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Mesenchymal stem cells (MSCs) are among the most frequently used cell type for
regenerative medicine. A large number of studies have shown the beneficial effects
of MSC-based therapies to treat different pathologies, including neurological disorders,
cardiac ischemia, diabetes, and bone and cartilage diseases. However, the therapeutic
potential of MSCs in cancer is still controversial. While some studies indicate that MSCs
may contribute to cancer pathogenesis, emerging data reported the suppressive effects
of MSCs on cancer cells. Because of this reality, a sustained effort to understand when
MSCs promote or suppress tumor development is needed before planning a MSC-
based therapy for cancer. Herein, we provide an overview on the therapeutic application
of MSCs for regenerative medicine and the processes that orchestrates tissue repair,
with a special emphasis placed on cancer, including central nervous system tumors.
Furthermore, we will discuss the current evidence regarding the double-edged sword
of MSCs in oncological treatment and the latest advances in MSC-based anti-cancer
agent delivery systems.
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INTRODUCTION

Mesenchymal stem cells (MSCs), also referred to as mesenchymal stromal cells, are adult stem cells
capable of self-renewal and multilineage differentiation (Jiang et al., 2002). They were originally
found in the bone marrow (Friedenstein et al., 1970), but they were later identified in other tissues
including adipose tissue, muscle, peripheral blood, hair follicles, teeth, placenta and umbilical cord
(da Silva Meirelles et al., 2006). Although MSCs may exhibit different characteristics depending on
their tissue of origin, they must meet the three minimal criteria defined by the International Society
for Cellular Therapy (ISCT) (Dominici et al., 2006). First, MSCs must show plastic-adherence
when grown in vitro. Second, MSCs must express the surface antigens CD73, CD90, and CD105
while lacking expression of CD45, CD34, CD14 or CD11b, CD79α or CD19 and HLA-DR. Third,
MSCs must differentiate into mesodermal cell types (i.e., adipocytes, chondrocytes, and osteoblasts)
when cultured under specific conditions. In addition to mesodermal linage, MSCs are capable of
differentiating into cells of non-mesodermal origin (i.e., ectodermal and endodermal lineages),
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such as neuronal cells, cardiomyocytes, hepatocytes or epithelial
cells (Lee et al., 2004; Paunescu et al., 2007; Quevedo et al., 2009;
Gervois et al., 2015). This plasticity of MSCs confers benefits in
tissue regeneration.

Mesenchymal stem cells have become as the top used stem
cell type for clinical application due to numerous advantages
(Connick et al., 2012; Gotherstrom et al., 2014; Karantalis et al.,
2014; Rushkevich et al., 2015; Thakkar et al., 2015; Vega et al.,
2015; Fernandez et al., 2018) (Figure 1). In addition to different
source and multilineage differentiation potential, MSCs also
possess the capacity to migrate to injured sites in response to
environmental signals and promote tissue regeneration mediated
by the release of paracrine factors with pleiotropic effects.
Through interaction with the host niche, MSCs are able to inhibit
the immune system, promote cell survival, or induce angiogenesis
among others pleiotropic activities (Salgado et al., 2010). Of these,
the immunosuppressive role of MSCs is particularly interesting
for clinical use since it confers resistance to rejection by the
host immune system after transplantation. Furthermore, MSCs
can be obtained from easily accessible sources by minimally
invasive methods (e.g., peripheral blood, adipose tissue) and can
be rapidly expanded in large-scale for clinical use (Escacena
et al., 2015). This allows to produce a patient-specific medicinal
product (i.e., autologous medicinal product) within a therapeutic

time window. In addition, the possibility of obtaining MSCs from
adult tissue circumvent the ethical issues associated with the
use of embryonic source (Lo and Parham, 2009; Ramos-Zuriga
et al., 2012). All these advantages of MSCs make this cell type a
powerful tool for clinical application in regenerative medicine.

Although MSCs have shown tremendous therapeutic potential
in various diseases, their application for cancer treatment remains
controversial. While some studies indicate that MSCs may
contribute to cancer pathogenesis, emerging data support the
beneficial effects of MSCs for oncological treatment. In this
review, we provide an overview on the therapeutic application
of MSCs for regenerative medicine and discuss the double-edged
sword of MSCs for cancer.

THERAPEUTIC POTENTIAL OF MSCs

Over the past decades, a large number of studies have emerged
using MSC-based therapies in preclinical studies to treat many
different pathologies, including neurological disorders, cardiac
ischemia, diabetes and bone and cartilage diseases (Si et al., 2012;
van Velthoven et al., 2013; Jones et al., 2015; Liu et al., 2016;
Ozeki et al., 2016; Capilla-Gonzalez et al., 2018; Chau et al., 2018;
Rehorova et al., 2019; Soria et al., 2019). The therapeutic potential

