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In the past 20 years, there have been several approaches to achieve cardioprotection or
cardiac regeneration using a vast variety of cell therapies and remote ischemic pre-
conditioning (RIPC). To date, substantial proof that either cell therapy or RIPC has
the potential for clinically relevant cardiac repair or regeneration of cardiac tissue is
still pending. Preclinical trials indicate that the secretome of cells in situ (during RIPC)
as well as of transplanted cells may exhibit cardioprotective properties in the acute
setting of cardiac injury. The secretome generally consists of cell-specific cytokines and
extracellular vesicles (EVs) containing microRNAs (miRNAs). It is currently hypothesized
that a subset of known miRNAs play a crucial part in the facilitation of cardioprotective
effects. miRNAs are small non-coding RNA molecules that inhibit post-transcriptional
translation of messenger RNAs (mRNAs) and play an important role in gene translation
regulation. It is also known that one miRNAs usually targets multiple mRNAs. This makes
predictability of pharmacokinetics and mechanism of action very difficult and could
in part explain the inferior performance of various progenitor cells in clinical studies.
Identification of miRNAs involved in cardioprotection and remodeling, the composition
of miRNA profiles, and the exact mechanism of action are important to the design of
future cell-based but also cell-free cardioprotective therapeutics. This review will give a
description of miRNA with cardioprotective properties and a current overview on known
mechanism of action and potential missing links. Additionally, we will give an outlook on
the potential for clinical translation of miRNAs in the setting of myocardial infarction and
heart failure.

Keywords: microRNA, extracellular vesicles, second generation cell therapies, translation, cardioprotection,
secretome

INTRODUCTION

Cardiovascular disease remains one of the most important challenges clinicians face today. Despite
huge efforts in prevention and undeniable progress in acute and short-term survival, disease
progression over long-term still burdens our health care system without a real curative approach.
The reason: regenerative capacity of an adult human heart is quite limited due to the low turnover
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rate of cardiomyocytes and lack of a sufficient pool of tissue
resident progenitors (Tzahor and Poss, 2017). This renders
the human heart very susceptible to any form of acute or
chronic injury with a critical loss of cardiomyocytes or their
function, ultimately leading to the clinical manifestation of heart
failure. For these facts, cardiac medicine has been identified as
a promising field for application of regeneration technologies. In
the past 20 years, cell-based therapies have aimed to either induce
‘de novo’ generation or stimulate tissue dormant progenitors to
differentiate into mature cardiomyocytes (Behfar et al., 2014).
The promising results from in vitro studies and pre-clinical
trials have led to a large number of clinical trials that for
the most part investigated the therapeutic effect of different
bone marrow, adipose- or neonatal tissue derived progenitor
cells (first generation cell therapy). With limited pre-clinical
data available in hindsight, a rush into first clinical trials in
the early and mid 2000s has largely failed to demonstrate
any meaningful results for patients with cardiac disease. More
recently, myocardium resident cardiac progenitor cells, iPSCs,
and conditioned progenitor cells have also been investigated in
that context (second generation cell therapy) (Cambria et al.,
2017). However, they as well failed to reach respective primary
endpoints in most clinical trials; that is to say reduction in
scar size and stabilization or improvement of cardiac function
(Moyé, 2014; Gyöngyösi et al., 2015). As a result, the idea of
a regenerating heart has been abandoned by many scientists.
Luckily, the failure of such clinical studies has also led to
post hoc analyses of the mechanism of action by which
various cell types exhibit cardioprotection in the injured heart.
Today, there is consensus that paracrine mediators, released
by transplanted cells upon injury signals, mediate protection
and limit adverse myocardial remodeling (Madonna et al.,
2019). There is evidence emerging, that mediators can limit
the extend of cardiomyocyte loss during acute injury and
positively impact adverse myocardial remodeling in the chronic
setting. Within the past 10 years, microRNAs (miRNAs) have
come into focus as the next generation “cell” therapy studies
have demonstrated that the paracrine secretion of nano- and
macrovesicles containing miRNAs are mainly responsible for the
cardioprotective effect of cellular therapies. Preclinical trials were
able to demonstrate that miRNAs or extracellular vesicles (EVs)
containing miRNAs were capable to reproduce the cellular effects
of cardioprotection (Behfar and Terzic, 2019; Madonna et al.,
2019; Maring et al., 2019). Within the scope of this review, we
intend to provide a general overview of the potential role of
miRNAs in cardioprotection and elaborate on potential use of
miRNAs as a therapeutic agent.

