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Enhancement of activity is one major topic related to the aging society. Therefore, it is

necessary to understand people’s motion and identify possible risk factors during activity.

Technology can be used to monitor motion patterns during daily life. Especially the

use of artificial intelligence combined with wearable sensors can simplify measurement

systems and might at some point replace the standard motion capturing using optical

measurement technologies. Therefore, this study aims to analyze the estimation of 3D

joint angles and joint moments of the lower limbs based on IMU data using a feedforward

neural network. The dataset summarizes optical motion capture data of former studies

and additional newly collected IMU data. Based on the optical data, the acceleration and

angular rate of inertial sensors was simulated. The data was augmented by simulating

different sensor positions and orientations. In this study, gait analysis was undertakenwith

30 participants using a conventional motion capture set-up based on an optoelectronic

system and force plates in parallel with a custom IMU system consisting of five sensors.

A mean correlation coefficient of 0.85 for the joint angles and 0.95 for the joint moments

was achieved. The RMSE for the joint angle prediction was smaller than 4.8◦ and the

nRMSE for the joint moment prediction was below 13.0%. Especially in the sagittal

motion plane good results could be achieved. As the measured dataset is rather small,

data was synthesized to complement the measured data. The enlargement of the

dataset improved the prediction of the joint angles. While size did not affect the joint

moment prediction, the addition of noise to the dataset resulted in an improved prediction

accuracy. This indicates that research on appropriate augmentation techniques for

biomechanical data is useful to further improve machine learning applications.

Keywords: machine learning, artificial neural networks, wearable sensors, inertial sensors, motion analysis, data

simulation
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1. INTRODUCTION

Motion analysis, especially gait, in real-world environments gains
more and more relevance in today’s society. Since people are
aging and want to retain their mobility, it is important to early
detect abnormal gait patterns in order to prevent them from
falling. To achieve this, the improvement of ambulatory motion
analysis systems is relevant (Mundt et al., 2019a). Systems that are
capable of determining motion kinematics and kinetics without
expensive equipment and with less expert knowledge required
will drastically increase the availability of motion analysis to
a wider range of people. By providing wearable easy-to-use
systems in daily life, risky motion patterns (e.g., in gait) might be
identified before a major injury occurs or the onset of gait related
diseases (Kobsar and Ferber, 2018; Majumder et al., 2019).

Gait is one of the main tasks of mobility. Baker et al. (2016)
established four reasons for gait analysis: to diagnose a disease
or injury, to assess the severity of a disease or injury, to monitor
the progress of a disease or injury and to predict the outcome of
an intervention. In all cases, long term or frequent monitoring
of a person during daily life is desirable, thus allowing to
identify any progression of a disease. To bring motion analysis
into daily life, wearable sensors—especially inertial measurement
units (IMUs)—have become increasingly popular (Caldas et al.,
2017; Jarchi et al., 2018).

To extract joint angles from IMU data, the orientation of
each sensor in a global reference system needs to be determined
and a sensor-to-segment alignment performed. Themost popular
sensor fusion techniques for IMU-based motion analysis systems
are (extended) Kalman filters or complementary filters (Gui
et al., 2015). These filters fuse the signals of each single sensor
of the IMU to determine its orientation. Either the data of
the accelerometer and gyroscope only (Gui et al., 2015) or
additionally the magnetometer data is used to identify the sensor
orientation in a global reference system (Sabatini, 2006). The
use of a magnetometer for the estimation of sensor orientation
can be seen as a major limitation because magnetometers are
highly susceptible to local disturbances in the magnetic field
(de Vries et al., 2009; Teufl et al., 2018). Different attempts
have been made either correcting magnetic disturbances or
omitting the use of magnetometers at all (Ligorio and Sabatini,
2016; Teufl et al., 2018). However, another major issue of the
commonly used approach is the (mal-)alignment of the sensor
axes to physiological meaningful segment and rotation axes that
define the anatomical model (Picerno, 2017; Robert-Lachaine
et al., 2017; Mundt et al., 2019d). Several approaches have been
suggested to overcome this problem: calibration postures or
movements (Favre et al., 2009; Ferrari et al., 2010; Palermo
et al., 2014), anatomical calibrations (Picerno et al., 2008;
Bisi et al., 2015), post-trial calibration procedures (Hamacher
et al., 2014; Li and Zhang, 2014) and more recently machine
learning approaches (Zimmermann et al., 2018). While the use
of calibration postures and movements will always be prone to
errors because they are dependent on the execution of the subject
(Seel et al., 2014; Picerno, 2017; Robert-Lachaine et al., 2017),
the post-trial alignment prohibits fast data analysis. Therefore,
the use of machine learning algorithms or the exploitation

of kinematic constraints seems to be most promising. The
most recent advancements of the kinematic-constraint-based
approaches (Laidig et al., 2017, 2019; Müller et al., 2017; Nowka
et al., 2019) have not been evaluated on gait analysis. Seel et al.
(2014) evaluated the knee and ankle joint sagittal plane angle
achieving deviations to the gold standard of less then 1◦. Machine
learning approaches have been undertaken by Findlow et al.
(2008), Goulermas et al. (2008) achieving a mean correlation of
about 0.70 for the sagittal plane joint angles. In recent work, we
predicted joint angles based on simulated IMU data during gait
achieving an accuracy higher than 0.86 (Mundt et al., 2019c).

