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The survival rate of patients with breast cancer has been improved by immune
checkpoint blockade therapies, and the efficacy of their combinations with epigenetic
modulators has shown promising results in preclinical studies. In this prospective
study, we propose an ordinary differential equation (ODE)-based quantitative systems
pharmacology (QSP) model to conduct an in silico virtual clinical trial and analyze
potential predictive biomarkers to improve the anti-tumor response in HER2-negative
breast cancer. The model is comprised of four compartments: central, peripheral, tumor,
and tumor-draining lymph node, and describes immune activation, suppression, T cell
trafficking, and pharmacokinetics and pharmacodynamics (PK/PD) of the therapeutic
agents. We implement theoretical mechanisms of action for checkpoint inhibitors and
the epigenetic modulator based on preclinical studies to investigate their effects on anti-
tumor response. According to model-based simulations, we confirm the synergistic
effect of the epigenetic modulator and that pre-treatment tumor mutational burden,
tumor-infiltrating effector T cell (Teff) density, and Teff to regulatory T cell (Treg) ratio are
significantly higher in responders, which can be potential biomarkers to be considered
in clinical trials. Overall, we present a readily reproducible modular model to conduct
in silico virtual clinical trials on patient cohorts of interest, which is a step toward
personalized medicine in cancer immunotherapy.

Keywords: immuno-oncology, immune checkpoint inhibitor, computational model, systems biology, epigenetic
modulator, quantitative systems pharmacology, virtual clinical trial
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INTRODUCTION

Although in clinical trials immunotherapies using anti-PD-1
and anti-PD-L1 antibodies and their combinations with other
types of therapies have improved the overall response rate and
progression-free survival rate in patients with breast cancer,
more than half of patients developed progressive disease (Emens,
2018). To improve the efficacy of checkpoint inhibitors, multiple
strategies are being developed to facilitate antigen release, T cell
activation and homing, and improve tumor microenvironment,
such as cancer vaccines and anti-OX40 antibody therapy (Hu-
Lieskovan and Ribas, 2017). In March 2019, the Food and
Drug Administration (FDA) granted an accelerated approval
for the immunotherapy anti-PD-L1 drug, atezolizumab, in
combination with chemotherapy drug, nanoparticle albumin–
bound paclitaxel (nab-paclitaxel), for the initial treatment
of some women with advanced triple-negative breast cancer
(TNBC). Among the ongoing clinical trials in breast cancer,
a phase I trial using a triple combination of anti-CTLA-
4 and anti-PD-1 antibodies, and a small-molecule epigenetic
modulator, entinostat, tests safety, efficacy and impact on the
ratio of tumor-specific effector T cell (Teff) to regulatory T cell
(Treg) (NCT02453620).

Entinostat, also called MS-275, was originally developed as
an antitumor agent, which inhibits histone deacetylases (HDAC)
and induces a shift of cell cycle from S phase to G1 phase
(Saito et al., 1999). There is emerging evidence that it can
alter the immune-suppressive microenvironment in the tumor
(Connolly et al., 2017; Christmas et al., 2018). Preclinical studies
also suggest that the alteration of the tumor microenvironment
can improve the efficacy of checkpoint blockade therapy (Kato
et al., 2014; Pili et al., 2017). In an in vivo experiment by
Kim et al., the addition of entinostat significantly reduced
tumor volume in 4T1 and CT26 mouse models under anti-
PD-1 and anti-CTLA-4 antibody treatment (Kim et al., 2014).
In a recent study, combining entinostat with anti-PD-1, anti-
CTLA-4, or both significantly improved tumor-free survival
in the HER-2/neu transgenic breast cancer mouse model
(Christmas et al., 2018).

The success of entinostat treatment in preclinical studies
has also drawn the attention to myeloid-derived suppressor
cells (MDSCs) in the breast tumor microenvironment. In
breast cancer patients, MDSC level is correlated to cancer
stages and metastasis (Gonda et al., 2017). As a major
contributor of the immune suppression in peripheral lymphoid
tissues, the inhibitory effect of MDSCs is also found to be
augmented in the tumor microenvironment, such as Treg
expansion and inhibition of Teff functions (Kumar et al.,
2016). Although a number of mechanisms are considered
to be the potential causes of their inhibitory effects, recent
studies suggest that Arginase I (Arg-I) and nitric oxide (NO)
are the major immune-suppressive molecules secreted by
MDSCs (Alotaibi et al., 2018; Park et al., 2018; Sheikhpour
et al., 2018). Due to their significant inhibition of adaptive
immune response in the tumor microenvironment, MDSCs
have been suggested as a target for breast cancer treatment
(Markowitz et al., 2013).

Besides the significant reduction of tumor volume, entinostat
is also suggested to alter MDSC levels both in blood and in
the tumor microenvironment; to change the proportions of T
cell subsets; and to increase tumor sensitivity to CTL-mediated
lysis (Kim et al., 2014; Gameiro et al., 2016; Orillion et al.,
2017; Christmas et al., 2018). Experiments detected a significant
reduction of tumor-infiltrating FoxP3+ Treg and granulocytic
MDSC (G-MDSCs) (vs. monocytic MDSC, M-MDSC) in mice
receiving entinostat treatment (Kim et al., 2014; Christmas
et al., 2018). A separate preclinical study also observed
the enhanced antitumor immune response with significantly
decreased FoxP3+ expression in circulating Tregs and increased
tumor-infiltrating G-MDSCs in syngeneic mouse cancer models
under entinostat and anti-PD-1 antibody treatment (Orillion
et al., 2017). Although preclinical studies have provided
somewhat controversial conclusions on how entinostat alters
the composition of T cell subsets and MDSCs in the tumor
microenvironment, they all suggest that entinostat reverses the
inhibitory effects of MDSCs (Kim et al., 2014; Orillion et al., 2017;
Christmas et al., 2018).

