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The broad spectrum of intellectual disability (ID) patients’ clinical manifestations,
the heterogeneity of ID genetic variation, and the diversity of the phenotypic
variation represent major challenges for ID diagnosis. By exploiting a manually
curated systematic phenotyping cohort of 3803 patients harboring ID, we identified
704 pathogenic genes, 3848 pathogenic sites, and 2075 standard phenotypes for
underlying molecular perturbations and their phenotypic impact. We found the positive
correlation between the number of phenotypes and that of patients that revealed their
extreme heterogeneities, and the relative contribution of multiple determinants to the
heterogeneity of ID phenotypes. Nevertheless, despite the extreme heterogeneity in
phenotypes, the ID genes had a specific bias of mutation types, and the top 44
genes that ranked by the number of patients accounted for 39.9% of total patients.
More interesting, enriched co-occurrent phenotypes and co-occurrent phenotype
networks for each gene had the potential for prioritizing ID genes, further exhibited the
convergences of ID phenotypes. Then we established a predictor called IDpred using
machine learning methods for ID pathogenic genes prediction. Using10-fold cross-
validation, our evaluation shows remarkable AUC values for IDpred (auc = 0.978),
demonstrating the robustness and reliability of our tool. Besides, we built the most
comprehensive database of ID phenotyped cohort to date: IDminer http://218.4.234.74:
3100/IDminer/, which included the curated ID data and integrated IDpred tool for both
clinical and experimental researchers. The IDminer serves as an important resource and
user-friendly interface to help researchers investigate ID data, and provide important
implications for the diagnosis and pathogenesis of developmental disorders of cognition.

Keywords: intellectual disability, phenotypic convergence, gene-focused networks, co-occurrent phenotype,
machine learning, pathogenic genes prediction
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INTRODUCTION

Intellectual disability (ID), also known as mental retardation,
is characterized by significant impairment in cognition. The
patients with ID usually have the obvious shortcomings of
adaptive behavior before the age of 18, and a high incidence
rate, 1–3%, making it a worldwide social problem (Maulik
et al., 2011; Mefford et al., 2012). It can occur in isolation
or in combination with congenital malformations or other
neurological features such as epilepsy, congenital malformations,
sensory impairment, and autism spectrum disorders (ASD), and
its severity (mild, moderate, severe, and profound) is highly
variable (Vissers et al., 2016). The heterogeneity of phenotypes
poses additional challenges for understanding the complex
etiology, with contributions by environmental factors, perinatal
hypoxia, and genetic factors. In recent years, genetic factors
including chromosomal abnormalities, single and multiple gene
mutations have found to become increasingly prominent for the
disease (Gilissen et al., 2014; Lelieveld et al., 2016; Reichenberg
et al., 2016). With the increasing number of ID cases identified in
clinics, its phenotypes have found to be extremely heterogeneous.
Previous studies found that patients with identical mutations in
a single gene could give rise to different phenotypes (Hoischen
et al., 2014). As the limitations of detection technologies and the
heterogeneity of ID genes and phenotypes, many patients still
lack appropriate diagnosis.

In the past 10 years, a large number of studies have been
carried out in order to explore the genetic mechanism of ID (Gécz
et al., 2009; Ellison et al., 2013). In particular, the development
of second-generation sequencing technology facilitates the rapid
investigation of more DNA samples from ID cases (Rauch et al.,
2012; Gilissen et al., 2014). This led to an expansion in the
number of genes associated with ID. Having mass data about ID
genes, clinical phenotypes, and pedigrees available in the public
domain could shed insights into ID mechanisms. A previous
report suggests that ID genes are substantially enriched with co-
expression, protein-protein interactions, and specific biological
functions. Furthermore, they also revealed combinations of
typical phenotypes within process-defined groups of ID disorders
by clusters of ID genes with significantly elevated biological
coherence (Kochinke et al., 2016). This suggests that ID genes
and phenotypes have their own characteristics, and these data
can be used to define mechanisms of ID and may improve the
diagnosis of patients.