Different approaches to determine the ground reaction force
have been suggested and were systematically reviewed recently
(Shahabpoor and Pavic, 2017). They concluded that the use of
kinematic data as inputs reveals the highest practicality although
showing lower accuracy than force plates. Additionally, the
authors noted the limited validation of these methods for long-
term measurements in real-life environment. This indicates that
further research in this direction is useful, and if the aim is the
evaluation of joint moments, a direct approach to determine
these quantities might be advantageous. Different research has
been undertaken in this direction, but less frequently. Ardestani
et al. (2014) used a wavelet neural network to predict the 3D hip
joint moments, the sagittal knee joint moment and the plantar
flexion and eversion moment of the ankle joint during gait
using GRF and EMG data as inputs. They reported normalized
root-mean-squared errors of <20% and correlation coefficients
ranging from 0.84 to 0.96. Johnson et al. (2018, 2019) used
pre-trained convolutional neural networks for the prediction of
the GRF and the knee joint moment during walking, running
and sidestepping based on marker trajectories. They achieved a
mean correlation higher than 0.85 for the knee joint moments
and GRF. Analyzing normal gait, Hahn and O’Keefe (2008)
estimated the sagittal plane lower limb joint moments based
on demographic, anthropometric, kinematic, and EMG data.
They achieved a coefficient of determination higher than 0.88,
but they did not split their test set subject-wise, hence, data
from subjects in the test set was also present in the training
set. This leads to an improved accuracy (Saeb et al., 2017).
Wouda et al. (2018) used inertial sensor data to determine the
vertical GRF and the sagittal knee kinematics. For the joint angle
prediction the correlation coefficient was larger than 0.83, and
for the GRF larger than 0.90. In previous work, we used either
marker trajectories or joint angles and the GRF as input data to
predict all joint moments of the lower limbs during side stepping
achieving a mean correlation higher than 0.86 (Mundt et al.,
2019b). In a recent study, we used simulated IMU data to predict
the joint moments during gait achieving a similar accuracy
(Mundt et al., 2019c).

Despite the already good results, machine learning approaches
have one important requirement: large datasets. These are -
due to the novelty of the system - not openly available from
IMU sensors. To overcome the lack of a large amount of data,
their synthesizing is one reasonable solution (Young et al., 2011;
Brunner et al., 2015; Zimmermann et al., 2018; Mundt et al.,
2019c). Young et al. (2011) was the first who simulated IMU
data from existing optical motion capture data to enlarge a
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dataset for pose estimation. This approach was taken a step
further and validated by Brunner et al. (2015) and Zimmermann
et al. (2018). In previous work, we simulated IMU data from
optical data as well, but only validated the simulation based
on a single participant (Mundt et al., 2019c). In this study,
the validation of the simulation is continued and IMU data
that was simulated based on optoelectronic data as well as
measured IMU data is used as input parameters to train fully-
connected feedforward neural networks. To be independent
of a homogeneous magnetic field, the magnetometer data is
not considered as input but the 3D angular rates and linear
accelerations only. Themajor advantages of the proposedmethod
are that the anatomical model is implicitly learned, hence no
calibration postures or movements are necessary, and that joint
kinematics and kinetics can be determined.We aim to predict the
joint angles and joint moments of the lower limbs during gait and
hypothesize that the use of combined simulated and measured
data will achieve a higher accuracy than the use of measured
data only. Furthermore, we hypothesize that the additional
noise in measured data caused by soft tissue movements will
decrease the prediction accuracy. We aim to provide a first step
into the direction of in-field gait analysis based on IMUs and
artificial intelligence.

2. MATERIALS AND METHODS

An overview on the workflow of the proposed methodology is
given in Figure 1.

2.1. Gold Standard Approach
All data used in this study was collected at the German
Sport University Cologne. The studies were approved by the
Ethical Committee of the German Sport University Cologne and
all participants provided their informed written consent. The
motion was recorded using an optoelectronic motion capture
system (VICONTM, MX F40, Oxford, UK, 100–125 Hz) and two
force plates (Kistler Instrumente AG, Winterthur, Switzerland,
1,000 Hz). In all studies, the participants were equipped with
28 reflecting markers that were attached to bony landmarks as
depicted in detail in Mundt et al. (2019d) to create a rigid body
model of the lower limbs. The marker trajectories and GRF
were filtered using a zero-lag second-order low-pass Butterworth
filter with a cut-off frequency of 6 Hz (Robertson et al., 2013)
prior to calculating the joint angles and joint moments of
the lower limbs with an anatomical landmark scaled model
(Lund et al., 2015) using the AnyBody Modeling SystemTM

(Version 6.0, AnyBody Technology, Aalborg, Denmark). First,
the kinematics are calculated using an overdetermined kinematic
solver to optimize the markers using a least-squares approach.
Afterwards, the models joint parameters are fitted to the subject-
specific parameters before calculating the kinetics. All data
was segmented into consistent sequences of 101 frames. For
the kinematic data, full gait cycles were extracted based on
an implementation of the foot contact algorithm proposed by
Maiwald et al. (2009). For the joint moments a threshold-based
segmentation of the stance phase was applied based on the force

plate data. The joint moments were normalized to body height
and weight of the participant.

2.2. Machine Learning Method
2.2.1. Data Simulation
To derive the simulated IMU data, first, the anatomical
coordinate systems of the biomechanical model need to be set
up, because these coordinate systems are translated and rotated
to match possible sensor positions before the derivatives are
calculated to display the acceleration and angular rate.