Due to the promising efficacy of entinostat treatment in
preclinical studies, the effects of entinostat were investigated with
exemestane/placebo in locally advanced or metastatic hormone
receptor-positive breast cancer (Yardley et al., 2013; Tomita et al.,
2016; Yeruva et al., 2018). In a phase II trial, both progression-
free survival and overall survival rates were significantly higher in
the entinostat-treated cohort. These results have led to a phase III
trial (E2112, NCT02115282) that aims to validate the preclinical
and clinical evidence supporting the role of HDAC inhibitors in
improving outcomes for patients with advanced breast cancer
(Yeruva et al., 2018). In addition, the synergistic effect of
entinostat in combination therapy with anti-PD-1 antibody,
nivolumab, has been reported in melanoma patients. Patients
who had stable or progressive disease in previous checkpoint
blockade therapy were converted to responders with entinostat
treatment (Agarwala et al., 2018).

Since the characteristics of patients who are likely to benefit
from epigenetic modulation are still unknown, we propose
an expanded quantitative systems pharmacology (QSP) model
based on our previous steps (Jafarnejad et al., 2019; Milberg
et al., 2019; Wang et al., 2019). It is built with a detailed
MDSC module and pharmacokinetics and pharmacodynamics
of entinostat, to investigate the effect of entinostat and its
combination with nivolumab and ipilimumab by conducting an
in silico virtual clinical trial. Virtual clinical trials aim to generate
virtual patient cohorts with physiologically plausible parameters
and predict efficacies of treatments of interest using in silico
simulations with a QSP model (Allen et al., 2016; Cheng et al.,
2017; Rieger et al., 2018). Due to the heterogeneity of patient
cohorts enrolled in clinical trials and wide range of treatment
strategies, in silico simulations using a virtual patient cohort that
resembles the desired clinical population can provide insights
into the potential therapeutic outcome even before the therapy
begins. In this study, we will conduct an in silico virtual clinical
trial to explore the effects of different factors and patients’
characteristics prospectively, ahead of the results of the ongoing
clinical trial (NCT02453620).
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MATERIALS AND METHODS

Model Overview
The proposed QSP model has a general structure similar to the
model introduced in our previous studies (Jafarnejad et al., 2019;
Wang et al., 2019). It comprises four compartments: central,
peripheral, tumor, and tumor-draining lymph node (TDLN).
The central and the peripheral compartments represent the total
volume of blood and peripheral tissues, respectively. The TDLN
compartment represents a lumped lymph node assuming that
the antibody and T cell activation is evenly distributed among
a number of TDLNs. The tumor compartment represents the
total tumor volume, which is calculated at each time step as the
addition of the total volume of proliferating and dead cancer cells,
T cells, and other cells and tumor interstitium. Tumor diameter is
calculated using total tumor volume assuming a spherical tumor,
which is an estimate of mean lesion size for each virtual patient.

The model comprises multiple modules, each of which
describes the dynamics of one of the major species (i.e., effector T
cells, regulatory T cells, MDSCs, cancer cells, antigen-presenting
cells (APCs), antigens, checkpoint ligands and receptors, and
therapeutic agents); each module is built separately using
MATLAB (MathWorks, Natick, MA, United States) scripts. The
modular structure of this model greatly facilitates modifications
and expansions for future applications. The model used in this
study comprises eight modules, 210 parameters, 120 ordinary
differential equations (ODEs) and 39 algebraic equations, which
are implemented using the SimBiology toolbox in MATLAB.
The dynamics of the major species in the model are illustrated
in Figure 1. Full lists of model parameters, reactions, algebraic
equations, and cellular and molecular species are included in the
Supplementary Tables S1–S6.

Pharmacokinetics and
Pharmacodynamics (PK/PD) of
Entinostat
Since there is no published population-based pharmacokinetic
model for entinostat, we propose a model structure for this oral-
administered drug based on four published clinical PK studies
of entinostat, and the PK parameters are optimized using data
reported in these studies (Ryan et al., 2005; Gojo et al., 2007;
Kummar et al., 2007; Gore et al., 2008). Parameter optimization
is performed using pattern search in the MATLAB Global
Optimization Toolbox. Multi-compartment PK model structures
are tested using similar methods from Gasthuys et al. (2018)
and the final diagram of our proposed PK model structure is
demonstrated in Figure 2A. As shown in the figure, a portion
of the dose is immediately absorbed by the patients via zero-
order buccal absorption over a time duration D0 into the
buccal compartment, and the rest of the dose is absorbed after
a time period Tlag via first-order gastrointestinal absorption
into the gastrointestinal compartment. The drug in buccal and
gastrointestinal compartments are then absorbed into the central
compartment via first-order absorption and diffuse into the
peripheral and the tumor compartments. For pharmacodynamics
of entinostat, it is known to induce cell cycle arrest in cancer