In this study, the ID genes, phenotypes, and pedigrees were
extracted manually and analyzed and then integrated to build a
standard ID database IDminer, which analyzed the phenotypes,
genes, families and their relationships based on the individual
patient. Furthermore, the candidate pathogenic genes for ID
patients could be prioritized based on the molecular feature
of ID genes and the genes specific phenotypes and phenotypic
pairs. Furthermore, the similarity between patients was also
evaluated via clinical features and could help patients with
effective intervention. Importantly, the curated data including ID
phenotypes, genes and pedigrees, their integrated analysis and
their applications are accessible online via http://218.4.234.74:
3100/IDminer/.

MATERIALS AND METHODS

Analysis of Specific Phenotypes and
Phenotypic Pairs
Each pathogenic gene could be associated with multiple patient
samples, and each patient may have different phenotypes.
For each gene, the specific phenotypes were obtained with
the enrichment analysis using the hypergeometric distribution.
A gene could correspond to multiple patients. For each patient,
any two of their phenotypes formed a phenotype pair, referred to
as co-occurrence. A phenotype pair could appear in N patients
(N represents the frequency of phenotypic pairs). In situations
with a single gene affecting multiple cases, multi-phenotypic pairs
and their frequencies were obtained. For each phenotypic pair, we
analyzed whether the co-occurrence was enriched in the affected
patients or not.

Construction of Co-occurrence Network
For constructing a co-occurrence network, all phenotypic pairs
with a P-value = 0.05 for at least one gene were built as a
non-directional network. In this network, each node represents
a phenotype and the node size indicates the frequency of the
phenotype in the database, while the edges denote significantly
enrichment between phenotype pairs. Then the modules were
extracted with the R igraph package.

Phenotype-Based Samples Similarity
Analysis
The same phenotype may appear in different patient samples.
Based on the number of the same phenotypes between
these samples, similarity scores between pairs of patient
samples was calculated.

The Phenotype Converting Tool
The tool was used to calculate the similarity between the users’
input phenotypes and the 2,075 standard phenotypes in this
website. The python module named FuzzyWuzzy was used to
calculate the similarity score [0,100]. The higher the score, the
more similar the two phenotypes.

Supervised Machine Learning Prediction
In this study, the supervised machine learning method, Support
Vector Machine (SVM), was employed for ID pathogenic genes
prediction. The R language interface of LIBSVM was used to
construct the SVM-based pathogenic predictors. The radial basis
function was chosen as the kernel function, and the other
parameters were set at the default. A prediction model was
trained using repeated 10-fold cross-validation of the training
dataset, and their predictive performance was evaluated in the
independent test dataset.

Web Interface Configuration
The interface has two main parts: one part displayed the ID
knowledge base data and the search results, while the other
displayed the input and results of the analysis tool. Through
the search box on the main page, users could search for a gene
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or a phenotype. Through the tools button in the main menu,
users could enter the analysis interface, and according to the
given phenotypes and genes, the ID genes were identified, and
the association between the genes and their phenotypes were
visualized. The web service was mainly based on java server pages,
JavaScript, R, Python, Ajax, Apache, and MySQL.

RESULTS

Data Curation
We first employed the keywords, such as ID, mental retardation,
developmental delay, cognitive impairment, developmental
disability, and learning disability to accomplish the literature
searches by using PubMed. Then the literature was filtered
through the artificial proofing method, and the ID-related papers
and genes were retained. The text mining method was used
to mark phenotypes in the literature using the HPO1 database
phenotypic information as a reference. Then the gene name,
mutation site, and phenotypes were curated manually (Figure 1).
Based on the sample description in the literature, the family
information of the samples were also collated from the HGNC
(HUGO Gene Nomenclature Committee) database according
to the acquired ID-related gene name information, such as
gene alias, chromosome localization, corresponding OMIM ID,
and Ensembl ID, and the biological function and pathway
information for these genes were marked simultaneously through
GO2 and KEGG3 databases.