The joint origins and segment coordinate systems of the
hip, knee and ankle joint are calculated based on the marker
trajectories. The marker set is displayed in Figure 2. The joint
centers for pelvis and ankles are based on the recommendations
of the International Society of Biomechanics (ISB) (Wu et al.,
2002). The hip joint center is defined as per (Harrington et al.,
2007). The definition of the knee joint center is based on Pennock
and Clark (1990). After this step, five coordinate systems, one for
the pelvis, two for the thighs and shanks, respectively, are set up.
For ease of calculation, the coordinate systems are transformed
to quaternions (Solà, 2017), denoted by qseg . For this purpose,
the Hamilton convention is used:

i2 = −1, j2 = −1, k2 = −1 and ijk = −1 (1)

with i, j and k displaying the imaginary units of the quaternion.
Any quaternion Q can thus be defined as:

Q = q0 + iq1 + jq2 + kq3, (2)

with q0 being the scalar part of the quaternion and iq1+ jq2+kq3
being the vector part. The quaternion can be interpreted as vector
q in R

4, which is defined as:

q =

(

cos(θ)
u sin(θ)

)

, ‖u‖ = 1, (3)

where u = uxi+uyj+uzk is a unit vector describing the rotation
axis and θ is a scalar describing the rotation angle.

In the following step, the anatomical coordinate systems are
translated and rotated to match possible initial sensor positions
and orientations. The rotation between the segment and sensor
orientation can be described by qφ . The quaternion describing
the orientation of the sensor in global space is calculated by:

qsensor = qseg ⊗ qφ , (4)

with qsensor describing the sensor orientation, qseg describing the
segment coordinate systems orientation in a global reference
frame and qφ describing the global quaternion rotation. The
translation x of the segment coordinate system to the sensor
position x̂ is performed by:

x̂ = x0 + (qseg ⊗ x⊗ q∗seg), (5)
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FIGURE 1 | Overview of the methods applied. To get the ground truth information on the joint angles and joint moments of the lower limbs, the gold standard

approach using an optical motion capture system and force plates to collect the data is used. Based on this data, inverse dynamics simulations are undertaken to

calculate the joint angles and joint moments. Using the proposed ML method, inertial data (angular rate ω and acceleration a) is simulated from the optical data and

used as inputs for an artificial neural network. Based on the ground truth joint angles and moments, the network learns the connection between the input and output

data. The method is validated using an IMU system based on five sensors that are placed consistently with the simulated data.

with x and x̂ being pure quaternions, with their components
x0 and x̂0 = 0 yielding the sensor position in a global
reference system and q∗seg denoting the conjugate of
qseg . The original position, the joint center, is defined
by x0.

In the following step, the angular velocity ω of each sensor
can be calculated as the numerical quaternion derivative
of the sensor orientation qsensor . For ease of readability,
the subscript is omitted in the following. All quaternions
q display the sensor’s orientation. For two consecutive

orientations qk and qk+1, the local rotation 1ql of each
sensor reads:

1ql = q∗k ⊗ qk+1, (6)

which leads to:

ω =
2

1t

1qlv

‖1qlv‖
arctan(‖1qlv‖,1ql0). (7)
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FIGURE 2 | Marker set and sensor placement. The markers in the front are

displayed in red, the ones at the back are displayed in blue. The green boxes

display the IMU sensors.

The subscripts v and 0 refer to the vector and the scalar part
of the quaternion respectively. For further information on the
derivation, see Solà (2017).

The linear acceleration of each sensor is calculated as the
second derivative of the origin of the segment coordinate systems.
This is achieved by reformulating a Taylor series expansion
around xk with k = 2, ..., n−1 with n being the last time step. For
x1 and xn the one-sided forward and backward differences need
to be used respectively. The approximation can be improved for
x2 to xn−1 by applying the central differences scheme (Atkinson
and Han, 2005). In summary, this yields the following equations
for the velocities:

v1 =
x2 − x1

1t
, vk =

xk+1 − xk−1

21t
, vn =

xn − xn−1

1t
.

(8)
The same procedure can be applied again to derive the second
order differentiation for ak. Analogously to vk, the same
restrictions hold for the first and last time steps. Thus, the finite
difference approximations of the accelerations are:

a1 =
x3 − 2x2 + x1

1t2
, ak =

xk+1 − 2xk + xk−1

1t2
,

an =
xn − 2xn−1 − xn−2

1t2
. (9)

To transform the numerical derivatives into the actual sensor
readings the different signs of gravity and motion need to be
considered to define the acceleration of the sensor in the global
reference system ag :

ag = −a+ g. (10)

The different signs are caused by the working principle of
accelerometers that are used in inertial measurement units.
Accelerometers are based on the inertial force of a small mass
acting upon a piezoelectric element (Elwenspoek and Wiegerink,
2001). Thus, the gravitational acceleration directly translates to
the sensor reading while the acceleration of the sensor origin
results in an inertial force in the opposite direction of the
segment acceleration. This means that the sign of a needs to be
inverted while the sign of g remains unchanged. To describe
the sensor readings in its local coordinate system the following
transformation is necessary:

al = q∗sensor ⊗ ag ⊗ qsensor , (11)

with al displaying the linear acceleration of a sensor. The
acceleration ag and al are pure quaternions, with their
components ag0 and al0 = 0.