MICRO RNAs – ONE SHOE FITS ALL?

MicroRNAs play an important role in the inhibition of messenger
RNA (mRNA) translation in the cytoplasm but have been also
identified to regulate transcription in the nuclear compartment
of mammalian cells (Bartel, 2004). The biosynthesis was long
believed to be linear and universal for all miRNAs. However,
recent functional studies demonstrated, that a multitude of

alternate miRNA-specific biosynthesis pathways exist and that
they require a plethora of regulatory mechanisms – many of
which still need to be identified (Lee et al., 1993; Bartel, 2004)
(Figure 1). miRNA are encoded within the entire genome and
are usually arranged in clusters (Rodriguez et al., 2004). Most
miRNA genes are located in the non-coding areas of the genome.
In some cases, miRNAs are located within the introns of protein
coding genes such as miR-103 which is located within in the
intron of pantothenate kinase 1, 2, and 3 together with miR-107
(Rodriguez et al., 2004; Lin et al., 2006). miRNAs are transcribed
by RNA Polymerases II and III into a primary miRNA (pri-
miRNA). The pri-miRNA consists of a terminal loop region, a
stem and two single-stranded flanking RNA regions up- and
downstream of the hairpin (Cai et al., 2004; Lee et al., 2004).
For the canonical pathway of miRNA maturation, the terminal
single stranded RNA region is then spliced by the complex of
Drosha and DGCR8 protein (DiGeorge critical region 8) (Lee
et al., 2003). The DGCR8 protein has a binding and proof-reading
domain that ensures the correct binding and identification of
the cleavage site for the Drosha protein, a RNase III enzyme.
For some miRNAs additional factors may be required for the
correct splicing of the hairpin precursor (Guil and Cáceres, 2007;
Davis et al., 2008; Michlewski et al., 2008) before the precursor
miRNA (pre-miRNA) is transported from the nucleus into the
cytoplasm by Exportin-5 (Yi et al., 2003). Exportin-5 not only
acts as a transporter but also as an additional “proof-reader” only
transporting correctly processed pre-miRNA (Zeng and Cullen,
2004). In the cytoplasm, the pre-miRNA – still consisting of
the terminal loop and the double stranded stem – binds to the
RNA-induced silencing complex (RISC) (Gregory et al., 2005).
This protein complex contains RNase Dicer, double stranded
RNA binding domain proteins (Tar RNA binding protein), PACT
(protein activator of PKR), and Argonaute-2 (MacRae et al.,
2008). The latter is the key component that mediates the miRNA
inhibition of transcription of mRNAs (Diederichs and Haber,
2007). The terminal loop of pre-miRNAs is spliced off, whereas
for some of the miRNAs both the guide and passenger strand
can serve as individual mature miRNAs (Matranga et al., 2005).
In general, the passenger strand is degraded after unwinding
of the double stranded pre-miRNA by helicases (Leuschner
et al., 2006). Similar to the processing of miRNAs in the
nucleus some miRNAs are dependent on additional co-factors
for maturation (Hutvágner et al., 2001; Diederichs et al., 2008).
This highlights again, that miRNA biosynthesis is subject to
an integrate regulatory machinery which we only just begin to
understand. Upon maturation, miRNAs as part of the RISC
complex either inhibit the translation of their target mRNA
or they are packaged into EVs contained in multivesicular
bodies to be released in the extracellular space (Turchinovich
et al., 2012). The encapsulation of miRNAs does not happen at
random and is also a highly regulated process (Turchinovich
et al., 2012; Villarroya-Beltri et al., 2013). This allows for the
dynamic response of cells in regard to which miRNAs are
released upon microenvironmental cues. A study by Villarroya-
Beltri et al. (2013) has shown that specific motifs within the
sequence of miRNA determine their localization in either the
cytoplasm or EVs. They have also identified heterogeneous
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FIGURE 1 | Summary of the biosynthesis and the biological effect of miRNAs. The different stages of miRNA are schematically depicted next to the green
description of miRNA. The biological effect of miRNAs is marked in red.

