategy has been applied to design two different stop codons or one stop codon together
with one four-base codon (Hoesl and Budisa, 2011; Rashidian et al., 2013; Zang et al., 2015; Luo
etal., 2016; Venkat et al., 2018; Wollschlaeger et al., 2018; Zheng et al., 2018).
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MATERIALS AND METHODS

Synthesis of the Compounds
AcK-DBE and ThioAcK-DBE were synthesized according to
published procedures (Xiong et al., 2016).

Construction of H3wt and H4wtand

Variants

The human H3wt and H4wt gene fragments were purchased
from Life Technologies and were expressed in Escherichia
coli. The plasmids pUC-H3wt and pUC-H4wt were derived
from the plasmid pUC-19 (Invitrogen). Four stop codon
mutations, H3K27(UAG), H4K16(UAG), H4K91(UGA),
H4K16(UAG)/K91(UGA) were introduced to the pUC-H3wt
and pUC-H4wt gene with the MutantBEST kit (TaKaRa).

U73A-tRNAS®P Preparation and

Purification

T7 RNA polymerase run-off transcription was prepared in vitro
as reported previously (Xiong et al, 2016). U73A-tRNA®P
gene together with the T7 promoter was amplified by PCR,
and the fragments were cloned to vector pUC19. The U73A-
tRNA®P transcript was purified by electrophoresis on denaturing
polyacrylamide gels and full-length tRNA extracted by 250 mM
NaOAc in 75% EtOH.

Aminoacylation Assay of U73A-tRNAS¢P
Aminoacylation of U73A-tRNA®P was achieved using a previous
description of the process (Xiong et al., 2016): 2 wL of 250 wM
U73A-tRNASP, 2 1L of 500 mM HEPES-KOH buffer (pH 7.2),
2 pL of 250 wM dFx, and 6 wL of nuclease free HyO were
mixed well, and heated at 95°C for 3 min, then the reaction
mixture was slowly cooled at room temperature for more than
5 min. A 2 pL of 3 M MgCl, was added into the above mixture,
and then incubated at room temperature for 5 min followed
by incubation on ice for 3 min. To start the acylation reaction,
4 L of 25 mM of acid substrate in DMSO was added, and the
mixture was incubated on ice for 6 hr. To stop the reaction, 40 WL
of 0.6 M sodium acetate was added, and followed by 200 pnL
ethanol for precipitation. Centrifuge the samples at 14,000 rpm
for 15 min at 25°C. 70% ethanol containing 0.1 M NaCl was
used to rinse the pellet twice, and the pellet was dissolved in
10 pL of 10 mM sodium acetate. A 1 L of this solution was
mixed with 1 pL of acid PAGE loading buffer [contained 150 mM
sodium acetate (pH 5.2)], and analyzed by 12% denaturing PAGE
[contained 50 mM sodium acetate (pH 5.2)]. TBE buffer that
contained 0.1 M sodium acetate was used as running buffer. After
electrophoresis, the gel was washed with 50 mL of 1 x TBE by
gently shaking for 10 min. Further, the gel was stained with 20 mL
of ethidium bromide gel-staining solution by gently shaking for
10 min, washed briefly with 50 mL of RNase-free water and with
50 mL of 1 x TBE by gently shaking for 5 min. Finally, the gel
image was scanned by using a fluorescence imaging system. To
determine the yield of acylation, the bands were quantified by
corresponding to free and acylated tRNA.

Incorporations of AcK and/or ThioAcK
on Specific-Site of Human Histone H3 or
H4 by Using Cell-Free Translation

To carry out protein modification, a cell-free protein synthesis
of non-canonical amino acids were used with the PURExpress®
ARF123 Kit (E6850, BioLabs Inc.). According to the manual,
2 wL DNA template (150 ng/pL) and 1 pL acylated tRNA were
made up to 25 uL volume. Then, the mixture was incubated at
37°C for 4 hr, stopping the reaction by cooling. The products
were stored at —20°C until use (Murakami et al., 2006; Goto et al.,
2011; Xiong et al., 2016).

Western Blotting Assay

Anti-acetyl histone H3K27, H4K16, and H4K91 antibodies
(Abcam, ab4729, ab109463, ab4627) are special site-selective
for the acetylated histone modifications, and they can be
performed to distinguish some acetylated histone variants and
non-acetylated histone proteins such as commercial histone H3
and commercial histone H4.