FIGURE 1 | Advantages of MSCs for clinical use. MSCs possess multiple advantages for clinical application. Among other benefits, MSCs can be isolated from
several sources, are large-scale produced, differentiate into a variety of cell types and have pleiotropic effects. All these advantages make MSCs suitable for clinical
application in different pathological conditions, such as neurological damages, liver disorders, cardiac ischemia, diabetes or skin problems. Abbreviations: HLA-DR,
major histocompatibility complex class II DR; MN, monocyte; iDC, immature dendritic Cell; Treg, Regulatory T cell; NK, natural killer cell; TGFβ, transforming growth
factor; INFγ, interferon γ; IDO, indoleamine 2,3-dioxygenase; IL10, interleukin 10; IL4, interleukin 4; IL12, interleukin 12; iNOS, inducible nitric oxide synthase; TNFα,
tumor necrosis factor α; VEGF, vascular endothelial growth factor; IGF1, insulin like growth factor 1; bFGF, basic fibroblast growth factor; GM-CSF, granulocyte
macrophage colony-stimulating factor; HGF, hepatocyte growth factor; TRAIL, TNF-related apoptosis-inducing ligand; STC1, stanniocalcin 1; SFRP2, secreted
frizzled related protein 2; KGF, keratinocyte growth factor; TF, tissue factor; TIMP, tissue inhibitor of metalloproteinases; MMP, matrix metalloproteinases; IL6,
interleukin 6; MCP1, monocyte chemoatractant protein 1; EPO, erythropoietin; CXCL12, C-X-C motif chemokine 12; MIP, macrophage inflammatory protein.
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of MSCs is firstly mediated by their inherent ability to migrate
toward damaged tissues. Then, engrafted cells secrete bioactive
mediators, such as growth factors, cytokines and extracellular
vesicles that exert immunosuppressive, anti-apoptotic, anti-
fibrotic, angiogenic, and anti-inflammatory effects (Salgado et al.,
2010). For instance, a study using a neonatal stroke rat model
showed that intranasal delivery of bone marrow MSCs reduces
infarct size, gray-white matter loss, and motor deficits (van
Velthoven et al., 2013). These beneficial effects were in part
explained by an increased cell proliferation in the ischemic
hemisphere of transplanted rats. In a mouse model of Friedreich’s
ataxia, intrathecal injections of bone marrow MSCs improved
motor function and delayed neurodegeneration by releasing
the neurotrophic factors Neurotrophin-3, Neurotrophin-4, and
brain-derived neurotrophic factor, which are implicated in
neuronal survival (Jones et al., 2015). Human MSCs derived
from umbilical cord showed benefits by improving ventricular
function in a porcine model of myocardial ischemia (Liu et al.,
2016). In this study, the authors described that MSC-treated pigs
exhibit increased angiogenesis, reduced apoptosis and decreased
fibrosis in the ischemic heart. Bone marrow-derived MSCs have
also shown benefits in improving insulin sensitivity associated
with an increased GLUT4 expression in type 2 diabetic rats (Si
et al., 2012). More recently, the intranasal application of human
adipose-derived MSCs was found to prevent neurocognitive
impairments induced by cranial radiation in mice (Soria et al.,
2019). The neuroprotective role of intranasally delivered MSCs
was mediated by limiting pro-inflammatory processes, restricting
oxidative damage accumulation, and reducing neuronal loss after
radiation. Another study reported beneficial effects of umbilical
cord-derived MSC extracts for atopic dermatitis in a murine
model by reducing the T cell response (Song et al., 2019). These
reports uncover two main properties of MSCs that determine
their therapeutic potential; the capacity to migrate toward the
lesion site and the ability to repair damaged tissues.

Migration Toward Damaged Tissues
The success of an advanced therapy medicinal product initially
depends on its ability to reach target tissues. MSCs possess
inherent tropism toward damaged sites that is controlled
by a large number of factors and mechanisms, including
chemoattractant signals. For instance, the C-X-C motif
chemokine ligand 12 (CXCL12) is a frequent triggering
factor at the site of injury. It has been demonstrated that a
subpopulation of MSCs expresses the C-X-C chemokine receptor
type 4 (CXCR4) that binds to its ligand, the CXCL12, to mediate
cell migration (Wynn et al., 2004; Ma et al., 2015). Aside from
CXCR4, MSCs express other chemokine receptors, such as
CCR1, CCR2, CCR4, CCR7, CCR8, CCR9, CCR10, CXCR1,
CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, and CX3CR1 (Sordi
et al., 2005; Von Luttichau et al., 2005; Honczarenko et al., 2006;
Ringe et al., 2007). These receptors are essential to respond to
triggering factors at the site of injury. In addition, MSCs also
express cell adhesion molecules, including CD49d, CD44, CD54,
CD102, and CD106 (De Ugarte et al., 2003). These chemokines
and cell adhesion molecules orchestrate the mobilization of
MSCs to sites of injury, in a similar manner to white blood

cells do (Kolaczkowska and Kubes, 2013). MSC mobilization
is a multistep process that encompasses the attachment of free
circulating MSCs in the blood stream to transmigrate between
endothelial cells with the ultimate goal of migrate and engraft to
the target tissue (Figure 2).