As the sensor is assumed to be a rigid body, its local position
and orientation can be exactly described by six degrees of
freedom, three translations and three rotations, described by the
translation vector x (see Equation 5) and the rotation vector qφ

(see Equation 4). In order to optimize these quantities, a vector
z = [x1, x2, x3, qφ1, qφ2, qφ3] is defined. We fit the values using
the following objective function:

2(z) =

Nt
∑

nt=1

(ω(m)
nt

− ω
(s)
nt
(z))T(ω(m)

nt
− ω

(s)
nt
(z))

+

Nt
∑

nt=1

(a(m)
nt

− a(s)nt (z))
T(a(m)

nt
− a(s)nt (z)), (12)

subject to,

xmin ≤ xi ≤ xmax, i = 1, 2, 3 (13)

0 ≤ φi ≤
π

2
, i = 1, 2, 3. (14)

In this formulation, ω
(m)
nt and ω

(s)
nt (z) denote the angular rates

in the three dimensional space. The superscripts (m) and (s)
describe the measured and simulated values. Equivalently,

a
(m)
nt and a

(s)
nt (z) denote the acceleration in three dimensions.

We additionally defined the minimum and maximum allowed
deviation of the positions xmin and xmax to be ±50 mm as
well as the maximum allowed orientation deviation π

2 . The
constrained optimization problem was solved using the interior-
point algorithm (Byrd et al., 1999), which is implemented in
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MATLAB. The defined constraints do not allow for an arbitrary
sensor positioning but for a compensation for positioning and
orientation errors in the range specified by the constraints.
For this purpose, the sensor-to-segment-assignment needs to
be consistent.

2.2.2. Neural Network Implementation
The python library Tensorflow (Abadi et al., 2015) was used
to implement a fully-connected feedforward neural network
(Koeppe et al., 2019). Artificial neural networks work as universal
function approximators. Instead of explicitly programming the
solution of one specific task, they learn from existing (big) data.
Artificial neural networks have been inspired by the structure
of the human brain, consisting of single neurons that add up
to layers to increase the capacity of the network. Using multiple
(hidden) layers with a specified number of neurons, the capacity
of the network can be adapted (Mundt et al., 2019c). Fully-
connected neural networks need time-normalized data as inputs,
hence, only an offline analysis can be performed.

Different networks were trained for the prediction of joint
kinematics and the joint kinetics based on different datasets. The
first one is a collection of optical motion capture data of gait trials
previously collected at the German Sport University Cologne.
The dataset comprised 93 participants (38 female, 39.9 (18–75)
years, 72.6 (47.1–97.6) kg, 1.73 (1.54–1.98) m, BMI 24.3 (17.5–
31.6) kg m−2). A number of 24 participants underwent knee
arthroplasty 1.8 ± 0.4 years post-surgery prior to gait analysis
(Komnik et al., 2015). The optical data collected in this study was
additionally added to the dataset as well.

After validation of the simulated data, the neural network
was trained using the accelerations and angular rates of the
five sensors depicted in Figure 2 as input data, which resulted
in 30 inputs. One sensor was placed at the pelvis, one on
each thigh and one on each shank. The sensors were not
aligned to the segments, because the dataset is supposed to
cover the complete range of orientations and positions due
to the data simulation. Thereby, the neural network can learn
to handle the differences. A kinematic model was trained to
predict the 18 joint angles of the lower limbs, while a kinetic
model was trained to predict the 18 joint moments of the lower
limbs. Because we use a fully-connected feedforward neural
network, no time-dependencies can be covered by the neural
network (Goodfellow et al., 2016). Therefore, all data was time
normalized and unrolled before being input to the network.
This resulted in an input layer of size 30 × 101 = 3,030
and an output layer of 18 × 101 = 1,818. For the analysis,
only the nine angles/moments of the foot touching the ground
are evaluated.

In a first step, all simulated IMU data was used to determine
the best network architecture and hyperparameters for the
application using a 5-fold cross-validation. Therefore, one fixed
test set was split from the complete dataset as well as five different
validation sets. The split was undertaken randomly ensuring
that no overlapping between the sets occurred (cf. Figure 3).
A grid search was conducted to optimize the architectures
and hyperparameters.

2.3. Validation
2.3.1. Experimental Set-Up
Thirty healthy subjects (12 female, 28.1 ± 6.0 years, 72.3 ± 12.7
kg, 1.77± 0.07 m) participated in this study that was approved by
the Ethical Committee of the German Sport University Cologne.
All participants provided their informed written consent. Each
subject performed 10 level walking trials at five different speeds:
0.8 m s−1, 1.1 m s−1, 1.4 m s−1, 1.7 m s−1 and 2.0 m
s−1 ±10% on a 5 m walkway. According to the set-up of
all previous experimental investigations, each participant was
equipped with 28 retro-reflective markers to capture the motion
by 12 infrared cameras (125 Hz, VICONTM, MX F40, Oxford,
UK). Simultaneously, the participants were equipped with five
sensors of a custom low cost IMU system (100 Hz, TinyCircuits,
Akron, OH, USA) with an associated microcontroller (Atmel
ATmega328P) and a WIFI-board (Atmel ATWINC1500). An
Android application was developed to collect the data on a
smartphone (Mundt et al., 2018b). The marker set and sensor
placement are displayed in Figure 2. The sensors were only
roughly aligned to the segments but a consistent sensor-to-
segment assignment was used. The data of seven subjects was
excluded from this study due to connectivity issues, hence, data
of 23 participants is presented.