nuclear ribonucleoproteins such as hnRNPA2B1 and hnRNPA1
that specifically bind to these motifs and are also present in EVs.
Independent of their origin, all miRNAs have in common to alter
gene expression via inhibitory mechanisms of posttranscriptional
modification of mRNAs. The mechanism of inhibition depends
on the complementarity of the miRNA sequence to its target
mRNA. miRNAs with high complementarity direct the RISC to
the mRNA and initiate the degradation. Lower complementarity
can lead to inhibition of ribosomal translation of the target
mRNA. It is overall hypothesized that the specificity of
miRNAs is determined by the quality and stability of base
pairing to their respective targets. Furthermore, miRNAs have
also been identified to perform transcriptional silencing by
targeting promotor regions within the heterochromatin. The
aforementioned regulation of biosynthesis, maturation, and
biological effects of numerous miRNA can be influenced
by changes in the cellular microenvironment in a non-
linear manner – posing a major challenge for scientists to
predict possible effects of miRNA in vivo (Lee et al., 1993;
Liu B. et al., 2014).

CARDIOPROTECTIVE MIRNAs – A
TWO-SIDED SWORD

For some time now, it has been hypothesized that factors
released by cells under stress can induce a protective effect in
neighboring or remote tissues (Kharbanda et al., 2002; Chen
et al., 2008; Hausenloy et al., 2015). We now know that the
key player in transmitting these signals are miRNAs. In the

extracellular compartment, miRNAs are usually transported via
EVs or binding proteins to protect them from degradation by
nucleases (Li et al., 2012; Boon and Dimmeler, 2015). Similarly,
the effect of therapeutic cell preparations exhibits their protective
effect via the transmission of EVs loaded with miRNAs. Over the
course of the past 10 years the sera of patients undergoing an
ischemic event as well as the secretory profile of most cells utilized
for cardioprotective purposes have been characterized (Baglio
et al., 2015; Barile et al., 2016; Barile and Vassalli, 2017; Shao
et al., 2017; Bellin et al., 2019). Each year, an increasing number
of pathways are identified that either hint toward protection or
damage of the myocardium (Barile et al., 2014, 2016; Gallet et al.,
2016; Ciullo et al., 2019). Many functional studies have preceded
these in-depth analyses of miRNA as cardioprotective agents,
remote ischemic pre-conditioning (RIPC) being one of the most
prominent examples (Kharbanda et al., 2002; Hausenloy et al.,
2015). Here, a different organ or the heart itself is exposed to brief,
non-fatal ischemia/reperfusion. Pre-clinical models show that
RIPC can increase the survival of cardiomyocytes upon injury
and positively impacts the myocardial remodeling (Konstantinov
et al., 2005; Wei et al., 2011). In RIPC, circulating miRNA and
EVs play an important role (Frey et al., 2018; Spannbauer et al.,
2019). Even though circulating miRNAs and EVs have been
identified as key mediators of that cardioprotective effect, it is
a rather crude and a non-targeted therapeutic approach. Most
when RIPC was investigated in clinical trials, none of the primary
endpoints predicted by preclinical studies were met (Brevoord
et al., 2012). Similar to experience from clinical trials investigating
cell therapies, the exact mechanisms of action of RIPC were
not fully understood and may explain the failed translation.
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However, the data collected on miRNAs from these studies laid
the groundwork for many functional studies investigating the
cardioprotective effects of miRNAs.