Tissue Repair Ability
Once recruited in the injured site, MSCs contribute to
tissue repair and regeneration through activation of several
mechanisms. A growing body of research has demonstrated that
MSCs display pleiotropic effects, which give them an enormous
therapeutic potential (Figure 1). In response to injury signals,
MSCs secrete a variety of mediators of tissue repair, including
anti-apoptotic, anti-inflammatory, immunomodulatory, anti-
fibrotic and angiogenic agents (Caplan and Dennis, 2006;
Meirelles Lda et al., 2009; Maltman et al., 2011; Escacena
et al., 2015). Among pleiotropic effects, anti-inflammatory and
immunomodulatory properties are mainly responsible for the
therapeutic benefits of MSCs. As sensors of inflammation, MSCs
release soluble factors, such as transforming growth factor β

(TGFβ), Indoleamine 2,3-dioxygenase (IDO), Tumor Necrosis
Factor α (TNFα), Interleukin 10, and Interferon gamma (INFγ),
which interfere with the immune system and modify the
inflammatory landscape (Prockop and Oh, 2012). Pivotal studies
showed that MSCs inhibit the proliferation of T and B cells
(Di Nicola et al., 2002; Corcione et al., 2006; Song et al., 2019),
suppress the activation of natural killer cells (Sotiropoulou et al.,
2006), and prevent generation and maturation of monocyte-
derived dendritic cells (English et al., 2008; Spaggiari et al.,
2009). Furthermore, MSCs are able to promote the generation
of regulatory T cells (Maccario et al., 2005), which exert
immunosuppressive effects. Although soluble factors play a key
role in the immunosuppressive activity of MSCs, cell-to-cell
contact also influences immune responses (Ren et al., 2010;

FIGURE 2 | Model of chemoattractant-induced MSC migration toward tumor
lesion. Mobilization of MSCs initiates with their incorporation into the
circulation. Then, MSCs migrate via the blood stream to areas of injury in
response to chemoattractant cues. Ligand-receptor bindings allow MSCs to
attach to endothelial cells lining the blood vessels. Subsequently, MSCs
activate and initiate the process to cross the endothelium to move toward the
target tissue, guided by a chemotactic gradient.
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Li Y. et al., 2019). For instance, direct contact between MSCs
and proinflammatory macrophages has been shown to induce
immune tolerance through induction of tumor necrosis factor-
stimulated gene-6 (TSG-6) production (Li Y. et al., 2019). MSC-
mediated modulations of the immune response set in motion
essential inflammatory processes that significantly promote tissue
repair and regeneration by driving healing, scarring and fibrosis
(Julier et al., 2017).

Another typical property of MSCs that is involved in their
therapeutic effects is the multilineage differentiation potential.
In addition to mesodermal linage, MSCs can differentiate into
cells of ectodermal and endodermal origin, such as neuronal
cells, cardiomyocytes, hepatocytes or epithelial cells (Lee et al.,
2004; Paunescu et al., 2007; Quevedo et al., 2009; Gervois
et al., 2015). This ability to differentiate into cell types of non-
mesodermal origin has been questioned by researchers claiming
that differentiated cells from MSCs are able to dedifferentiate
and transdifferentiate into cells of another developmental
lineage (Song and Tuan, 2004). Notwithstanding, the versatile
differentiation potential of MSCs allows the replacement of
damaged or dead cells from different tissues. However, several
studies indicate that, after administration, MSCs transiently
engraft at the injury site for a short period of time and
then disappear. The latter suggest that MSCs must activate
mechanisms in the host niche which contribute to tissue
repair. For instance, the cross-talk between MSCs and the
damaged tissue microenvironment results in the secretion of
specific agents involved in proliferation and differentiation
of local precursor cells. In this context, a study suggested
that systemic administration of MSCs improves radiation-
induced intestinal epithelium injury in mice, by increasing
the activation of the Wnt/β-catenin signaling pathway that
drives proliferation and maintenance of intestinal stem cells
(Gong et al., 2016). In a mouse models of Alzheimer’s disease,
intravenous administration of MSCs stimulated proliferation
and differentiation of hippocampal neuronal progenitor cells
into mature neurons by increasing the Wnt signaling pathway
(Oh et al., 2015).

DIVERGENT ROLES OF MSCs IN
CANCER TREATMENT

The therapeutic benefits of MSCs have prompt their use
in cell-based strategies to treat different diseases, including
cancer. Similar to damaged tissues, tumors exert chemoattractant
effects on MSCs that influence their recruitment to tumor
sites (Figure 2). The CXCL12/CXCR4 axis is one of the
most frequently studied signaling pathways in the mobilization
of MSCs to tumor microenvironment (Gao et al., 2009; Xu
et al., 2009; Lourenco et al., 2015; Wobus et al., 2015;
Kalimuthu et al., 2017). However, the ability of MSCs
to migrate toward cancerous tissue is also controlled by
other agents, including diffusible cytokines such as IL8,
growth factors such as TGFβ1 or platelet derived growth
factor (PDGF), and extracellular matrix molecules such as
matrix metalloproteinase 2 (MMP-2) (Nakamizo et al., 2005;