cells, reduce their viability, and significantly reduce the level of
immune-suppressive cytokines in the tumor (Lee et al., 2001;
Bouchain et al., 2003; Choo et al., 2010, 2013; Ryu et al., 2019).
In the current module, we assume that the major mechanisms of
action for entinostat are inhibitions of cancer cell proliferation
and production of monocyte chemoattractant protein-1 (MCP-
1/CCL2) and nitric oxide, by which entinostat has shown to
reverse the immune-suppressive effects of MDSCs (Kim et al.,
2014; Orillion et al., 2017; Christmas et al., 2018). The PD
parameters of entinostat are listed in Supplementary Table S7,
and its anti-proliferative effect on breast cancer cells is shown
in Supplementary Figure S1. Since the effect of entinostat on
MDSC level and T cell subsets are still under investigation, it
is assumed not to have direct impact on any species other than
cancer cells in the model (Kim et al., 2014; Orillion et al., 2017;
Christmas et al., 2018). In addition, the PK/PD of checkpoint
blockade antibodies are implemented using the same equations
as in our previous model based on published clinical data (Feng
et al., 2014; Bajaj et al., 2017; Wang et al., 2019).

MDSC Module
In addition to the mechanisms from our previous model
(Jafarnejad et al., 2019), a new MDSC module is implemented
to describe the immune-suppressive mechanisms of MDSC
including Treg expansion and inhibition of effector T cell
function. MDSCs are recruited into the tumor compartment
by CCL2 secreted by cancer cells in addition to a baseline
recruitment, and the predicted CCL2 expression and migration
indices are fitted to TNBC data (Supplementary Figure S3;
Huang et al., 2007; Dutta et al., 2018). The factors secreted
by MDSCs as the major contributors of their inhibitory effects
are assumed to be Arg-I and NO, whose expression rates are
estimated based on in vitro experiments on breast cancer cells
(Supplementary Figure S2; Serafini et al., 2008). Since only the
enzymatic activity of Arg-I is measured in enzyme unit, mU, we
use mU as a placeholder of Arg-I concentration in the model,
assuming that the protein concentration is proportional to the
enzymatic activity. The unit of its production rate is then set
to be mU∗(microliter)/cell/day to estimate the amount of Arg-
I produced by MDSCs per day. The unit of production rates of
NO and CCL2 is set to be nanomole/cell/day. While both Arg-
I and NO inhibit cytotoxic killing of cancer cells by effector T
cells, only Arg-I facilitates Treg expansion in the tumor (Serafini
et al., 2008). The effective concentrations are estimated based
on in vitro experiments and listed in Supplementary Table S7
with references.

Mechanisms of Anti-CTLA-4 Activity
Checkpoint Activity of CTLA-4
Dynamics of CTLA-4 related checkpoint molecules are modeled
based on the previously published model by Jansson et al.
(2005), and cross-arm binding of monoclonal anti-CTLA-4
antibody to CTLA-4 is incorporated similar to that of anti-
PD-1 antibody to PD-1 in our previous model (Harms et al.,
2014; Jafarnejad et al., 2019). Briefly, CD28 and CTLA-4 on
naïve T cells are assumed to bind CD80 and CD86 on APCs.
CD28 is a co-stimulatory signal that enhances the activation
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FIGURE 1 | Model diagram. The model is comprised of four compartments: central, peripheral, tumor, and tumor-draining lymph node, which describe cycles of
immune activation in lymph nodes, T cell trafficking to the tumor, killing of cancer cells, immune evasion, and antigen release and lymphatic transport. Anti-CTLA-4
antibody blocks interaction between CD80/86 and CTLA-4 on mAPC and naïve T cell, respectively, in lymph nodes, and induces ADCC-mediated Treg depletion in
the tumor. Anti-PD-1 antibody blocks interaction between PD-1 and PD-L1/2 on Teff and cancer cell, respectively, in the tumor. nT, naïve T cell; aT, activated T cell;
NO, nitric oxide; Arg-I, arginase I; Treg, regulatory T cell; Teff, effector T cell; mAPC, mature antigen presenting cell. The figure is adapted from Jafarnejad et al. (2019).

of naïve T cells resulting in higher levels of proliferating T
cells. Higher affinity of CTLA-4 for CD80/CD86 results in the
depletion of CD28 ligands for T cell activation, and blockade
of CTLA-4 restores ligand availability for CD28 that leads to
enhanced T cell activation and proliferation. Furthermore, the
binding of CD80 on APC to PD-L1 on T cells was included
to compete with the interactions of PD-1 and CTLA-4 related
axes (Sugiura et al., 2019). All the reactions are assumed to
happen in the two-dimensional synapse compartment between
the respective cells and the details of the reactions are included
in the Supplementary Material. The biochemical parameters of
this module are mostly measured experimentally and reported in
the literature (Jansson et al., 2005).

Anti-CTLA4-Mediated Antibody-Dependent Cellular
Cytotoxicity (ADCC)
In addition to the checkpoint activity of CTLA-4, ADCC is
shown to be a potential mechanism of action for antibodies

targeting CTLA-4 (Arce Vargas et al., 2018). Regulatory T cells
express higher levels of CTLA-4 compared to effector T cells,
and anti-CTLA-4 antibodies enhance Treg depletion through
ADCC (Arce Vargas et al., 2018). It should be noted that the
importance of this mechanism in human has been questioned
by clinical observations (Sharma et al., 2019). In this model,
anti-CTLA4-mediated ADCC is incorporated as Treg depletion
through binding between the anti-CTLA-4 antibody and CTLA-
4 on Treg in the tumor. The maximal Treg depletion rate is
estimated based on in vitro experiments (Richards et al., 2008).