2.3.2. Data Synchronization
The synchronization of the IMU system and the optoelectronic
system cannot be performed automatically. Therefore, a
synchronization algorithm was developed. For this purpose, the
simulated medio-lateral acceleration of the pelvis was used. An
average position and orientation estimation of the pelvis sensor
was chosen. For the actual synchronization an optimization
problem was defined. We obtained the minimization problem
with the following mean-square objective function ϒ :

ϒ(δ) =

Nt
∑

nt=1

(a(m)
nt

− a(s)nt )
2. (15)

Here, a
(m)
nt and a

(s)
nt denote the measured and simulated

acceleration of the pelvis in themedio-lateral direction. The value
δ is the distance between the first local maximum peak in the
measured and simulated data (cf. Figure 4). The start value for
the optimization was chosen based on the output of the optical
motion tracking system. The optimization problem is iteratively
solved using the Nelder-Mead Simplex method (Lagarias et al.,
1998) already implemented in MATLAB. After synchronization,
the optical motion capture data and the inertial sensor data was
segmented into steps as described in section 2.1.

2.3.3. Simulation Framework
First, the simulation framework was validated. For this purpose
the optimum position and orientation of each sensor were
determined for each trial. Hence the sensors were fixed once for
each subject during the complete experiment, the best estimation
was determined for each subject based on the root-mean-squared
error. Afterwards, all data was simulated again based on the
optimized values. Thereby, a valid solution representing the
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FIGURE 3 | Overview of the 5-fold cross-validation process. The dataset for the kinematics (A) and kinetics (B) differ and were treated separately.

differences in placement during the experiments was found.
This procedure resulted in 23 (one per subject) optimized initial
values. This information was used to generate a large simulated
dataset based on the optical data of the former studies. All
sensor positions and orientations found during the experiments
were covered.

2.3.4. Neural Network Application
The inertial sensor data was used to validate the simulation
framework presented. Afterwards, the neural network
application was verified on the measured data. For this
purpose, a leave-one-out cross-validation (Arlot and Celisse,
2010) was performed to enable the performance analysis of
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FIGURE 4 | Results of the synchronization based on the medio-lateral acceleration of the pelvis.

the neural network on single subjects. Two different scenarios
were investigated: (1) all experimental data—besides one
subject—was used for training purposes and (2) all experimental
data—besides one subject—plus the simulated data was used
for training. Since the best architecture and hyperparameters
have been found in the first step, no further validation
set is necessary. The left-out subject served as test set (cf.
Figure 5).

2.4. Data Analysis
First, the results of the data simulation are presented. Afterwards,
the results of the 5-fold cross-validation and the grid search
to find the optimum neural network parameters are displayed.
Finally, the results of the leave-one-out cross-validation based
on measured data only and on the combined—measured and
simulated—data are presented. To evaluate the simulation and
prediction accuracy, the correlation coefficient was calculated.
Furthermore, the RMSE was determined for the joint angles
and the nRMSE (normalized RMSE to the range of the data)
for the joint moments. A paired t-test and the effect size were
calculated on the RMSE/nRMSE values. Additionally, the
maximum joint angles and joint moments were calculated to
evaluate the performance on this scalar parameter. An ANOVA
and post-hoc t-test with Bonferroni correction as well as the
effect size were calculated on the prediction of the maximum
joint angles and joint moments. For each subject one mean step
was considered.

3. RESULTS

3.1. Neural Network Parameters
The best parameters for the neural network were evaluated based
on the simulated dataset. An initial learning rate α = 10−4

and an increasing batch size of 16-32-32-64 samples during
the four phased training schedule performed best for both
the kinematic and kinetic model. For the kinematic model,

two hidden layers with 4,000 and 6,000 neurones, a dropout
rate of 20% and 12,500 training steps per phase revealed
the highest accuracy. For the kinematic model, two hidden
layers with 6,000 and 4,000 neurones, a dropout rate of 40%
and a number of 15,000 training steps per phase showed the
best results.

3.2. Data Simulation
The simulation of the data for all sensors was based on one
fixed sensor position and orientation for each subject. The mean
RMSE between the measured and simulated data is displayed in
Figure 6. With an increase in gait velocity, the RMSE increased
while the correlation coefficient decreased. The simulated data
of the pelvis sensor achieved the highest accuracy (rpelvis = 0.95
± 0.08), while the accuracy for the sensors of the legs is slightly
lower (rright thigh = 0.88 ± 0.12, rleft thigh = 0.91 ± 0.08, rright shank
= 0.91± 0.11, rleft shank = 0.92± 0.10).

3.3. Five-Fold Cross-Validation
To find the best model architecture and optimize the
hyperparameters, a 5-fold cross-validation was undertaken using
the simulated data of all subjects. The results for the kinematic
and kinetic model are displayed in Figure 7. For both models
the mean correlation coefficient was very similar on new test
data (kinetics: 0.86, kinematics: 0.87). The prediction of the knee
joint frontal plane angle and the transverse moment showed the
weakest correlations, while the prediction of the joint moments
showed the highest accuracy in all planes for the hip joint (>0.91)
and the joint angle prediction in all joints in the sagittal plane
(>0.95). Additionally, the kinetic predictions showed less outliers
than the kinematic predictions. Over all, the RMSE of the joint
angle prediction was smaller than 6.0◦ for all joints and motion
planes with a mean value of 4.1◦ and the nRMSE of the joint
moment prediction was smaller than 25.5% with a mean value
of 15.5%.
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FIGURE 5 | Overview of the leave-one-out validation process. Kinematics and kinetics were treated separately.