Birnbaum et al., 2007; Bhoopathi et al., 2011). Once the
tumor niche is reached, MSCs interact with cancer cells via
direct and indirect mechanisms that affect tumor development
(Figure 3). The paracrine function of MSCs is one of the
main mechanisms involved in cancer regulation and is mediated
by multiple factors, including growth factors and cytokines.
These paracrine factors affect cellular processes involving tumor
cell cycle (i.e., cell proliferation), cell survival, angiogenesis,
and immunosuppression/immunomodulation, allowing MSCs to
regulate cancer. The paracrine agents can be directly secreted
into the extracellular space or packaged into extracellular vesicles
to be spread in the tumor milieus (Rani et al., 2015). The
interaction of MSCs with tumor cell cycle is the most commonly
accepted process by which MSCs exert their therapeutic effects
(Fathi et al., 2019). By inhibiting proliferation-related signaling
pathways, such as the phosphatidylinositol 3-kinase/protein
kinase B (PI3K/AKT), MSCs can induce cell cycle arrest and
reduce cancer growth (Lu et al., 2019). In addition, MSCs can
undergo differentiation into other cell types, such as cancer-
associated fibroblasts (CAFs), to directly contribute to cancer
progression (Jotzu et al., 2011; Barcellos-de-Souza et al., 2016;
Aoto et al., 2018) (Figure 3).

Accumulating evidences indicate that the cross-talk between
MSCs and tumor cells results in both pro-tumor and anti-
tumor effects, raising safety concerns for clinical application in
oncology (Barkholt et al., 2013) (Figure 3). The discrepancies in
the ability of MSCs to promote or suppress tumor development
may be attributable to differences in experimental tumor models,
MSC tissue source, dose or timing of the MSC treatment, cell
delivery method, control group chosen, and other experimental
conditions (Bortolotti et al., 2015; Bajetto et al., 2017). In this
regard, a study demonstrated that direct (cell-to-cell contact) or
indirect (released soluble factors) interaction between umbilical
cord MSCs and glioblastoma stem cells produces divergent effects
on cell growth, invasion and migration (Bajetto et al., 2017).
Additionally, the application of MSCs for cancer patients is a
more complex situation in which other factors have to be taken
into consideration. For instance, the pathological conditions of
each patient may induce cellular and molecular changes in MSCs
that interfere with their therapeutic effects (Capilla-Gonzalez
et al., 2018; Perez et al., 2018; Rivera et al., 2019). We must,
therefore, be cautious in the conclusions we draw from a single
study regarding the therapeutic effects of MSCs in cancer.

Pro-tumor Activity
The pleiotropic effects of MSCs that promote tissue repair and
regeneration may also confer pro-tumor functions to these cells.
For instance, metastatic human breast carcinoma cells were
found to induce the secretion of the chemokine (C-C motif)
ligand 5 (CCL5) from MSCs, which enhanced tumor invasion
(Karnoub et al., 2007). Seminal reports demonstrated that MSCs
are also able to inhibit apoptosis in tumor cells by secreting pro-
survival factors such as VEGF and basic fibroblast growth factor
(bFGF) (Konig et al., 1997; Dias et al., 2002).

Numerous studies converged on the finding that MSCs
contribute to cancer pathogenesis by releasing inflammatory
factors that promote immunosuppressive effects. For example, an
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FIGURE 3 | Pro- and anti-tumor effects of MSCs. The particular properties that make MSCs excellent therapeutic agents, can also influence tumor progression.
MSCs are able to release multiple agents with pro- and anti-tumor effects, which affect survival, proliferation and angiogenesis among other cell functions. These
paracrine agents can be directly secreted into the tumor milieus or secreted via EVs. Furthermore, MSCs can differentiate into CAFs to support tumor progression.
Abbreviations: bFGF, basic fibroblast growth factor; BMP, bone morphogenetic protein; CAF, cancer-associated fibroblasts; HGF, hepatocyte growth factor; EVs,
extracellular vesicles; IGF1, insulin like growth factor 1; IL6, interleukin 6; IL8, interleukin 8; IL10, interleukin 10; INFγ, interferon gamma; IDO, indoleamine
2,3-dioxygenase; NK, natural killer; PTEN, phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase; PDGF, platelet derived growth factor; TRAIL, TNF-related
apoptosis-inducing ligand; TGFβ, transforming growth factor; VEGF, vascular endothelial growth factor.

in vitro study showed that MSCs isolated from gastric tumors
mediate cancer progression through secretion of Interleukin
8 (IL8) (Li et al., 2015), a pro-inflammatory chemokine
that favors the recruitment of leukocytes. It is known that
recruited leukocytes, such as macrophages and neutrophils,
facilitate cancer initiation and progression (Guo et al., 2017;
Powell et al., 2018). Similarly, MSCs are able to secrete TGFβ

that promotes macrophages infiltration at the tumor site and
facilitates tumor escape from immune surveillance (Kim et al.,
2006; Byrne et al., 2008).