In recent years, a plethora of mechanistical studies for the
downstream effect of various miRNA were conducted. Here,
miRNAs were either investigated as diagnostic markers or as
potential targets for therapies (Barile et al., 2016). The in-
depth analysis of regulation of the identified miRNAs and
their downstream targets revealed that some miRNAs had
contradictory effects in the myocardium (Table 1). Furthermore,
to the best of our knowledge no study performed any concurrent
analysis to identify potential targets that are not related to
a cardioprotective effect. In this next section, we highlight
a selection of miRNAs that have been associated with a
cardioprotective potential but also bear the risk of adverse or
off-target effects. Most of these miRNAs were identified either
in EVs of therapeutic cell products or as biomarkers during
acute and chronic myocardial injury. The knowledge of their
exact mechanism of action is therefore highly recommended. The
following miRNAs are only a small example of miRNAs that are
commonly identified but not limited to their cardioprotective
potential. The selection of miRNA should not be seen as a
comprehensive summary of all known cardioprotective miRNAs
which would be beyond the scope of this review. Others have
provided more detailed lists of cardioprotective miRNAs (Varga
et al., 2015; Wendt et al., 2018). The pre-clinical experience
with the following miRNAs should highlight the potential and
pitfalls we as scientist may face when designing therapeutic
strategies with miRNAs.

MicroRNAs – The Good, the Bad, and the
Ugly
Off-Target Effects of miRNAs
Especially studies investigating RIPC have identified clusters of
cardioprotective miRNAs (Varga et al., 2015). In these studies
as well as in those that used EVs, an undefined cocktail of
miRNAs was systemically applied. In both cases, defining the
mode of action is virtually impossible. Usually, hundreds of
miRNAs can be identified in RIPC and even in EV preparations
numerous miRNAs can be found, some of which taken by
themselves have been identified as damaging to the myocardium.
As an example, miR-665 has been identified in sera and serum
exosomes of patients with heart failure (Li et al., 2016; Fan
et al., 2019). MiR-665 directly targets the cannabinoid receptor
2 (CbR2) and adenylate kinase 1 (AK1) (Möhnle et al., 2014; Lin
et al., 2019). In a rat heart Langendorff preparation, inhibition
of CbR2 and AK1 leads to the upregulation of pro-apoptotic
genes such as B cell lymphoma 2 (Bcl-2) and Bcl-2-associated
X protein (Bax) and caspase-3 in H9c2 cells, a commonly
used rat cardiomyocyte cell line (Yu et al., 2019). In a murine
model of myocardial infarction, AAV9 transfection with miR-
665 antisense miRNA led to improvement of cardiac function
(Fan et al., 2018). Here, the group has identified glucagon-like
peptide-1 receptor (GLP1R) as the target for miR-665. Inhibition
of miR-665 expression led to increased cAMP signaling in the
heart via the promotor GLP1R and reduced apoptotic events

upon ischemia/reperfusion injury in the heart. Identification
of harmful miRNAs like miRNA-665 in autologous exosome
preparations from patients with heart failure could serve as
quality markers and help prevent potential off-target effects.
In some cases, off target effects or cardioprotective miRNAs
have already been identified. miRNA-206, for example, has been
associated with both cardioprotective, but also damaging effects
upon overexpression (Table 1). Transcription of miR-206 can be
induced via histamine release upon myocardial stress in mice
(Ding et al., 2018). In vitro, miR-206 can prevent apoptosis
in hypoxic conditions by targeting autophagy related protein
2 (ATG3) (Kong et al., 2019). In a murine model of acute
myocardial infarction, this prevented ubiquitination of cytosomal
proteins and apoptosis (Ding et al., 2018). By cardiac-specific
overexpression of miR-206 is has been shown that forkhead
box protein P1 induces hypertrophy of cardiomyocytes which
during stress can prevent cardiomyocyte apoptosis (Yang et al.,
2015). By inhibiting metalloproteinase inhibitor 3 (TIMP3), miR-
206 has also been shown to attenuate cardiac fibrosis in the
setting of chronic heart failure (Limana et al., 2011). However,
two independent groups have also uncovered two mechanisms
by which miR-206 increases the risk of cardiac arrhythmias.
miR-206 targets connexin 43 (Cx43), an important component
of gap junctions in the myocardium in a transgenic mouse
model (Roell et al., 2007). Low expression of Cx43 has been
associated with cardiac arrhythmias such as atrial fibrillation.
Additionally, Wei et al. (2018) uncovered that miR-206 binds
to GTP cyclohydrolase I (GCH1) in a canine model of atrial
fibrillation (Afib). GCH1 is the rate limiting enzyme in de novo
synthesis of tetrahydrobiopterin (BH4). Decreased expression of
BH4 was associated with shortened refractory times in atrial
cardiomyocytes in humans, which led to Afib (Wei et al., 2018).
In this example, different groups were able to demonstrate a
cardioprotective effect of miR-206. At the same time potential off
target effects were uncovered that could impede the translation of
important signal transduction proteins in the myocardium. These
off-target effects were never investigated in the murine models
that investigated the cardioprotective effects for this miRNA. It
has also been shown that miRNA have species specific effects.
A recently published large animal study demonstrated that the
delivery of miR-199 via adenoviral transfer to the myocardium of
pigs resulted in improved contractility and myocardial mass in
the short term (Gabisonia et al., 2019). After 1 month, however,
the pigs died of arrhythmias. Histological analysis revealed that
the myocardium was infiltrated with proliferating cells displaying
a poorly differentiated myoblastic phenotype. This off-target
effect of miR-199 was not identified in small animal studies.
Results like these raise the question whether results from murine
models or even porcine models are really translatable into clinical
applications without additional safeguards that can predict these
off-target and adverse effects.