Simulation Settings
Although the model is used to simulate PK/PD for all
the immune checkpoint antibodies (i.e., anti-CTLA-4, anti-
PD-1, and anti-PD-L1) and entinostat in monotherapy and
combination therapies, we focus on the particular clinical
trial (NCT02453620), in which nivolumab and entinostat are
administered to 26 HER2-negative breast cancer patients with
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FIGURE 2 | Diagram of pharmacokinetic/pharmacodynamic (PK/PD) module for entinostat (A) and simulated and measured plasma concentration at doses of 2, 4,
6 mg/m2 (B). A fraction of dose, F, is immediately absorbed by the patients via zero-order buccal absorption over a time duration D0 into the buccal compartment,
and the rest of the dose, 1-F, is absorbed after a time period Tlag via first-order gastrointestinal (GI) absorption into the gastrointestinal compartment. The drug in
buccal and gastrointestinal compartments are then absorbed into the central compartment via first-order absorption, and transported into the peripheral and the
tumor compartments via passive diffusion. For pharmacodynamics of entinostat, it inhibits nitric oxide (NO) and arginase I (Arg-I) production by myeloid-derived
suppressor cells (MDSCs), CCL2 production by cancer cells, Arg-I activity, and cancer cell proliferation.

or without ipilimumab. The breast cancer-specific parameters,
including cancer cell diameter, the number of tumor-draining
lymph nodes, tumor growth rate, volume fractions, and steady-
state MDSC and Treg levels are estimated based on literature
data. The baseline parameter values are estimated using TNBC
data, and the parameter ranges are estimated using both
TNBC and estrogen-positive/HER2-negative breast cancer data
to describe the heterogeneity of HER2-negative patients. Both
baseline parameter values and their ranges are listed with
references in Supplementary Tables S1–S6.

For each individual as a potential patient, a simulation is
performed starting from a single cancer cell with a plausible
characteristic parameter set of the patient drawn from our
assumed distributions. Due to the lack of patients’ information
of their initial tumor diameters at the beginning of the therapy
from the clinical trial, an initial tumor diameter is randomly
selected for the virtual patient based on our assumed distribution.
These preselected initial tumor diameters are then used to
calculate the initial tumor volume assuming a spherical tumor
as the pre-treatment tumor volume (i.e., preselected initial
tumor volume) for the virtual patient. Once the tumor reaches
the preselected initial tumor volume, the values of all the
species are saved and substituted into the model for further
simulations of the therapy of interest. If the tumor has not
been able to reach the preselected initial tumor volume, the
corresponding individual is considered to not develop a tumor,
possibly due to a strong immune response given by the plausible
parameter set. These individuals are not included in the post-
simulation analysis. The initial conditions and dynamic solutions
are calculated using the ode15s solver in MATLAB, and the
tumor growth is simulated for 400 days after therapy begins.
The absolute tolerance and relative tolerance are set to be
10−12 (day) and 10−6, respectively. In SimBiology, absolute
tolerance controls the largest absolute error allowed for the
ODE solver at any step in the simulation, while relative

tolerance controls the tolerable error relative to the state
vector at each step.

In silico Virtual Clinical Trial and
Sensitivity Analysis
For virtual clinical trials, a plausible characteristic parameter
set is selected for each potential patient to represent the inter-
individual variabilities, such as the cancer killing rate by effector
T cells, steady-state Treg and MDSC density in the tumor, antigen
binding affinity, cytokine expressions, and tumor mutational
burden (TMB), which is measured as the total number of
mutations per tumor genomic region and is defined in our model
as the number of tumor-specific T cell clones in TDLNs (Li et al.,
2016; Yarchoan et al., 2017). The values of selected parameters
are assigned using Latin Hypercube Sampling (LHS) based on
our estimated distribution and plugged in as input. Among all
the simulations, virtual patients who reach the preselected initial
tumor volumes are used to calculate the overall response rate
and the Partial Rank Correlation Coefficient (PRCC) between
post-treatment observations (e.g., end tumor volume, tumor-
infiltrating Treg and effector T cell density) and parameters
of interest for sensitivity analysis (e.g., cancer cell growth rate,
tumor antigen affinity, TMB) (Marino et al., 2008).

Statistical Analysis
The overall response rate is predicted as the proportion of
patients with complete response (CR) or partial response (PR)
based on RECIST v1.1, and the 95% Agresti-Coull confidence
interval (CI) is estimated based on normal approximation for
the binomial distribution. For comparison of model observations
between responders and non-responders and that among
virtual patients in various therapeutic regimens, Wilcoxon
test is performed using ggpubr package in RStudio v1.2
(Kassambara, 2019).
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RESULTS

Prediction of Entinostat Concentration in
Tumor
Figure 2B, demonstrates the simulated plasma concentration of
entinostat together with the clinical measurements at dose levels
of 2, 4, and 6 mg/m2 assuming a body surface area of 1.7 m2 (Gore
et al., 2008). The simulated peak concentrations are 15.4, 30.8,
and 46.3 ng/mL, and the areas under the curve are calculated to
be 105.5, 211.0, and 316.8 ng h/mL for doses of 2, 4, and 6 mg/m2,
respectively. The time tmax at the peak concentrations is estimated
to be 0.5 h for all doses. To further test the interindividual
variability of entinostat concentration, we varied the values of
absorption rates and clearance rates of entinostat in the sensitivity
analysis. The results are represented by a heatmap below with
other parameters of interest, and show that non-linear clearance
rate of entinostat has a significant inverse correlation with its
anti-proliferative effect on cancer cells.