The Landscape and Convergence of ID
Genes
Through 1174 ID papers, we obtained a total of 3803 samples with
2075 phenotypic descriptions, that were caused by 704 ID genes.
Among these genes, there are 3848 mutations, containing 1793
missense/non-sense mutations, 182 splicings, and 610 indels. We
found that the majority of the genes were identified in less than
10 patients, and 305 genes (43.3%) found in only one patient
and 103 genes (14.8%) in two patients (Figure 2A). Also, a
small set of genes caused more patients than other genes, as
shown in Figure 2B, the top nine genes ranked by the number
of patients accounted for 14.9% of the total patient group, and
the top 44 genes included 39.9% of patients. Moreover, our
analysis also showed some ID genes had the dominant mutation
types (Figure 2C). For the top 57 genes ranked by the number
of ID patients, the majority of mutations of patients harboring
mutated MECP2, HUWE1, and CREBBP are gross insertions.
In addition, the predominant mutation type of patients with
mutated THOC2, KIF1A, KDM5C, IQSEC2, SLC6A8, TBC1D24,
MAN1B1, YAP1, GRIN2B, PAK3, NALCN, CLPB, and GRIN1
genes are missense/non-sense mutations, while deletions are
mainly found in patients harboring SOX4, NRXN1, FMR1,
MEF2C, OPHN1, PQBP1, AUTS1, MYT1L, CNTNAP2, MAPT,
and TUSC3 genes. Importantly, the mutation types of 47 of

1http://human-phenotype-ontology.github.io
2http://geneontology.org/
3http://www.genome.jp/kegg/

the top 57 genes contained gross insertions (most duplications)
and missense/non-sense, suggesting that both deletion and
overexpression of these genes were likely to cause ID disease.
These findings suggested that despite the diversity of ID genetic
variation, most ID patients are caused by a small number of genes
based on its genetic bias and convergence.

The Heterogeneities of ID Phenotypes
Among the patient cohort, 637 (16.6%) patients have a unique
phenotype, while 901 (23.7%) patients have more than ten
phenotypes (Figure 3A). Also, our data showed that the number
of phenotypes for each patient had a positive correlation
with the number of the patients, which showed a significant
linear relationship (Spearman P-value < 0.001, Figure 3B) and
indicated the heterogeneity of the ID phenotypes. Additionally,
HPO structure analysis found the accompanying phenotypes of
ID were also widely distributed, including symptoms in many
parts of the body (Figure 3C). For these phenotypes, as shown
in Figure 3D, the top 50 phenotypes ranked by the number
of patients exhibited that the ID was usually accompanied by
other mental diseases, such as seizure, epilepsy, microcephaly,
ataxia, microcephaly and autism, abnormal behaviors containing
hypotonia, strabismus, sleep disturbance, constipation, delayed
or absent speech, motor delay, hyperactivity, feeding difficulties
and inability to walk, and dysmorphism about spine, face, stature,
and cryptorchidism. These results showed that the phenotypes of
ID patients had extreme heterogeneity.

The Convergences of ID Phenotypes
The phenotypes that were converged for each gene based on
the fact that intra-similarity between patients caused by one
gene were more than inter-similarity between different genes’
patients (Figure 4A) and the phenotypes in patients caused by the
identified mutations in the same family had more similarity than
other families (Figure 4B). To better understand the convergence
of the ID clinic features, we first obtained the specific phenotypes
for each ID gene with enrichment analysis. A total of 143
phenotypes, appearing in at least five patients caused by the
same gene, were enriched in some genes’ patients (Figure 4C).
Importantly, among the phenotypes, 47 appeared in only single
gene’s patients and accounted for 30 genes, which could help
to diagnosis the patients caused by the genes (Figure 4C).
To illustrate the relationships between phenotypes, we also
investigated the situation of two phenotypes could be co-occurred
in one patient, and the co-occurrence phenotypes were recorded
as “phenotypic pairs.” We analyzed these phenotypic pairs
presented in patients with an enrichment analysis. Interestingly,
we found that most enriched phenotypic pairs were specific for
a single gene. Like single phenotype analysis, phenotypic pairs
made it easy to diagnosis patients with 82 ID genes (Figure 4D).