Neoangiogenesis – Good for Cardioprotection, Bad
for Cancer Progression
Neoangiogenesis plays an important role in protecting the
myocardium in the border zones from infarcts from myocardial
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TABLE 1 | Summarizes a selection of miRNAs that have been identified with either a harmful or cardioprotective property in cardiovascular disease.

miRNA Disease model Releasing cell
type

Experimental approach Experimental model Effect Identified
targets

Recipient cell Off-target
effects

PMID

miR-665 I/R CM Suppression of miR-665 via
dexmedetomidine

Rat heart Langendorff
preparation

Improved LVDP during
reperfusion

AK1, Cbr2 Cardiac cells Not investigated 31026731

HF – I.m. injection with
anti-sense miRNA plasmids

Rat model of HF Improved LVEF, reduced
CM apoptosis, improved
Mc ultrastructure

GLP1R Cardiac cells Not investigated 30666648

HF Global I.v. injection of rAAV
miR-665 inhb.

Murine model of LV
pressure overload

Improved LVEF, reduced
fibrosis, improved
vascularization

CD34 Global Not investigated 30243022

– Human CM In vitro gain and loss of
function in human CM

Mechanistic model – Cbr1 and Cbr2 Human CM – 25111814

miR-132 I/R – Loss of function in vivo,
gain of function in vitro

Murine hind limb ischemia Slower perfusion recovery,
less collateralization,
modulation of RAS-MAPK
signaling

Rasa1 and
Spred1

– Not investigated 25016614

Afib – In vitro loss and gain of
function in CF

Mechanistic model In human and dog with Afib
decreased expr. miR-132 in
atrium

CTGF CF – 28731126

DCM – In vitro analysis of cardiac
cell isolates from DCM rats,
overexpression of miR-132

DCM rat model Activation of PI3K/Akt
pathway, CM apoptosis
down

PTEN – – 30271437

AMI BM-MSCex
electroporated
with miR-132

I.m. injections with MSCex Murine model of AMI Increased LVEF, enhanced
neovascularization in BZ

Rasa1 HUVECS Not investigated 30216493

miR-
132 + miR-126

DMap – Transfection of aortic rings
with miR-132, miR-126

Endothelial sprouting in
aortic rings under high
glucose

Decreased EC apoptosis,
improved endothelial
sprouting

Spred1 HUVECS, Ecs – 31179325

miR-
210 + miR-
132 + miR-
146a-3p

AMI CPCs I.v. injection with CPCex
rich in miR-210, miR-132,
miR-146a-3p vs. Fibex

Murine model of AMI Less CM apoptosis,
enhanced angiogenesis in
BZ, improved LVEF

EFNA3, PTP1b – Not investigated 28731126

miR-126 AMI AT-MSCs
overexpressing
miR-126

I.m. injection of AT-MSCex Murine model of AMI Increased neoangiogenesis Not investigated – Not investigated 29241208

miR-126-5p Endothelial injury – KO of EC Dicer and rescue
experiment with
miR-126-5p transfection