Efficacy of Anti-PD-1 Monotherapy and
Its Combination With Entinostat
The model is first used to simulate the overall anti-tumor
response to anti-PD-1 monotherapy in breast cancer. Among
the 1500 simulations, 1196 virtual patients reach the preselected
initial tumor volume. It should be noted that the ratio 1196/1500
reflects our method of generating the initial conditions and does
not reflect the actual fraction of individuals who develop tumors.
Thus, it should be considered a methodological detail rather than
a reflection of a biological process. The parameter sets of the 1196
virtual patients are saved to simulate anti-tumor response to all
the following therapeutic regimens and statistical analysis. Once
the tumor diameter has reached its preselected value, 3 mg/kg
nivolumab is administered every 2 weeks. The time-dependent
percentage change of the tumor size (spider plot) is plotted in
Figure 3A, based on RECIST criteria (Eisenhauer et al., 2009).
Overall, 265 virtual patients have a partial or complete response
(22.2%), and 37 virtual patients have stable disease (3.1%);
the remaining 894 patients had progressive disease (74.8%).
A waterfall plot of changes from baseline in model-predicted
tumor diameter is shown in Figure 3B.

To further investigate the effect of entinostat on the overall
response rate and tumor microenvironment, we simulate the
overall anti-tumor response to a double combination therapy
using 3 mg/kg nivolumab every 2 weeks and weekly doses
of 5 mg entinostat. The parameter sets and initial conditions
of the same 1196 virtual patients who reached preselected
initial tumor volume are saved and used to perform a virtual
trial with combination of entinostat and nivolumab. Of the
1196 virtual patients, 320 have a partial or complete response
(26.8%), and 52 have stable disease (4.4%), the remaining 824
patients had progressive disease (68.9%). Thus, the predicted
increase of the response rate from 22.2% for nivolumab alone
to 26.8% for the combination of nivolumab and entinostat. The
time-dependent percentage change of the tumor size (spider
plot) and the waterfall plot are shown in Figures 3C,D.
We can now apply these simulation results to the actual

clinical trial in which each dose regimen involves less than
15 patients. By randomly sampling 15 virtual patients 100,000
times, we obtain a 95% percentile bootstrap confidence interval
of (6.67%, 46.7%) for our estimate of the overall response
rate in the double combination therapy. Thus, even though
these results are dependent of the space of parameters for
the virtual patients, we note that the predicted confidence
interval is very wide.

Model-Predicted Anti-tumoral Effect in
Triple Combination Therapy
Now that the efficacy of entinostat on improving anti-tumoral
effect of anti-PD-1 monotherapy has been simulated, the model
is used to investigate the effect of the addition of anti-CTLA-4
antibody. Four doses of 1 mg/kg ipilimumab are administered
every 6 weeks with weekly 5 mg entinostat and 3 mg/kg
nivolumab every 2 weeks. While the number of responders
remains the same, the mean post-treatment tumor volume
is lower than that in the double combination therapy. This
slight increase of anti-tumor response is due to the ADCC-
mediated Treg depletion by ipilimumab, which significantly
increase Teff to Treg ratio in the tumor. The total virtual
population is then divided into six subgroups based on their
pre-treatment tumor-infiltrating Teff, Treg, and MDSC density,
Teff to Treg ratio, TMB, and tumor-specific antigen binding
affinity by their medians. The response rates of all subgroups
with 95% confidence intervals are shown in Figure 4. The
confidence intervals for subgroups MDSC density, TMB, tumor-
infiltrating Teff density, and Teff to Treg ratio show significantly
different response rates in these subgroups, while those for other
subgroups overlap. The 95% percentile bootstrap confidence
interval for our estimate of the overall response rate in the triple
combination therapy is calculated to be (6.67%, 53.3%) for a
sample size of 15, using the same methods in the previous section.
100 out of the 1196 virtual patients are randomly selected to
illustrate their changes from baseline in model-predicted tumor
diameter with parameters of interest, as shown in Figures 5A–
D. While a large portion of responders correspond to patients
with high TMB and low PD-L1 expression on cancer cells, antigen
binding affinity and initial tumor diameter are evenly distributed
between responders and non-responders.

To further investigate the effect of combination therapy using
immune checkpoint inhibitors and the epigenetic modulator,
we plot the changes of Teff/Treg density and ratio, and tumor
volume as post- to pre-treatment ratio using the five therapeutic
regimens from the clinical trial as shown in Figure 6. The
significant increase of Teff to Treg ratio when higher doses of
nivolumab are administered in the double combination therapy
corresponds to the significant increase of tumor-infiltrating Teffs,
as nivolumab blocks inhibitory signals on cancer cells and
restores Teff functionality. On the other hand, the increases of
Teff to Treg ratio by addition of entinostat and ipilimumab
correspond more to the decrease of Tregs than to the increase of
tumor-infiltrating Teffs. This phenomenon is due to the immune
modulation by entinostat that inhibits Treg expansion, as well as
the Treg depletion effect by anti-CTLA-4 antibody.
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FIGURE 3 | Spider plots of 100 randomly selected virtual patients (A,C) and change from baseline in model-predicted tumor diameter assessed by RECIST v1.1
(B,D) in anti-PD-1 monotherapy (A,B) and its combination with entinostat (C,D). PD, progressive disease; SD, stable disease; PR, partial response; CR, complete
response.