3.4. Leave-One-Out Cross-Validation
The leave-one-out cross-validation shows the performance of
the model for each subject when trained on all other subjects’
measured and simulated data. As the hyperparameters were fixed
from the 5-fold cross-validation, no further validation set was
necessary. There were only small differences in the correlation
of the predicted and measured data using measured data only or
the combined data set (cf. Figure 8). This finding was supported
by the results of the t-test: there were differences between the two
kinematic models in the prediction of all sagittal joint angles and
the frontal hip joint angles (rhip sagittal<0.001, rhip frontal<0.001,
rknee sagittal<0.001, rankle sagittal= 0.043). For the kinetic model,
differences in all hip joint moments and the ankle joint sagittal
moment were found (rhip sagittal<0.001, rhip frontal<0.001,
rhip transverse<0.001, rankle sagittal= 0.006). Additionally, the
correlation coefficient showed distinct differences between the
motion planes: the prediction accuracy of the hip joint angle in
the transverse plane, the knee joint angle in the frontal plane and
the ankle joint angle in the frontal and transverse plane was lower
than in the other planes. The prediction of the joint moments was
more accurate although there were some subjects showing lower
correlation coefficients in some features. The same behavior
could be found when analyzing the distribution of the results (cf.
Figure 9). Those parameters with weaker correlations showed
a wider spread and more outliers in the distribution of the
RMSE/nRMSE and correlation coefficient. The mean correlation
of the models was rkinematicmeasured= 0.85, rkinematic combined=

0.89, rkineticmeasured= 0.95 and rkinetic combined= 0.95.
The mean error was RMSEkinematicmeasured= 4.8◦,
RMSEkinematic combined= 4.3◦, nRMSEkineticmeasured= 13.0% and
nRMSEkinetic combined= 11.6%.

Compared to the model used for the 5-fold cross-validation
that was based on simulated data only, the accuracy was similar
for the kinematic model and even higher for the kinetic model.
With regard to Figures 7, 9, the mean accuracy was similar for

FIGURE 6 | Root-mean-squared error between the measured and simulated

data exemplarily displayed for the pelvis sensor. With an increasing gait

velocity the simulation error increases. Some trials show outliers with larger

errors during slow walking.

the cross-validation and the leave-one-out validation, but the
number of outliers was decreased.

The ANOVA showed significant differences in the maxima

between the predicted and measured joint angles and moments.
The post-hoc t-test indicated significant differences between both

the measured and predicted and the two predicted values. The
prediction of the peak joint moments showed more significant
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FIGURE 7 | On the right, the distribution of the correlation coefficient for the kinematic (blue) and kinetic (red) model is displayed. Additionally, on top, the distribution

of the RMSE for the kinematic and on the bottom the distribution of the nRMSE for the kinetic model can be found. The violin’s width displays how much data is

accumulated, while the height shows the range of the distribution. The horizontal line indicates the median value of the distribution.

differences than the prediction of the peak joint angles (cf.
Table 1). The trends of the statistical analysis can also be seen in
Figures 10, 11.

4. DISCUSSION

4.1. Data Processing
The data processing was one major challenge in this study
because there was no possibility to synchronize both
measurement systems automatically. The developed approach
based on optimization might lead to errors, especially because
gait is a cyclic motion. Sequences were not filtered for outliers,
which might also cause outliers in the prediction. We decided
not to remove outliers from the dataset to minimize the pre-
processing on the data and observe the networks’ capability to
handle this data. The simulated data can represent the measured
IMU data well, showing good correlations when using a fixed
sensor position and orientation for the calculation of angular rate
and linear acceleration for each subject. Higher gait velocities
cause larger deviations between the measured and simulated data
(cf. Figure 6), which can be attributed to soft tissue movements
that cause noise in the measured data that is not included in the
simulated data. The optical markers placed on bony landmarks
are the basis for the simulated IMU data, while the physical
IMU sensors are placed on the body as displayed in Figure 2.
Hence, the markers and sensors experience different soft tissue
movements that correlate with the gait velocity and increase
the error. However, the mean correlation coefficients indicate
an overall good accuracy. The correlation found by Young

et al. (2011), Brunner et al. (2015) and Zimmermann et al.
(2018), who proposed frameworks for simulating IMU data, is
comparable to the results presented in this study. Young et al.
(2011) and Brunner et al. (2015) tested their simulator for leg
swinging and single rigid body movements achieving very good
correlation coefficients (r >0.97). Since during this motion no
impact occurs which causes soft tissue movements the results are
better than the ones achieved in this study. Zimmermann et al.
(2018) evaluated their simulation approach on a pure rigid body
motion (r >0.97) and during gait (racc >0.57 and rgyr >0.93).
These results support the explanation that the impact causes
soft tissue movements during gait and limits the comparability
between simulated and measured data. However, the results of
this study are slightly better than in the study of Zimmermann
et al. (2018).

4.2. Cross-Validation
The kind of validation strategy chosen can highly influence the
results (Little et al., 2017; Saeb et al., 2017). We aimed to find
the best model parameters and hyperparameters using a 5-fold
cross-validation based on the simulated dataset only. Thereby,
it was possible to exclude a fixed test set of a representative
size as well as a randomly chosen validation set that covers
most gait patterns. We ensured, that no data of any subject was
part of more than one subset to avoid bias (Saeb et al., 2017).
Simultaneously, it was possible to undertake a grid search on the
best parameters and hyperparameters in a reasonable time frame.
Afterwards, we performed a leave-one-out cross-validation on
the new data collected in this study. This led to 23 training runs
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FIGURE 8 | Mean correlation coefficient for each joint and motion plane of each subject in the test set. On top, the results for the combined input data are displayed,

while on bottom, the results of the model using measured data only are depicted. There are only small differences between both models, while there are distinct

differences in the different motion planes and between subjects.

per model. Thereby we aimed to analyze the prediction accuracy
on single subjects. Using this two-stage validation approach, it
is possible to use as much data as possible for training the
models, because there is no validation set necessary as the
hyperparameters were fixed. As a side effect of the 5-fold cross-
validation, it is possible to additionally compare the results of
measured and combined input data to only simulated input data.
However, this approach might also cause a suboptimal accuracy
on the measured data, because the network architecture and
hyperparameters were tuned to optimize the prediction on the
simulated dataset only, which is larger than the measured dataset
and the combined one.