CA injury Endothelial Dicer processes
pre-mir-126 into
mir-126-3p (guide strand)
and the passenger
strand-5p. 5p is involved in
dendothelial repair and
proliferation by targeting the
Notch1 inhibitor Delta-like
homolog 1 (Dlk1)

Dlk1 ECs Not investigated 30213595

(Continued)
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TABLE 1 | Continued

miRNA Disease model Releasing cell
type

Experimental approach Experimental model Effect Identified
targets

Recipient cell Off-target
effects

PMID

mir-210 AMI – Observational study AMI in rats Increased levels of miR-210 – – – 31596148

AMI BM-MSCs BM-MSCs rich in miR-210
vs. BM-MSCs with
miR-210 silencing

Murine model of myocardial
infarction

Increase LVEF, increased
neoangiogenesis

EFNA3 – Not investigated 28249798

I/R BM-EPCs BM-EPCs gain and loss of
miR-210

Murine hind limb ischemia With miR-210 improved
perfusion recovery and
collateralization

EFNA3 ECs Not investigated 29908843

I/R – Loss and gain of function In vitro in H9c2 cells,
mechanistic model

CXCR4 H9c2 – 29710553

mir-206 Afib Lentiviral overexpression of
miR-206 in PVFP

Canine model of Afib Overexpression of miR-206
increased incidence of Afib

GCH1 – Not investigated 29436714

Afib – Overexpression of miR-206
in murine hearts

Transgenic mouse model Overexpression led to
decreased lifespan and
arrhythmias

Cx43 – Not investigated 30322759

AMI – Cardiac specific expression
of miR-206

Murine model of AMI CM hypertrophy and
increases survival under
AMI

FBPP1 – Not investigated 26333362

HF – Increased expression of
miR-206 via HMGB1

Murine model of AMI Increased collagenolytic
activity, decreases
myocardial fibrosis

TIMP3 CF Not investigated 21731608

AMI – In vitro loss and gain of
function, with in vivo
confirmation

Murine model of AMI Reduced CM apoptosis,
improved LVEF

ATG3 H9c2 Not investigated 30551524

miR-
206 + miR-
216b

AMI – Via HDC gain and loss
influence expression of
miR-206, miR-216b

Murine model of AMI Targets Atg13 and reduces
autophagy upon hypoxia.
miR-206 is induced via
histamine

ATG3 – Not investigated 29880830

miR-
206 + miR-1

DMap – In vitro loss and gain of
function

In vitro in H9c2 cells,
mechanistic model

Increased CM apoptosis Hsp60 H9c2 – 20655308

miR-146a DCM CF, CM AAV9 mediated
overexpression of miR146a
in vivo and in vitro

Murine model of LV
pressure overload

Decreased myocardial
contractility

SUMO1 CM Not investigated 30355233

AMI EPCs EPC injection in BZ AMI in rats Downregulation of
miR-146a and reduced CM
apoptosis and increased
VEGF expression

– – Not investigated 30344699

– – Lentiviral overexpression of
miR-146a in H92c

In vitro in H9c2 cells,
mechanistic model

Increases MMP9, may
reduce fibrosis in injured
heart

FOS, AP1 CM – 26112171

Sepsis induced
cardiac
dysfunction

– Transfection of mice with
miR-146a, in vitro H9c2
and macrophages

Murine sepsis model Attenuation of sepsis
induced myocardial
dysfunction

IRAK, TRAF6 H9c2, J774
macrophages

26048146
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TABLE 1 | Continued