Anti-tumor Response as Affected by
Parameters of Interest
In Figure 7, a heatmap of global uncertainty and sensitivity
analysis shows that among 32 parameters, tumor growth
rate, T cell exhaustion, cancer killing rate by T cells, TMB,
initial tumor diameter, steady-state MDSC density, PD-L1
expression on cancer cells, and inhibitory effect of Arg-I on
T cells are significantly correlated with end tumor volume.
The sensitivity of these responses to parameters is further
illustrated in Figure 8. In the above simulations based on
the reference values of model parameters, we predicted certain
response rate at 400 days, e.g., in a combination of nivolumab
and entinostat 26.8% have a partial or complete response,
4.4% have stable disease, and 68.9% have progressive disease.
However, these percentages are affected by the parameters of
the patient cohort, and results of a trial may be different
depending on the parameters of the patients within the cohort.
Figure 8, illustrates the effects of variation of parameters
on the patients’ response according to RECIST criteria for
9 parameters selected from the global sensitivity results.
TMB, tumor growth rate, steady-state MDSC density, the
number of PD-L1 molecules on cancer cell, and effective
concentration of Arg-I on Teff inhibition show strong impacts
on tumor size change, which corroborates their statistical
significance suggested by PRCC analysis and emphasizes
a need for accurate estimation of these parameters for
personalized simulations.

Identification and Performance of
Potential Predictive Biomarkers
From sensitivity analysis and overall response table presented
above, we identify several potential predictive biomarkers for
the triple combination therapy in this virtual clinical trial. As
shown in Figure 9, the distributions of pre-treatment tumor-
infiltrating Teff and Treg density, Teff to Treg ratio, and TMB
are significantly higher in responders when compared with those
in non-responders, while MDSC density is significantly higher in
non-responders, possibly due to its strong immune-suppressive
activity in the tumor microenvironment. We further investigate
the performance of these potential biomarkers on prediction of
anti-tumor response to the triple combination therapy through
binary classification. As shown in Figure 10, the Sensitivity and
1-Specificity values from each cutoff were plotted as ROC curves.
TMB, tumor-infiltrating Teff and Teff to Treg ratio have higher
AUCs (0.872, 0.766, and 0.740, respectively) than intra-tumoral
MDSC density (0.652), further implicating their potential to be
predictive biomarkers for this triple combination regimen.

DISCUSSION

Based on our previously published QSP model and our first
attempt to make personalized predictions of anti-tumor response
to immunotherapy using immune checkpoint inhibitors (Milberg
et al., 2019; Wang et al., 2019), a more recent model with
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FIGURE 4 | Anti-tumor activity of triple combination therapy in virtual patient cohort. Total 1196 virtual patients in triple combination of entinostat, nivolumab, and
ipilimumab are divided into subgroups based on the population medians, and the objective response rates in each subgroup are calculated with 95% Agresti-Coull
confidence intervals. MDSC, myeloid-derived suppressor cell; Ag, tumor antigen; TMB, tumor mutational burden (tumor-specific T cell clones in lymph nodes); Teff,
effector T cell; Treg, regulatory T cell.

FIGURE 5 | Change from baseline in model-predicted tumor diameter assessed by RECIST v1.1 based on tumor mutational burden (A), initial tumor diameter (B),
tumor antigen binding affinity (C), and number of PD-L1 molecules on cancer cells (D).

reduced number of ODEs has been published by Jafarnejad
et al. (2019) through simplification of certain processes, such
as T cell trafficking and the kinetics of T cell priming

in the lymph nodes. In this study, we present a further
developed model to: modularize each species of interest and
individually calibrate the modules based on literature data;
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FIGURE 6 | Changes of cell density and tumor volume in dose escalation as post- to pre-treatment ratios, including Teff to Treg ratio (A) and their densities in tumor
(B,C), and tumor volume (D). p-values are calculated using Wilcoxon test.

FIGURE 7 | Global uncertainty and sensitivity analysis. Thirty two parameters are assigned using Latin Hypercube Sampling (LHS) based on our estimated
distribution, and the Partial Rank Correlation Coefficient (PRCC) between selected post-treatment observations and input parameters are presented as a heatmap.
Among 32 parameters, tumor growth rate, T cell exhaustion, cancer killing rate by T cells, TMB, initial tumor diameter, steady-state MDSC density, PD-L1 expression
on cancer cells, and inhibitory effect of Arg-I on T cells are significantly correlated with post-treatment tumor volume.

add a MDSC module; investigate the mechanisms of action
for the epigenetic modulator and checkpoint inhibitors with
limited and/or controversial preclinical results; and conduct
a virtual clinical trial of a combination therapy using anti-
PD-1, anti-CTLA-4 antibodies and an epigenetic modulator,
entinostat. The modularized model can be readily reproduced,
and additional modules can be added in future studies

if the dynamics of other molecular and cellular species
are of interest.

While T cell trafficking equations and the PK/PD module
of checkpoint inhibitors remained unchanged compared to our
previous models (Jafarnejad et al., 2019; Wang et al., 2019), we
adopted a new mechanism of T cell activation by mature APCs
(mAPCs) (Lever et al., 2014). Tumor antigens are released from
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FIGURE 8 | Effects of parameters on patients’ response. For each parameter of interest, virtual patients are sorted by their corresponding parameter values in
ascending order, and evenly divided into six subgroups. The response status of each subgroup is plotted against the median parameter values in each subgroup.
TMB and effective concentration of Arg-I on Teff inhibition show positive correlations with response rate, while tumor growth rate, steady-state MDSC density, and
the number of PD-L1 molecules on cancer cell show negative correlations (i.e., with a >15% increase/decrease of response rates in subgroups).