HPLC-MS/MS of Demonstrated the
Incorporation of ThioAcKand/orAcK in

Histone H3 and H4

The Coomassie blue stained SDS-gel that contained histone H3
and H4 variants were digested and analyzed by LC-MS/MS
analyses on Q Exactive (Thermo Fisher) and Easy-nLC 1000

(Thermo Fisher).
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FIGURE 1 | (A) Structure of acetyl-lysine 3,5-dinitrobenzyl ester (AcK-DBE)
and thioacetyl-lysine 3,5-dinitrobenzyl ester (ThioAcK-DBE). (B) Western Blots
of single or dual ncAAs (AcK, ThioAcK) residues into H4 variants
(H4K16_ThioAck/H4K91_AcK) with site-specific anti-acetyl histone antibodies
(Abcam, ab109463, ab4627). 10 pL of the corresponding PURE reaction
solution was loaded into each lane.
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RESULTS AND DISCUSSION

By taking advantage of the bio-orthogonal Flexizyme
system (Murakami et al, 2006; Terasaka et al, 2014), we
previously developed a novel approach for the dual site-specific
incorporation of acetyl-lysine (AcK) and non-hydrolysable
thioacetyl-lysine (ThioAcK) at different lysine positions into
the full-length histone H3 in vitro (Xiong et al., 2016). With
our experience and as a part of our ongoing research program,
we expanded this strategy to site-specific one-pot synthesis of
two histones (H3 and H4) for simultaneous incorporation of
AcK and ThioAcK at different lysine positions in vitro, either
individually or in pairs. To generate full-length H3 and H4
histones containing the AcK and non-deacylatable ThioAcK, we
used dinitro-flexizyme (dFx) to acetylate transfer RNA (tRNA)
with the 3,5-dinitrobenzyl esters of N°-acetyl-lysine (AcK-DBE)
and N°®-thioacetyl-lysine (ThioAcK-DBE, Figure 1A). We
also demonstrated their utility in accurate one-pot synthesis
of two desired histones through the Western Blot assay and
Tandem-mass spectrometry (MS). Further, the results reveal
that the significant challenge of homogeneously generating two

proteins modified with different ncAAs at multiple specific sites
with high over-expression in one bio-translation system is solved
through this method.

Acetylation of histone H4 at lysine 16 (H4K16AcK) is an
important PTM for regulating gene activation and silencing
(Shogren-Knaak et al., 2006; Williams et al., 2009; Zippo et al.,
2009; Bai et al., 2018). However, H3K27ac differentiates active
enhancers from poised enhancer elements that contain H3K4mel
alone (Creyghton et al., 2010). Two targets histone H4K16/K91
and H3K27 were selected since the residue sites located on
the N-terminal tail are accessible to chromatin when assembled
into nucleosomes. To further investigate the incorporation
of ThioAcK and AcK modifications in H4 histone proteins,
we directed ThioAcK or AcK to positions K16 or K91 in
the human histone H4 by UAG or UGA suppression with
a dinitro-Flexizyme (dFx) aminoacylated U73A-tRNASEP 5
or U73A-tRNASP(, anticodon in the PURExpress (NEB)
in vitro translation system. Upon incorporation with site-
specific anti-histone H4K16ac and H4K91ac antibodies (Abcam
ab109463, ab4627), we observed high efficiency of incorporation
of ThioAcK or AcK at K16_ThioAcK (UAG) or K91_AcK(UGA),
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FIGURE 2 | Western Blots of single or multiple ncAAs residues into H3K27_ThioAcK variant on H3 with anti-acetyl histone H3K27AcK antibody, or variants
(H4K16_ThioAcK, H4K91_AcK or H4K16_ThioAcK/H4K91_AcK) on H4 with anti-acetyl histone H4K16AcK and H4K91AcK antibodies. 10 L of the corresponding
PURE reaction solution was loaded into each lane. Lane 1: commercial histone H3 or H4 (10 pg) as antibody control.
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respectively (Figures 1B, 2, lane 3 and lane 4). At the same time,
we also directed ThioAcK to position K27 in the human histone
H3 by UAG suppression with the dFx system. Incorporation
with a site-specific anti- histone H3K27ac antibody (Abcam
ab4729) detected a high efficiency of incorporation of ThioAcK
at K27_ThioAcK (UAG) (Figure 2, lane 2). An independent set of
experiments revealed that the incorporation of ThioAcK and AcK
in histones H4 or H3 at different positions has strong affinities for
AcK-specific antibodies.