Compelling evidences indicate that MSCs can also support
tumor angiogenesis, an essential process in cancer progression
that supplies tumors with oxygen and nutrients. For instance,
MSCs recruited in breast and prostate tumors were found to
increase the expression of angiogenic factors, including TGFβ,
VEGF and Interleukin 6, which contribute to tumor growth
and vascularization (Zhang et al., 2013). Similarly, a correlation
between increased expression of TGFβ1 and higher microvessel
density was observed in hepatocellular carcinomas of mice
receiving intravenous injections of human MSCs (Li et al., 2016).
This study further supported that MSCs may enhance tumor
angiogenesis via TGFβ.

Furthermore, MSCs can also respond to soluble factors
secreted from cancer cells and differentiate into CAFs, a cell
type within the tumor microenvironment capable of promoting
tumorigenesis (Mishra et al., 2008). In particular, TGFβ secreted
from cancer cells plays a key role in the differentiation of MSCs
into CAFs (Jotzu et al., 2011; Barcellos-de-Souza et al., 2016;
Aoto et al., 2018). It is known that the transition of MSCs
into CAFs contributes to tumor progression in part by their

active secretome, which includes immune-modulating agents
(CXCL12, Granulocyte Macrophage Colony-Stimulating Factor),
pro-angiogenic factors (VEGF, TGFβ, PDGF), pro-survival
factors (Hepatocyte Growth Factor, Insulin like Growth Factor
1, Interleukin 6), and extracellular matrix modulators (MMP,
Tissue Inhibitor of Metalloproteinases) among others (Kalluri,
2016). Cell engulfment has also been identified as an interaction
process between MSCs and cancer cells that enhances tumor
aggressiveness. A recent report demonstrated that breast cancer
cell engulfment of MSCs leads to changes in the transcriptome
profile of tumor cells, mainly associated with oncogenic pathways
(Chen et al., 2019). This MSC engulfment enhances epithelial-
to-mesenchymal transition, stemness, invasion, and metastasis of
breast cancer (Chen et al., 2019).

Anti-tumor Activity
Although compelling evidences show a pro-tumorigenic role of
MSCs, these cells also have potent tumor suppressive effects that
have been exploited as cancer therapeutics. Previous studies have
demonstrated that MSCs release cytotoxic agents, such as TNF-
Related Apoptosis-Inducing Ligand (TRAIL) that selectively
induces apoptosis in different types of cancer (Wiley et al.,
1995; Hao et al., 2001; Takeda et al., 2001; Akimoto et al.,
2013). Recently, a report indicated that bone marrow MSCs
promote apoptosis and suppress growth of glioma U251 cells
through downregulation of the PI3K/AKT signaling pathway (Lu
et al., 2019). Similarly, intravenously transplanted MSCs were
found to suppress tumor growth by blocking AKT activation
in a Kaposi sarcoma mouse model (Khakoo et al., 2006). In
mammary carcinomas, umbilical cord MSCs attenuated cell
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growth and triggered apoptosis through inhibiting ERK1/2
and AKT activation (Ganta et al., 2009). The Wnt signaling
pathway has also been involved in the ability of MSCs to inhibit
tumor cell proliferation (Qiao et al., 2008a,b). A mechanistic
study of the inhibitory effect of MSCs on breast cancer cells
demonstrated that the protein Dickkopf-1 (Dkk-1) released from
MSCs blocks tumor growth via depression of Wnt signaling
(Qiao et al., 2008a).

In contrast to investigations describing the pro-angiogenic
effect of MSCs (Zhang et al., 2013; Li et al., 2016), the anti-
tumor activity of MSCs via inhibition of tumor angiogenesis
has also been documented. A study reported that bone marrow
MSCs restrict vascular growth in 1Gli36 glioma xenograft
through downregulation of the PDGF/PDGFR axis (Ho et al.,
2013). In particular, the expression of PDGF-BB protein was
significantly reduced in tumor lysates when treated with MSCs,
which correlated with reduced levels of activated PDGFR-β and
the active isoform of its downstream target AKT (Ho et al.,
2013). In a melanoma mouse model, transplanted MSCs inhibited
angiogenesis in a concentration-dependent manner, leading to a
reduced tumor growth (Otsu et al., 2009). Confirmatory in vitro
studies suggested that the anti-angiogenic effect was due to MSC-
induced capillary degeneration (Otsu et al., 2009).

Furthermore, MSCs have elicited anti-tumor immune
responses through released inflammatory mediators, such as
the multifunctional cytokine TGFβ. Similar to several signaling
molecules, TGFβ plays a dual role in cancer development
(Bierie and Moses, 2006). Besides the aforementioned pro-tumor
functions, TGFβ signaling exhibits suppressive effects in cancer
(Dong et al., 2007; Guasch et al., 2007). In fact, while the
expression of the type III TGFβ receptor (TβRIII) decreases
during breast cancer progression, restoring TβRIII expression
suppresses tumorigenicity (Dong et al., 2007).