Gene-Focused Network for Phenotype
Enrichment
Then we analyzed the network diagram of the phenotypic
pairs for each gene, which revealed the gene-focused network
(Figure 5A) and three typical sub-networks (Figure 5B). The
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FIGURE 1 | The flowchart of data collection and curation. The framework for genes extracting, paper downloading, phenotypes, and pedigrees obtaining and data
curating of this project.

first type of sub-network was radial, indicating that most of
the phenotypes co-occurred with another one phenotype (like
gene ZNF711). The pathogenic genes with the first type of
sub-network may have a core phenotype, or an important
phenotype that appeared more frequently, and it illustrated that
there are strong association between the core phenotype and
the biological function. The second type of sub-network was
dense, and the phenotypes co-occurred with each other (like
gene PIGO). The pathogenic genes with the second type of sub-
network often result in a set of concurrent phenotypes. In this
case, the prediction of pathogenic genes by phenotype may be
more accurate. The third type of sub-network was the mixed
state of the above two types (like gene MECP2). With the third
type of sub-network of pathogenic genes, the mutations are
usually more extensive, the phenotypes are complex, and one
independent group phenotypes is often insufficient to reveal the
pathogenic genes information. Our analysis showed that the co-
occurrence network of each gene had its own characteristics,
and the phenotypes in the co-occurrence network of each
gene are different. And the co-occurrence networks of different
genes had commonality in their structural similarity. Analysis
of co-occurring networks further illustrated the phenotypic
conservation relative to genes, despite the heterogeneity of
phenotypes. Based on the above discoveries, we inferred that the
pathogenic genes for patients could be achieved by analyzing
specific phenotypes and phenotypic pairs. Our analyses indeed
showed that the more the patients’ phenotypes, the more accurate
the prediction of pathogenic genes (Figure 5C). Furthermore,
given more phenotypes, the predicted pathogenic genes incline
to have a more significant P-values (Figure 5D). These results
showed that phenotypic analysis could reveal the convergences of
ID phenotypes and be used for clinical pathogenic gene analysis.

Pathogenic Gene Prediction
Support Vector Machine is one of the most widely used machine
learning algorithms in computational biology. It was previously
used for predicting virulent proteins in bacterial pathogens (Garg
and Gupta, 2008), the clinical outcome from cancer patients
(Yeoh et al., 2002) and gene interactions in genetic diseases
(Upstill-Goddard et al., 2013). As shown in Supplementary
Figure S1, developed SVM-based predictor, a 10-fold cross-
validation was employed on the training datasets for model
selection purpose (Figure 6A), and the final performance
of the predictor was measured on the independent testing
dataset (Ortiz-Gonzalez et al., 2018) compared with other ID
pathogenic gene prediction models (Yang et al., 2015; Stelzer
et al., 2016; Figures 6B,C). The receiver operating characteristic
curve (sensitivity against 1-specificity) was used to measure
the prediction performance under different decision thresholds,
and the area under the curve (AUC) was calculated as the
main performance evaluation metric. For calculating variable
importance for prediction, 100 sets of independent training were
performed using different random seed. The median of variable
importance obtained in each training was used as a representative
value (Supplementary Figure S2).

Database and Tool for ID Research and
Diagnosis
In order to represent the ID data and the analysis tools for
ID research and diagnosis, the IDminer system was designed.
The database included a number of components, including a
knowledge base for intellectual disabilities, specific phenotypes
and phenotypic pairs for genes, co-occurrence networks, and
analysis tools for converting phenotypes to standard phenotypes
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FIGURE 2 | The landscape and convergence of ID genes. (A) The distribution of patient number for each gene. Most genes had less than three patients. (B) The top
genes accounted for most patients. (C) The heatmap of genes and their mutations/indels in ID patients.

and exploring the expressions of interesting genes in the
brain (Figure 7). IDminer was built on open sources software
systems, such as MongoDB database, Express web development
framework, Nginx web server, and Ubuntu operating system.
Python and R were used for data collection processing and
analysis. A user-friendly web interface was provided to help users
search and analyze the data online at http://218.4.234.74:3100/
IDminer/. The interface consists of seven parts: Home, Browser,
Tools, Statistics, Download, Help, and Q&A. On the Home
page, an introduction to the IDminer outlines a description
statistic about all the data integrated into the database and the
search module for gene and phenotype. There are two analysis
tools for converting phenotypes and prioritizing candidate genes,
respectively. Converting phenotypes is to help user mapping their
clinical descriptions to our standard ID phenotypes, while co-
expression analysis can be based on the brain gene expression
data to study the expression profile of the interesting genes