4.3. Kinematics and Kinetics
The lower accuracy of the prediction of the kinematics indicates
that it is a more difficult task for the neural network to predict the
joint angles than the joint moments. This might be attributed to
the closer physical relationship of acceleration and (normalized)
joint moments. Additionally, the joint angles do not start at a
value around zero, which leads to a more difficult initial value
problem than for the joint moments. Therefore, the prediction
of the kinematics profits from an enlarged dataset, which can
be seen in the increased prediction accuracy from measured
over combined to simulated data. In contrast, the kinetics
prediction seems to improve with additional noise in the input

data instead of the larger dataset. This can be seen in the
increased prediction accuracy in the combined and measured
dataset compared to the simulated data only, which does not
include the larger soft tissue movements the sensors experience
in faster walking. Soft tissuemovements also affect the calculation
of joint angles and joint moments, which is a limitation in every
motion analysis. One disadvantage of the simulated IMU data is
that it does not include the same soft tissue movements as the
marker trajectories.

Both, the kinematic and the kinetic model, are not able to
cover the complete variance of the measured data (cf. Figures 10,
11). Thismight be improved by further increasing the dataset and
the noise of the inputs. Therefore, research on data augmentation
should be further emphasized. The higher variance in the results
of the cross-validation models compared to the leave-one-out
model might be attributed to the dataset. The dataset used for the
cross-validation includes participants with larger demographic
differences as well as knee arthroplasty patients while the
leave-one-out dataset comprises young participants without any
impairment only. For the cross-validation, one test set was
split from the complete dataset, while for the leave-one-out
validation only the participants of this study served as test set
(cf. Figures 4, 5). Additionally, Figure 7 displays each single
trial while in Figure 9 the mean results of each participant
are displayed.
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FIGURE 9 | On the right, the distribution of the RMSE and the correlation coefficient for the kinematic data is displayed. On the left, the distribution of the nRMSE and

the correlation coefficient for the kinetic model can be found. The results for the measured data as inputs is displayed in red, while the results for the combined data

inputs are displayed in blue. The violin’s width displays how much data is accumulated, while the height shows the range of the distribution. The horizontal line

indicates the median value of the distribution.

Comparing the results of this study to the literature is difficult,
because this is—to the authors knowledge—the first time that
IMU data was used to predict the joint angles and moments
in all three motion planes. Especially the analysis of kinematic
parameters using machine learning is not well investigated so
far. As displayed in Figure 8, the correlation coefficient is larger
than 0.8 in the sagittal plane for all subjects regarding the joint
angles and even higher in all motion planes regarding the joint
moments. Only Findlow et al. (2008) used an approach based on
neural networks to predict joint angles. We achieved a higher
accuracy in our study, which is probably caused by the larger
dataset, more sensors involved and an improved computing
power and algorithms compared to their study undertaken in
2008. Another approach is the use of kinematic constraints
to determine joint angles from IMU data. Based on different
joints, this approach reveals very good results (Müller et al.,
2017; Laidig et al., 2019; Nowka et al., 2019). Nevertheless, it
was not analyzed recently for gait analysis. Seel et al. (2014)
achieved already good results when analyzing the sagittal knee
and ankle joint angles with an mean RMSE of 3.3◦ and 1.6◦,
respectively. These results are slightly better than our results with
4.62◦ and 2.42◦. It might be possible to improve the accuracy
of the proposed method when also specializing on single joint
angles or adding additional sensors to the model. In a previous
study, we could achieve an error smaller than 2.5◦ in all joints and
motion planes, when using simulated data only and additional
data for the feet sensors (Mundt et al., 2019c). Zihajehzadeh
and Park (2017) used a more common approach for the joint
angle estimation based on an adapted Kalman Filter that does

not use magnetometer data for the orientation estimation. They
achieved RMSE values smaller than 3.5◦ for the three sagittal
plane angles and the hip adduction/abduction during walking.
Teufl et al. (2018) also investigated the use of magnetometer
free joint angle estimation. Their method achieved mean RMSE
values of <2.3◦ for all joints and motion planes. This results
is very promising, although it needs to be considered that the
biomechanical model was set up using optical motion capture
data. In a previous study, we could show that the differences
in joint angle estimation is mainly based on the definition
of the rotation axes used by the IMU systems (Mundt et al.,
2019d), what we aimed to overcome with the neural network
approach that implicitly learns the biomechanical model during
the training process.

There is more research on estimating joint kinetics, but none
was undertaken using IMU sensors as input data to predict
all 3D lower limb joint moments. In one of our previous
studies, we used joint angles as input parameters to predict
joint moments (Mundt et al., 2018a). We achieved slightly better
results than in this study. In another study using simulated
IMU data, the joint moment prediction resulted in an nRMSE
of 12.16%, which is slightly lower than in this study although
using additional sensors on the feet (Mundt et al., 2019c). This
further supports the hypothesis that more noise in the data is
favorable for the joint moment prediction and that it might
be useful to investigate the relevant features for the neural
network. For this purpose, Horst et al. (2019) suggested to
use the Layer-Wise Relevance Propagation technique. Another
approach might be the use of principle component analysis to
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TABLE 1 | Results of the statistical analysis of the peak prediction.