miRNA Disease model Releasing cell
type

Experimental approach Experimental model Effect Identified
targets

Recipient cell Off-target
effects

PMID

DoxDCM CM In vitro overexpression and
suppression of miR-146a

In vitro in H9c2 cells,
mechanistic model

Induction of cell death upon
Dox treatment

ErbB4 H9c2 – 20495188

AMI AT-MSCs
overexpressing
miR-146a

I.m. injections of AT-MSCex
native and overexpressing
miR-146a

AMI in rats Decreased CM apoptosis,
decreased inflammation,
decreased fibrosis

EGR1 H9c2 Not investigated 30362610

miR-146a-5p DoxDCM CPCs CPCex rich in miR-146a-5p
vs. Fibex

DoxDCM model in rats Decreased CM apoptosis Traf6, Smad4,
Nox4, Mpo

– Not investigated 31098627

miR-
146a + miR-
155

– DC Injection of endotoxin
exposed mice with Dcex
rich in miR-155 and
miR-146a

Murine model of endotoxin
inflammation

miR-146a attenuates
inflammation, miR-155
increases inflammation

– – Not investigated 26084661

miR-22 AMI – AAV9 overexpression of
miR-22

AMI in rats Decreased CM apoptosis,
decreases infarct size

CBP – Not investigated 24338162

– – Overexpression of miR-22
in murine lungs, zebrafish
and ECs in vitro

– VEC EC Not investigated 28112401

AMI, HF – Gain and loss study on
miR-22

In vitro in CF, mechanistic
model

Overexpression limits
expression of Col1α1,
Col3α1

TGFβR CF – 27997889

AMI – Gain and loss study on
miR-22

In vitro in rat CMs Overexpression prevented
autophagy and apoptosis in
CMs

p38α CM –

AMI – I.m. injection of miR-22
inhib., loss and gain
function in vitro

AMI in rats Inhibition decreases infarct
size, reduces CM apoptosis

Sirt1, PGC1α H9c2 Not investigated 27174562

DCM – miR-22 deficient mice and
gain and loss function in
H9c2

Murine model of left
ventricular pressure over
load

miR-22 suppression led to
left ventricular dilation

PReBPb H9c2 Not investigated 22570371

DCM – Gain and loss of miR-22 in
mice

Murine model of left
ventricular pressure
overload

Overexpression of miR-22
protected from DCM

Sirt1, Hdac4 – Not investigated 23524588

– – Gain and loss study in
H9c2

In vitro in H9c2 cells,
mechanistic model

Prevents the activation of
NFkB/Caspase3 mediated
apoptosis upon stress

p65 H9c2 – 30504734

AMI – In vitro gain and loss study,
in vivo miR-22 KO mice

Murine model of AMI In miR-21 KO mice
decreased survival,
decreased LVEF, increased
scar size

KBTBD7 Macrophages 29991775

(Continued)
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TABLE 1 | Continued

miRNA Disease model Releasing cell
type

Experimental approach Experimental model Effect Identified
targets

Recipient cell Off-target
effects

PMID

miR-21 AMI – AAV9 overexpression of
miR-21

AMI in rats Promotes cardiac fibroblast
activation and CF to
myofibroblast
transformation (CMT)

Jagged1 – Not investigated 29808534

– Targets PDCD4 to reduce
apoptosis after HIF-1alpha
activated expression of
mir21

29170412

AMI – In vitro in CF, in vivo
induction of miR-21 via
TGF-β1

Murine model of AMI Increased fibrosis in the
heart upon AMI

Smad7 CF Not investigated 28817807

– – Gain and loss study in
H9c2 cells

In vitro in H9c2 cells,
mechanistic model

Inhibits autophagy and
apoptosis upon I/R partially
via the Akt/mTOR pathway

– H9c2 – 27680680

– – Exposure of H9c2 cells with
CPC derived EVs rich in
miR-21

In vitro in H9c2 cells,
mechanistic model

Targets PDCD4 when CDC
derived exosomes are
added to CMs

– H9c2 – 27336721

– – Gain and loss study in
PBMCs

In vitro in human PBMCs,
mechanistic model

Via targeting SMAD7,
mir-21 can reduce the
number of circulating Tregs

Smad7 Human Tregs – 26383248

– – Gain and loss study in
H9c2 cells

In vitro in H9c2 cells,
mechanistic model

Proof for a positive
feedback loop between
mir-21 and HIF-1alpha
which reduces apoptosis
upon hypoxia and stress

PTEN H9c2 – 24983504

miR-21-5p – – Gain and loss study in
H9c2

In vitro in H9c2 cells,
mechanistic model

Modulation of reliance on
glycolytic or fatty acid
oxidation in mitochondria

– H9c2 – 30657727

– BM-MSCs Exposure of H9c2 cells with
BM-MSCex rich in
miR-21a-5p

In vitro in H9c2 cells,
mechanistic model

Reduction of CM apoptosis
upon stress. This was
identified in EVs from MSCs
(miR-21a-5p).