After successful incorporation of ThioAcK or AcK into full-
length H4 or H3, we had chosen K16/K91 in histone H4 to

incorporate ThioAcK and AcK simultaneously by a combination
of UAG and UGA codon suppression. The PUREPRESS system
which lacks release factor 1 and 2 (PURE ARFI, 2) was used
to synthesize the full-length H4 with two different modification
sites. Due to the length limit of the DNA fragment, the protein
expression could be terminated naturally. The incorporation of
ThioAcK and AcK at position K16 [H4K16_ThioAcK (UAG)]
and K91 [H4K91_AcK (UGA)] was confirmed by site-specific
anti-histone H4K16AcK and H4K91AcK antibodies (Abcam).
Experimental results showed that ThioAcK incorporation in
histone H4K16 and AcK incorporation in histone H4K91 have
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FIGURE 3 | One-pot incorporation multiple ThioAcK and AcK residues into histone H3 and H4 variants (H3K27_ThioAcK and H4K16_ThioAcK/K91_AcK).
(A) Western Blots of multiple PTMs on H3 and H4 with the site-specifically anti-acky! histone antibodies (H3K27, H4K16 and H4K91). 10 pL of the corresponding
PURE reaction solution was loaded. Lane 1: commercial protein marker as ladder. (B) MS/MS spectra of tryptic peptideK (ThioAcK) SAPSTGGV digestion for
H3K27_ThioAcK at the site of K27. (C) MS/MS spectra of tryptic peptides GKGGAK (ThioAcK) R digestion at K16 of the K16 ThioAcK and (D) ALK(AcK)RQGRTL
digestion at K91 of the K91AcK.
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strong affinities for AcK-specific antibodies (Supplementary
Figure S1). Furthermore, we found that a high efficiency of dual
genetic incorporation of ThioAcK and AcK is the same as that of
a single ncAA incorporation.

Inspired by the one-pot synthesis of chemicals, we attempted
to generate two full-length histones H3 and H4 in the same
PURExpress system. We incorporated ThioAcK and AcK
in histone H3 at position K27 [H3K27_ThioAcK (UAG)]
and histone H4 at positions K16/K91 [H4K16_ThioAcK
(UAG)/K91_AcK (UGA)] by UAG and UGA suppression with
the PUREPRESS system lacking release factor 1 and 2. Western
Blots showed observable signals in nearly all the histone H3
and H4 modifications. For the site-specific anti-acyl histone
antibodies (H3K27, H4K16, and H4K91), three identical one-
pot experiments were performed on the above three antibodies,
respectively. Lane 5 showed the same efficiency of ThioAcK
and AcK incorporation by one-pot synthesis compared to lanes
2-4 (Figure 2).

Western Blot was also used widely to evaluate the semi-
quantitative concentrations of specific proteins. Three above
histone antibodies, in turn, were performed on the one-pot
system, and a commercial protein marker was used as a ladder
(Figure 3A). The protocol is listed in detail in the supporting
information. Western Blots were carried out on 15% SDS-
PAGE gels loaded with 5 pg of a commercial H3K27AcK as
a standard (Lane 2, Figure 3A) and 10 pL of total histone
H3 and H4 modifications products (Lane 3, Figure 3A). The
quantity of target H3 and H4 variants (H3K27_ThioAcK,
H4K16_ThioAcK/H4K91_AcK) prepared by one-pot synthesis
was calculated and analyzed using ImageJ2 software. The relative
band intensity of H3 and H4 variants were 4.60 and 1.69 folds
of the commercial H3K27AcK, respectively. Based on the loading
of 5 pg commercial H3K27AcK, the yields for our experiment
is about 2.298 mg/mL for the H3 variant and 0.845 mg/mL
for the H4 variant. The mechanistic experiments showed that
AcK incorporation in H3 at the position K27 has a stronger
affinity for AcK-specific antibodies than the ThioAcK and AcK
incorporation in H4 at the positions K16/K91 (Figure 3A).

As shown in Figure 3, a variety of multiple histone
variants (H3K27_ThioAcK, H4K16_ThioAcK/H4K91_AcK) was
prepared efficiently by one-pot synthesis. MS/MS analysis also
showed the correct mass spectra for the three digested peptides
(Figures 3B-D). MS/MS fragmentation of three peptides from
enzymolysis assigned the K (ThioAcK) SAPSTGGYV digestion for
H3K27_ThioAcK at the position of K27 [Mobs = 235.2032 Da;
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