MSCs AS CARRIERS OF ANTI-CANCER
PAYLOADS

Over the past decade, research efforts have focused on
investigating the potential of stem cells as Trojan horses to
selectively deliver anti-cancer payloads to tumor cells. In this
context, MSCs have attracted much attention as therapeutic
carriers due to their inherent capacity to migrate to tumor
sites. Genetic engineering is one of the most common strategies
used to produce MSCs delivering tumor-suppressing agents into
cancer cells. Typically, MSCs have been genetically modified
with viral particles to express cytokines, such as Interferon β

(INFβ) (Studeny et al., 2002; Shen et al., 2016). It has been
reported that human umbilical cord MSCs transduced with
adenoviral vectors expressing IFNβ effectively inhibit the growth
of breast cancer cells through induction of apoptosis (Shen
et al., 2016). Interleukins are another group of cytokines used
as tumor-suppressing agents (Chen et al., 2008; Liu et al.,
2018). A recent study using lentiviral transductions showed
that human umbilical cord MSCs expressing interleukin-18
inhibit the proliferation and metastasis of breast cancer in mice
(Liu et al., 2018). Genetically engineered MSCs with TRAIL

have also shown strong anti-tumor activity in different types
of cancer (Ciavarella et al., 2012; Fakiruddin et al., 2014;
Guo et al., 2016; Jiang et al., 2016). In a fascinating study,
X. Jiang and colleagues developed a non-viral method using
nanoparticles to produce human MSCs engineered to express the
suicide protein TRAIL for targeting and eradicating intracranial
gliomas in mice (Jiang et al., 2016). When transplanted in
a mouse model of orthotopic patient-derived glioblastoma
xenografts, TRAIL-expressing MSCs inhibited tumor growth,
induced apoptosis, reduced the occurrence of microsatellites, and
extended animal survival.

Beside cytokines, several other proteins have been used
as tumor-suppressing agents in MSC engineering for cancer
therapy. For instance, Bone Morphogenetic Protein 4 (BMP4)-
expressing MSCs were found to efficiently suppress tumor growth
and prolong survival of glioma-bearing mice (Li et al., 2014;
Mangraviti et al., 2016). Similarly, MSCs modified to express the
tumor-suppressor gene Phosphatidylinositol 3,4,5-Trisphosphate
3-Phosphatase (PTEN) induced cytotoxicity of glioma cells
(Guo et al., 2016).

MicroRNAs (miRs) have gained special interest in cancer
therapy because of their ability to modulate post-transcriptional
gene expression. It is known that MSCs express a variety of miRs
that can be packaged into extracellular vesicles, and delivered to
neighboring cells to exert therapeutic effects (Collino et al., 2014).
Taking advantage of this property, MSCs have been engineered
to carry specific miRs with anti-cancer properties (Lee et al.,
2013; Lang et al., 2018; Sharif et al., 2018; Li X. et al., 2019).
For instance, lentiviral vectors were used to engineer MSCs to
produce extracellular vesicles carrying high levels of miR-124a,
which had an effective anti-tumor action in multiple patient-
derived glioma stem cell lines (Lang et al., 2018).

The loading of MSCs with oncolytic viruses has being used
as an effective anti-tumor therapy. MSCs infected with the
oncolytic adenovirus ICOVIR5 provided therapeutic benefit for
the treatment of lung carcinoma in mice, through inhibition
of tumor growth and promotion of T cell recruitment to the
tumors (Rincon et al., 2017). Similarly, MSCs carrying the
oncolytic adenovirus CRAd5/F11 inhibited tumor progression
in a subcutaneous murine xenograft model of colorectal cancer
(Guo et al., 2019). Different variants of the oncolytic herpes
simplex virus has also been used to arm MSCs that effectively
track metastatic tumor lesions and prolong survival of mice with
brain metastatic melanomas (Du et al., 2017).

Another cellular Trojan horse that has been used for cancer
treatment is MSCs loaded with anti-cancer drugs. For instance,
an in vitro study determined that the conditioned media
from gingival papilla-derived MSCs primed with Paclitaxel,
Doxorubicin or Gemcitabine inhibit squamous carcinoma
growth (Cocce et al., 2017). Paclitaxel-loaded MSCs also
exhibited anti-tumor effects in glioma-bearing rats (Pacioni et al.,
2015). Latest investigations have focused on the development of
strategies to improve the payload and delivery capacity of MSCs.
In this sense, nanoparticles are a promising approach to increase
the anti-tumor efficacy of MSCs loaded with anti-cancer drugs
(Layek et al., 2018; Wang et al., 2018; Moku et al., 2019). Drug-
encapsulated nanoparticles offer multiple therapeutic benefits by
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providing preferential accumulation at the target site, preventing
burst release and reducing side effects.