and its related genes. In the Document and Q&A pages, the
guidelines for the database, and frequently asked questions and
answers were showed. Furthermore, our database could be easily
updated with the latest published information. For gene query,
we provided basic gene information and linked it to multiple
external databases, such as containing Ensemble, UniProtKB,
GO, KEGG, and OMIM. Reported mutations, ID phenotypes,
and patient information were also represented. Additionally, the
gene’s phenotypic pairs were also interactively visualized. When
users entered a phenotypic item in the input box, we listed its
basic information such as HPO ID, synonyms and phenotype
definitions, reported patients with this phenotype, reported
causative genes causing the patients, and its co-occurrence
network. For reported genes, in addition to displaying detailed
mutation information of these genes, we also annotated the genes’
functions and performed PPI network analysis. Importantly, the
query clinic feature could be enriched for some genes, and the
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FIGURE 3 | The heterogeneities of ID phenotypes. (A) The distribution of the phenotypes number for each patient. (B) A scatter point and line fitting showing the
correlation between the patient number and phenotypes count. The patient number and phenotype count were derived from each gene in the database. (C) The
phenotypes structure of ID patients. (D) The oncoprint-like representation of phenotypes in ID patients.

genes were also listed. Finally, the top co-occurred phenotypic
pairs ranked by their frequencies were shown as a network and
the enriched genes for each pair were shown by clicking the edge.

A Use Case for the IDpred
The case of a real patient with the pathogenic gene AAR2 and
the standardized phenotypes [Microcephaly (HP:0000252),
Cochlear malformation (HP:0008554), Hypoplasia of the corpus
callosum (HP:0002079), Ventricular septal defect (HP:0001629),
Global developmental delay (HP:0001263), Anteriorly placed
anus (HP:0001545), Macule (HP:0012733), Patent foramen
ovale (HP:0001655)] was selected based on the previous studies
(Charng et al., 2016). The other input candidate genes were
randomly selected from the gene list in our database. Then, the
query genes list consisted of MXRA8, DMBX1, AAR2, CLIC2,
PLA2G6, and phenotypes list consisted of all the standardized
phenotypes of this patient (genes and phenotypes are separated
by semicolons) were entered into the corresponding box on
the page of the website. Then the selection of the models
(for example, SVM) with the appropriate parameters should
be submitted (Supplementary Figure S3A). The result page
contains seven columns (GeneSymbol, PathogenicGeneRank,
PathogenicScore, Pathogenicity, SimilarRank, SimilarScore,
and Phenotypes) would be displayed. On the result table,
PathogenicGeneRank is the rank of the input pathogenic

genes compared to all deposited genes in our database,
PathogenicScore is the score of the pathogenic genes, and
Pathogenicity is defined as “Probably” (PathogenicScore > 0.5)
or “Less likely” (PathogenicScore = 0.5). SimilarRank refers
to the rank of similarity between gene and phenotypes, and
SimilarScore refers to the calculated score of similarity between
gene and phenotypes. Phenotypes listed the phenotypes related
to the GeneSymbol. As shown in the result of this case, AAR2
was predicted as the pathogenic gene with the highest pathogenic
score of 0.788 (Supplementary Figure S3B).

DISCUSSION

Our work manually extracted a large number of genes, clinic
phenotypes and basic information of the patients from published
ID literature. By integrating these data for comprehensive
analysis, we have provided a holistic view of the current genetic
research of ID and made the correlation of various clinic factors
of ID patients, prompting researchers to further explore the
mechanisms causing ID. The mutation spectrum delineated
in our datasets provided essential information for molecular
diagnosis in ID patients. Though most genes had its major
mutation types, the spectrum showed that all mutation types
were identified in ID cases. This combination of mutation types
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FIGURE 4 | The convergences of ID phenotypes. (A) The mean value of intra-similarity between patients caused by one gene was higher than the mean value of
inter-similarity between the gene’s patients and other genes’ patients. (B) The similarity of phenotypes in patients caused by identical mutations among the same and
other families. (C) The oncoprint-like representation of specific phenotypes for genes. (D) The oncoprint-like representation of specific phenotypic pairs for genes.

raises the need of using several clinical detection methods for
ID diagnoses such as Array Comparative Genomic Hybridization
(aCGH), target panel sequencing, whole exon sequencing, and
even whole genome sequencing (De Ligt et al., 2013; Redin
et al., 2014). Notably, because a small number set of genes
accounted for most ID patients, targeted panel sequencing may
be favorable than other methods in consideration of cost, time
and the difficulty of the data analysis.