dying cancer cells and transported to TDLNs. Virtual patients
with higher TMB would generate higher levels of tumor antigens,
which can be recognized by higher levels of tumor-specific naïve
T cells in TDLNs. Activation of tumor-specific naïve T cells in
TDLNs is modeled by a kinetic proofreading module with limited
signaling based on TMB, binding affinity of tumor antigens
and concentration of mAPCs (Lever et al., 2014). The activated
T cells proliferate through a calculated number of generations
based on T cell receptor signaling, co-stimulatory signaling, and
cytokine signaling before returning to quiescence, while they
simultaneously differentiate into effector T cells (Marchingo et al.,
2014). In addition, simulations also start from a single cancer
cell to capture the initial conditions at the preselected initial
tumor volumes. This way, we take into account the virtual
patients whose adaptive immune response is strong enough to
eliminate the cancer cells before developing into a tumor. Using
this method, we no longer observe the strong correlation between
tumor volume and initial tumor diameter (Figure 8) as we did in
previous study (Wang et al., 2019). By starting model simulation
from a single cancer cell, larger initial tumor size is more likely

to acquire higher number of pre-treatment tumor-infiltrating T
cells, which results in a similar T cell density to smaller sizes.
Thus, anti-tumor response is less dependent on its initial size.

According to our model analysis, a positive correlation
between PD-L1 expression on cancer cell and end tumor volume
is observed. That is, patients with small number of PD-L1
molecule on cancer cell are likely to have strong anti-tumor
response. This is due to our assumption that Teff function
is not inhibited by cancer cells without PD-L1 expression,
opposite to our previous model, where we assume that Teffs
are inhibited by other inhibitory pathways if not by PD-L1
on cancer cells (Wang et al., 2019). Both of the assumptions
aim to explain the correlation between PD-L1 status and anti-
tumor response observed in clinical trials (Vikas et al., 2018).
To further investigate the implication of PD-L1 positivity in
patients with breast cancer, its expression on both cancer cells
and immune cells should be implemented in future studies with
appropriate assumptions of their functionality based on clinical
evidence (Marra et al., 2019; Matikas et al., 2019). For example,
PD-L1 expression on macrophages plays an important role
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FIGURE 9 | Distributions of Potential Biomarkers in Responders and Non-responders. The response in the 1196 simulations was divided into responders (R) and
non-responders (NR), and statistical comparisons are presented between the two groups for pre-treatment observations. Statistical significance is calculated by
Wilcoxon test. ∧p-values ≤ 0.05; ∧∧∧∧p-values ≤ 0.0001; non-significance (ns), p-values > 0.05.

in macrophage polarization and antitumor cytokine secretion
(Hartley et al., 2018). In addition, PD-L1 expression on cancer
cells shows correlations with tumor metastasis and suppression of
effector T cells, which is regulated by epithelial-to-mesenchymal
transition of cancer cells (Chen et al., 2014; Terry et al., 2017).
Therefore, a macrophage module can be added to investigate
the interactions between macrophages and cancer cells and the
resulting effects on the tumor microenvironment (Mahlbacher
et al., 2018; Li et al., 2019; Zhao et al., 2019).

In our previous model (Wang et al., 2019), we suggested that
the MDSC level in the tumor was significantly related to anti-
tumor response to combination checkpoint blockade therapy,
assuming that the inhibition of effector T cells by MDSCs
was mainly dependent on their checkpoint expression and that
intratumoral Treg level remained a constant fraction of MDSCs.
In the present model, we further expand the mechanisms of
MDSCs to include both the secretion of Arg-I and NO by MDSCs,
which inhibit Teff cytotoxicity and induce Treg expansion, and
CCL2 secretion by breast cancer cells, which facilitates MDSC
recruitment into the tumor. As shown in the sensitivity analysis
(Figure 7), the addition of detailed MDSC mechanisms does not
lead to an overestimated inhibition of the immune response, as
the efficacy of the combination therapy is significantly correlated
to not only MDSC-related parameters but also to other immune-
suppressive factors.

To study the efficacy of entinostat, we proposed a
pharmacokinetic model to estimate the transport parameters

based on the plasma concentration measured by Gore et al.
(2008). The simulated peak concentration and area under the
plasma concentration curve for different doses are compared
with other published PK analysis data of entinostat (Ryan et al.,
2005; Gojo et al., 2007; Kummar et al., 2007). Although most
of our simulated concentrations fall within the range of their
clinically measured values, the small sample sizes and the large
differences in means and ranges reported in all the four studies
suggest that additional clinical measurements are needed to
improve our prediction of entinostat concentration in patients
with breast cancer. For pharmacodynamics of entinostat, it is
assumed to inhibit proliferation of breast cancer cells and the
cytokine secretion by MDSCs, reversing their inhibitory effects
on T cell subsets. Interestingly, the effective concentrations
of entinostat on its anti-proliferative activity are dependent
on the subtypes (i.e., HS-578t, MCF-7, ZR-75, and SKBR3),
and it also reduces cell viability in some subtypes of breast
cancer, including MCF-7, ZR-75, and SKBR3 cells (Lee et al.,
2001). The discrepancy of the efficacy of combination therapy
using immune checkpoint inhibitors and epigenetic modulator
among different cancer types might result from this difference in
effective concentrations (Gallagher et al., 2017).