LIMITATIONS OF MSC-BASED
THERAPIES FOR CANCER: A
CHALLENGE FOR BIOMATERIALS

The use of engineered MSCs has emerged as a new therapeutic
paradigm to treat cancer. However, efficient engraftment and
survival of delivered MSCs remains a potential obstacle that
limits their therapeutic application. Biomaterials are used in cell
therapy as scaffolds that improve the retention of transplanted
cells in specific sites to treat different pathologies. This combined
use of biomaterials and stem cells allows from the treatment of
restricted defects to the repair and replacement of entire organs
(Zeng et al., 2015; Wang et al., 2017; Diomede et al., 2018).
In the cancer research area, a recent study described a method
for the delivery of therapeutic MSCs on biomaterials to treat
postoperative brain cancer (Sheets et al., 2018). This approach
bases on the implantation of biodegradable fibrin scaffolds seeded
with MSCs into the resection cavity to eradicate residual tumor
cells in patients receiving surgical removal, with the ultimate
goal of increasing cancer-free survival. Another study used
cryogel-housed MSCs that were engineered to release anti-CD33-
anti-CD3 bispecific antibody for effective immunotherapy in
acute myeloid leukemia (Aliperta et al., 2017). In addition to
scaffolds, biomaterials are used to encapsulate cells, protecting
them from the host while allowing the diffusion of nutrients
and therapeutic agents. Microcapsules designed with alginate,
cellulose and agarose have shown benefits in cell-based anti-
cancer therapies (Pelegrin et al., 1998; Sakai et al., 2005;
Schwenter et al., 2011; Johansson et al., 2013). The group of
Simone P. Niclou demonstrated that the interstitial delivery
of alginate-encapsulated cells expressing the soluble form of
the leucine-rich repeats and immunoglobulin-like domains 1
(Lrig1) inhibited tumor growth in orthotopic patient-derived
glioblastoma xenografts mouse model (Johansson et al., 2013).

Biomaterials can be designed to have their own anti-
cancer activities. Among biomaterials used in oncology, Gliadel
represents one of the major success in the development of
interstitial therapies for brain cancer (Brem and Gabikian,
2001). Gliadel is a biodegradable medicinal implant made of
polifeprosan that is inserted into the resection cavity and slowly
releases the anti-cancer agent carmustine over 2–3 weeks. The use
of Gliadel in patients receiving surgical removal of brain tumors
is associated with moderated survival benefits (Bregy et al.,
2013). Latest investigations have discovered a thermo-responsive
biodegradable paste that allows delivering of multiple anti-cancer
agents with improved results in glioma patients survival (Smith
et al., 2019). Once optimized the composition and design of
biomaterials, it may be possible to use them in combination with
stem cells to release anti-cancer agents in a cooperative manner.
Therefore, the application of biomaterial in MSC-based therapies
is a potential approach for the treatment of cancer that merits
further investigation.

CLINICAL APPLICATION OF MSCs FOR
CANCER THERAPY

The last decade has witnessed a rapid development of cell-
based therapies for oncological application, being MSCs at
the forefront of this new tendency. Aside from their anti-
cancer effects, MSCs are of special relevance for personalized
cell-based therapies because they can be easily obtained with
minimally invasive procedures and rapidly large-scale expanded
(Escacena et al., 2015). To date, 25 clinical trials are registered
on ClinicalTrials.gov aimed to use MSCs in various cancer
conditions. Among these studies, 14 trials are using MSCs as
therapeutic agent to directly treat cancer (Table 1). Most of these
trials are ongoing phase 1 or 2 studies that are evaluating the
safety and efficacy of MSC application in cancer patients. Of
special note is a completed phase I/II clinical trial from 2013 that
investigated the use of bone marrow-derived autologous MSCs
infected with the oncolytic adenovirus ICOVIR5 (CELYVIR) to
treat metastatic and refractory solid tumors in children and adults
(NCT01844661). This exploratory study evaluated the adverse
effects after intravenous infusions of CELYVIR (time frame: 48 h
after each infusion) and the clinical outcome (time frame: up
to 2 months after the last infusion). The authors concluded
that multidoses of CELYVIR have an excellent safety profile
and beneficial anti-tumor effects (Garcia-Castro et al., 2010;
Melen et al., 2016). Interestingly, they documented a complete
remission in one pediatric case 3 years after CELYVIR treatment
(Garcia-Castro et al., 2010).

Furthermore, there are nine registered clinical trials
that evaluate the application of MSCs to treat a variety of
side effects of cancer treatments, such as cardiomyopathy
due to anthracyclines (NCT02509156), xerostomia due to
radiotherapy (NCT03874572), cisplatin-induced acute renal
failure (NCT01275612), erectile dysfunction after prostatectomy
(NCT01089387) or radiation-induced hemorrhagic cystitis
(NCT02814864). Therefore, MSC-based therapies stand as
a good therapeutic option not only to directly target cancer,
but also to minimize the side effects of cancer treatments.
Consequently, there are two types of participants that would be
potential candidates in a clinical trial of MSC-based therapy for
cancer; (1) patients with cancer that are receiving or not receiving
treatment, and (2) cancer survivors that experience side effects
of oncological treatments. Inclusion criteria for these individuals
should be either to be diagnosed with cancer, to suffer side
effects of cancer treatments or both. Despite advances are being
achieved, the lack of published results involving clinical studies
hinders the development of further advances in the therapeutic
application of MSCs.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Mesenchymal stem cells are widely used in the treatment of
various diseases due to their ability to home to damaged tissues,
their ability to differentiate into various cell types and their
pleiotropic effects. However, the therapeutic use of MSCs for
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TABLE 1 | Clinical studies using MSC-based therapies for cancer treatment.