Joint angles

Measured vs. real Measured vs. combined Real vs. combined

p d p d p d

Hip sagittal <0.001⋆ 1.867 <0.001⋆ 1.392 0.004⋆ 0.676

Hip frontal <0.001⋆ 1.293 <0.001⋆ 0.948 <0.001⋆ 0.924

Hip transverse 0.085 0.377 0.226 0.260 0.080 0.383

Knee sagittal <0.001⋆ 2.580 <0.001⋆ 1.683 <0.001⋆ 1.103

Knee frontal 0.324 0.210 0.566 0.121 0.061 0.412

Knee transverse 0.123 0.335 0.104 0.354 0.724 0.074

Ankle sagittal 0.005⋆ 0.645 0.018 0.536 0.013⋆ 0.561

Ankle frontal 0.412 0.174 0.211 0.269 0.141 0.319

Ankle transverse 0.035⋆ 0.470 0.174 0.293 0.006⋆ 0.638

Joint moments

Measured vs. real Measured vs. combined Real vs. combined

p d p d p d

Hip sagittal <0.001⋆ 1.659 <0.001⋆ 1.033 <0.001⋆ 1.452

Hip frontal <0.001⋆ 2.283 <0.001⋆ 1.850 <0.001⋆ 1.036

Hip transverse 0.004⋆ 0.674 0.010⋆ 0.592 0.021 0.517

Knee sagittal <0.001⋆ 0.854 0.004⋆ 0.671 0.011⋆ 0.576

Knee frontal <0.001⋆ 1.193 <0.001⋆ 0.961 0.003⋆ 0.690

Knee transverse <0.001⋆ 0.977 0.002⋆ 0.735 0.031 0.482

Ankle sagittal <0.001⋆ 1.296 <0.001⋆ 0.901 0.001⋆ 0.839

Ankle frontal 0.041 0.452 0.108 0.350 0.078 0.386

Ankle transverse 0.038 0.460 0.079 0.384 0.087 0.373

Significant results are indicated by ⋆.

FIGURE 10 | Overview of the mean and standard deviation of the joint moments of the 23 subjects.

analyze the sensitivity of inputs and outputs (Ardestani et al.,
2015).

In future work, it might be useful to investigate a two-
staged approach: first, predict the joint angles from IMU data

and second, use the estimated joint angles to predict the joint
moments. However, for this approach the joint angle estimation
needs to be further improved. It might also be conceivable to
take this approach the other way round, using joint moments
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FIGURE 11 | Overview of the mean and standard deviation of the joint angles of the 23 subjects.

as input data to predict joint angles, because the joint moments
show better results so far. It might also be feasible to add
(estimated) joint angles or joint moments to the IMU input data
for further improvement. Additionally, the choice of another
kind of artificial neural network, e.g., long short-term memory
(LSTM) or convolutional neural networks (CNN), might be
suitable for the underlying task. Especially due to the high
number of inputs (30 features times 101 time frames) these neural
networks might outperform the fully-connected feedforward
neural network, that was used in this study. While a fully-
connected feedforward neural network uses flattened data (no
time dependency) as inputs, LSTMs and CNNs preserve the time
dependency. Thereby, it might be easier for these networks to
extract the most relevant features from the data (Goodfellow
et al., 2016). In this study, we analyzed short sequences of
motion only. During these sequences, no gyroscope drift could
be observed. For future research, to bring this method further
toward application, this aspect needs to be considered. Another
sensor system might overcome this limitation. We also only
analyzed straight walking. Most probably, this method can also
be applied tomore divergingmotion, when this motion is present
in the training dataset. It might even lead to an improved
accuracy, when using a dataset showing more variance (Mundt
et al., 2019b). Further analysis on the relevant features for the
neural network to predict the joint angles and moments will
be valuable to maybe reduce the number of sensors necessary
for the prediction and thereby decreasing the complexity of the
model. Further validation of the method with a larger amount of
measured data should be undertaken.

5. CONCLUSION

This study analyzed the ability of a fully-connected feedforward
neural network to predict joint angles and joint moments of

the lower limbs based on IMU data. Our hypothesis, that
simulated data can support the learning of the neural network
can be accepted for the joint angle prediction while it can only
be partly accepted for the prediction of joint moments. Our
second hypothesis, that noise in the input data decreases the
prediction accuracy can be rejected. For the kinetic prediction,
the noise attributed to soft tissue movements improves the
prediction accuracy and seems to be more important than the
size of the dataset. The prediction of the joint angles is not
affected by noise. Therefore, it needs to be evaluated if the
prediction can be further improved using a simulated dataset
containing soft tissue movement induced noise in the input data.
Thereby, the measured data might be better represented and
the learning of the neural network improved. Nevertheless, the
results already demonstrate the high potential of the approach
and support further research on neural networks in gait analysis.
Besides the aforementioned data augmentation, different kind
of neural networks (e.g., recurrent or convolutional neural
networks) should be investigated on the task in future work.
Thereby, data that is not time normalized could be used,
hence the gait velocity could be included in the data. For
the analysis of clinically relevant parameters, it might also be
suitable to train patient-specific models to achieve a higher
accuracy (Saeb et al., 2017).
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