For mechanism of action of anti-CTLA-4 antibody, it was
assumed in our previous model that the efficacy of anti-
CTLA-4 therapy observed in clinical trials is mainly mediated
by blocking CTLA-4 and CD80/86 interactions and thus
restoring co-stimulatory signaling in T cell activation in TDLNs
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FIGURE 10 | ROC Analysis of Potential Predictive Biomarkers in Triple
Combination Therapy. Cutoff values are selected based on the range of
pre-treatment amounts of myeloid-derived suppressor cell (MDSC) density,
effector T cell (Teff) density, tumor mutational burden (TMB), and Teff to
regulatory T cell (Treg) ratio. For each cutoff value, response status (R vs. NR)
is predicted for each virtual patient by comparing the pre-treatment amount of
the potential biomarker to the cutoff value. Sensitivity (true positive rate) is
plotted against 1 – specificity (true negative rate) for each biomarker. R,
responders; NR, non-responders.

(Wei et al., 2018). In addition, recent studies suggest that Fc
domain of the anti-CLTA-4 antibody is required for efficacy in
mouse tumor models, which is critical to induce Fc-mediated
depletion of regulatory T-cells (Arce Vargas et al., 2018; Ingram
et al., 2018; Tang et al., 2018). However, this newly proposed
mechanism of anti-CTLA-4 antibody has shown controversial
results from clinical studies (Romano et al., 2015; Sharma et al.,
2019). While both mechanisms are implemented in the present
model to investigate their roles in anti-tumoral activity in breast
cancer, the major mechanism of action of anti-CTLA-4 antibody
that contributes to its efficacy has yet to be determined by future
studies, which might also be cancer type-dependent.

By conducting a prospective virtual clinical trial, we aim to
make predictions of the anti-tumor activities and biomarkers
for an ongoing trial that has not yet been completed. Starting
from the nivolumab monotherapy, we predict the response
rate of 1196 virtual patients with breast cancer. A 22.2%
response rate is predicted given our set of parameters of interest
with assumed distributions. Based on our assumptions on the
mechanisms of action, our predicted response rate falls within
the reported range of response rate of anti-PD-1 monotherapy
using pembrolizumab in patients with TNBC or estrogen-
positive/HER2-negative metastatic breast cancer (Emens, 2018;
Planes-Laine et al., 2019), which demonstrate the ability of
the present model to perform virtual clinical trials and make
reasonable qualitative predictions on anti-tumor response. When
combined with entinostat, the response rate of checkpoint
therapy increases to 26.8%. However, it is challenging to quantify

the improvement of anti-tumor response to checkpoint blockade
therapy by the addition of entinostat, since the PK parameters
and the effective concentrations are only roughly estimated for
entinostat. Although combination therapy of entinostat and anti-
PD-1 antibody has shown promising results in patients with
anti-PD-1-resistant melanoma and non-small cell lung cancer,
the effect of cancer type and patients’ characteristics on the
improved efficacy has yet to be determined (Agarwala et al.,
2018; Hellmann et al., 2018). Furthermore, the simulations
show that the addition of four doses of anti-CTLA-4 antibody
ipilimumab does not significantly improve the performance of
the combination therapy, even though Teff to Treg ratio is
significantly increased due to ADCC. This result is also suggested
by our previous model (Wang et al., 2019), and higher doses of
the ipilimumab might be required to improve the T cell activation
and thus anti-tumor response; however, in the clinic, higher doses
of ipilimumab are limited by toxicity. Overall, the model suggests
that TMB, tumor-infiltrating Teff density, and Teff to Treg ratio
can be predictive biomarkers in this triple combination therapy.
The efficacy of all the tested therapies shows strong correlation
with these model observations, which is also supported by their
clinical significance in anti-tumor response and overall survival
in breast cancer (Adams et al., 2014; Asano et al., 2016; Takada
et al., 2018; Thomas et al., 2018).

Notably, the predictions of anti-tumor response and predictive
biomarkers are strongly affected by our assumptions on
mechanism of action for all therapeutics and distribution of
physiological parameters for virtual patient cohort (Cassidy and
Craig, 2019). The expected response rate of the ongoing clinical
trial simulated in this study, as suggested by the 95% percentile
bootstrap confidence intervals, could fall into a wide range. Due
to the variations of selection criteria and settings in clinical trials,
the distribution of patient parameters can be largely different
and in fact only a few of the parameters that are necessary
as inputs for the model are clinically measured; most of the
parameters remain unknown for each particular patient or a
cohort that results in uncertainty of model predictions. For
example, the generally lower overall response rate reported in
previously treated TNBC patients might result from their changes
of physiological parameters in previous therapy when compared
with previously untreated patients (Adams et al., 2019a,b). In
this case, our model proposes to consider high TMB, tumor-
infiltrating Teff density, and Teff to Treg as potential biomarkers,
which might improve anti-tumor response in previously treated
patients (Alva et al., 2019). Importantly, ongoing clinical trials
may provide insights on the effect of entinostat and ipilimumab
on the immune system and resistance mechanism in breast
cancer development, which would allow us to make step-by-
step modification of the model and its parameters and improve
its predictive power (Pitt et al., 2016; Darvin et al., 2018;
Eladdadi et al., 2018; Mahlbacher et al., 2019). Our goal is to
understand the dynamic interactions between drugs and the
immune system in cancer as a whole, to update our assumptions
on drug/tumor-immune dynamics through comparison between
model predictions and clinical observations, and thereby to guide
drug development and clinical trial design (Cheng et al., 2017;
Nijsen et al., 2018; Bai et al., 2019; Bradshaw et al., 2019).
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optimized to match the migration index reported by Huang et al., 2007
(PMID: 17257744).
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