NCT Number Purpose Condition Therapeutic
agent

Phase Start date Status Locations

NCT03896568 To determine the maximal tolerated
and toxicity of allogeneic bone
marrow-derived MSCs loaded with
the oncolytic adenovirus DNX-2401
(BM-MSCs-DNX2401)

Glioma BM-MSCs-
DNX2401

I 2019 Recruiting United States

NCT03608631 To determine the maximal tolerated
and toxicity of MSC-derived
exosomes loaded with KrasG12D
siRNA (iExosomes)

Pancreatic cancer iExosomes I 2019 Not yet
recruiting

United States

NCT03298763 To evaluate the safety and
anti-tumor activity of MSCs
genetically modified to express
TRAIL (MSC-TRAIL)

Adenocarcinoma of
lung

MSC-TRAIL I, II 2019 Recruiting United Kingdom

NCT03184935 To determine the safety and
efficacy of human umbilical
cord-derived MSCs (UC-MSC)

Myelodysplastic
syndromes

UC-MSC I, II 2017 Unknown China

NCT02530047 To find the highest tolerable dose of
bone marrow-derived MSCs
expressing INFb (BM-MSC-INFβ)
that can be given To patients with
ovarian cancer and to test their
safety

Ovarian cancer BM-MSC-INFβ I 2016 Active, not
recruiting

United States

NCT02181478 To evaluate feasibility and safety of
combining intra-osseous umbilical
cord blood hematopoietic stem
cells (UC-HSC) and MSC

Hematologic
malignancies

MSCs UC-HSC I 2015 Recruiting United States

NCT02068794 To study the side effects and best
dose of adipose tissue-derived
MSCs infected with oncolytic
measles virus encoding thyroidal
sodium iodide symporter
(AdMSC-MV-NIS)

Ovarian cancer AdMSC-MV-NIS I, II 2014 Recruiting United States

NCT02079324 To determine maximum tolerable
dose, safety and efficacy of
intratumoral injected GX-051

Head and neck
cancer

GX-051 I 2014 Unknown Korea

NCT02270307 To evaluate the effectiveness of the
use of MSCs and
cyclophosphamide

Hematological
malignancies

MSCs and
cyclophosphamide

II, III 2014 Unknown Russian
Federation

NCT01983709 To evaluate home of bone
marrow-derived MSCs (BM-MSCs)
to sites of prostate cancer after
systemic administration

Prostate cancer BM-MSCs I 2013 Terminated United States

NCT01844661 To evaluate the safety of bone
marrow-derived autologous MSCs
infected with ICOVIR5 (CELYVIR) in
children and adults with metastatic
and refractory solid tumors

Solid tumors
metastases

CELYVIR I, II 2013 Completed Spain

NCT01129739 To evaluate the safety and efficacy
of MSCs derived from human
umbilical cord/placenta
(UC/PL-MSC) at a dose of
1.0E + 6 MSC/kg

Myelodysplastic
syndromes

UC/PL-MSC II 2010 Unknown China

NCT01092026 To determine the feasibility of
umbilical cord blood hematopoietic
stem cell (UCB-HSC)
transplantation with co-infusion of
third party MSCs

Hematological
malignancies

UCB-HSC with
MSCs

I, II 2010 Unknown Belgium

NCT01045382 To evaluate the capacity of MSCs
to improve 1-year overall survival of
patients transplanted with
HLA-mismatched allogeneic
hematopoietic cells

Hematological
malignancies

MSCs II 2010 Recruiting Belgium
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cancer has been hampered by contradictory results describing
both anti- and pro-tumor effects in preclinical studies. Despite
this reality, latest MSC-based therapies bring new hope to cancer
patients by offering highly effective anti-cancer treatments in a
personalized manner. Among MSC-based therapies, the use of
MSCs as Trojan horses to deliver therapeutic factors represents
an important step forward to a more efficient cancer treatment.
The next challenge is to better understand the interaction
between MSCs and cancer cells to improve the clinical safety
of MSC-based therapeutic approaches. In this context, the use
of MSC-derived extracellular vesicles as a cell-free therapy has
emerged as a promising option that circumvent the safety
concerns associated with the use of live cells. Further research will
shed light on the challenges facing cell-free therapy for cancer.
We are definitely moving closer to generate a safe and effective
medicinal product for cancer that will improve survival and
quality of life of patients suffering this devastating disease.
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