The phenotypes of ID patients were extremely diverse
and heterogeneous. Unlike the previous study of phenotype-
based clustering (Kochinke et al., 2016), we mapped the
phenotypes of ID patients to HPO items and found the 2075

phenotypes in total 3803 patients. We confirmed not only
mutations in different genes could lead to various phenotypes,
but defects in a single gene had been implicated in different
phenotypes. Interestingly, there was also considerable phenotypic
heterogeneity even among individuals who have identical
mutations in the disease gene. We speculated that, besides
various genes, the heterogeneity of phenotypes could be affected
by other factors, such as mutation types, genetic background,
and environment. Though the phenotypes of ID patients were
heterogeneous, the specific phenotypes for genes could be
analyzed and used for prioritizing caused genes. A previous
report suggests that, for tubulinopathies, each mutated gene has
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FIGURE 5 | Gene-focused network for phenotype enrichment. (A) The network of phenotypes that were enriched in genes. (B) The three types of co-occurrence
sub-networks. (C) The accuracy of the predicted pathogenic gene with phenotypes. (D) The P-value distribution of predicted pathogenic gene based on different
number of given phenotypes.

an associated predominant pattern of cortical dysgenesis (Bahi-
Buisson et al., 2014). Additionally, the previous studies in ID
found that convergent molecular pathways result in common
phenotypes (Kochinke et al., 2016), allowing some phenotype-
genotype correlation. However, the common phenotypes for each
gene could be achieved until recently the applications of NGS,
aCGH, target sequencing, WES, and WGS to ID patients, which
lead to an increase of diagnosis. This larger sample size could
raise the power of the statistical significance test. Then, for some
genes, a large number of patients are sufficient to statistically to

find the specific phenotypes, phenotypic pairs and co-occurrence
networks for the genes. These features were extracted with
enrichment in patients subgroup caused by each gene, confirming
the phenotype-genotype correlations and the convergence of ID
phenotypes among their extreme heterogeneities.

With the deepening of ID research and the increase of reported
patients, it also requires the development of analytical tools for ID
researchers to understand the data. Therefore, providing online
friendly and easy-to-use analysis tools will also greatly assist in the
research of the entire ID field. So, our website not only provides
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FIGURE 6 | Performance comparison of pathological gene prediction between IDpred and other algorithms. (A) ROC curve derived from IDpred model based on 10
fold cross validation. (B) the percentage of predicted pathogenic gene derived from IDpred, phenolyzer, and varElect. (C) cumulative distribution of TopN rate base
on the rank of the pathogenic gene derived from IDpred, phenolyzer, and varElect.

FIGURE 7 | The illustration of functional modules of IDminer database. The six functional modules of IDminer: Brower, Genes, Gene co-expression, Phenotype,
Phenotype convert, and Download.
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a knowledge base of ID but also aggregates tools commonly used
in ID analysis. And more analysis tools for ID will be added in the
future to promote ID research as much as possible.

Overall, our data and analysis showed the convergences of
ID genes and phenotypes among their extreme heterogeneities.
For genes, the convergence was characterized by the fact that
a small percentage of genes could explain the majority of
ID phenotypes. And for phenotypes, it was represented as
genes’ specific phenotype and phenotypic pairs. Importantly,
we provided analysis tools based on ID genes and phenotypes
in hopes of establishing the standard ID gene and phenotype
libraries and, in turn, aiding in clinical diagnosis. Overall, the
findings and tools could contribute to the understanding of the
genetic basis of ID disease and ultimately improve the diagnosis
and treatment of the disease.

CONCLUSION

Our analysis provided evidence to support, though the ID genes
and phenotypes were extremely heterogeneous, the genetic bias
and phenotypic convergence deserved our more attention, which
may help to help us to quickly diagnose ID patients and further
promote the studies of disease mechanisms. Moreover, our
curated data, analysis, and developed tools were integrated to
build a standard ID database IDminer, which could be accessed
through http://218.4.234.74:3100/IDminer/. The database and
interface are user-friendly for geneticists and clinicians, and a
very wide range of ID researchers.
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