PDCD4, PTEN,
Peli1 an dFasL

H9c2 – 29698635

AAV, adeno-associated-virus; Afib, atrial fibrillation; AMI, acute myocardial infarction; AT-MSCex, AT-MSC exosomes; AT-MSCs, adipose tissue derived mesenchymal stem cells; BM-EPCs, bone marrow derived
endothelial progenitor cells; BM-MSCex, BM-MSC exosomes; BM-MSCs, bone marrow derived mesenchymal stem cells; CF, cardiac fibroblast; CPCs, cardiac progenitor cells; DCex, dendritic cell exosomes; DCM,
dilated cardiomyopathy; DCs, dendritic cells; DMap, diabetic myocardial microangiopathy; DoxDCM, doxorubicin induced dilated cardiomyopathy; ECs, endothelial cells; EPCs, endothelial progenitor cells; HF, heart
failure; HUVECs, human umbilical vein endothelial cells; I/R, ischemia reperfusion.
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remodeling. Therefore, many miRNAs such as miR-132, miR-
126, and miR-210 have been investigated for their angiogenic
potential (Table 1). The transcription of most of these miRNAs
is dependent on the expression VEGF (Lei et al., 2015;
Chodari et al., 2019). For instance, miR-132 expression is
dependent in the promotor cAMP response element-binding
protein as the transcription factor, which is induced by VEGF
stimulation (Chodari et al., 2019). EVs from cardiac progenitor
cells (CPCs) rich in miR-132 inhibit the translation of Ras
GTPase activating protein (p120RasGAP) which promotes
proliferation and sprouting of endothelial cells thus improving
neovascularization in vivo and in vitro (Barile et al., 2014).
In a murine model of acute myocardial infarction this led
to improved left ventricular ejection fraction on a functional
level and improved vascularization in the infarct border zone
on a histological level (Barile et al., 2014). Similarly, EVs
from adipose-derived mesenchymal stem cells (AT-MSCs) that
overexpressed miR-126, also improved cardiac function and
resulted in a denser microvasculature in the infarct border zone
in rats (Luo et al., 2017). Functional studies have shown that
miR-126 is highly depended on the activation of endothelial
dicer RNA Polymerase III. Only the passenger strand miR-
126-5p can bind to the Notch1 inhibitor Delta-like homolog
1 (Dlk1) (Zhou Z. et al., 2018). The notch signaling pathway
is crucial to endothelial cell differentiation and endothelial
sprouting (Mack and Iruela-Arispe, 2018). While there is no
direct evidence linking the cardioprotective effect of miR-132
to cardiomyocytes, there is evidence that miR-132 can also
reduce fibrosis in by targeting connective tissue growth factor
(Zhang C.-J. et al., 2018). Furthermore, miR-132 has also been
identified in a rat model of DCM to target phosphatase and
tensin homolog (PTEN) (Ma et al., 2018). Suppression of
PTEN activates the phosphoinositide 3-kinases/protein kinase
B pathway (PI3K/Akt-pathway) which facilitates cardiomyocyte
and endothelial proliferation alike (Zhang C.-J. et al., 2018).
miR-210 has also been shown to promote angiogenesis in the
myocardium (Mutharasan et al., 2011). In contrast to miR-126
and miR132, the expression of miR-210 depends on HIF-1alpha,
which is also released under hypoxic stress (Barile et al., 2014).
In both murine models of acute myocardial infarction and hind
limb ischemia it has been shown that miR-210 encapsulated
by EVs promotes angiogenesis in endothelial cells as well as
suppresses apoptosis in cardiomyocytes by targeting Ephrin A3
(Barile et al., 2014; Wang et al., 2017; Besnier et al., 2018).
While the upregulation or substitution of all aforementioned
miRNAs are associated with a pro-angiogenic profile in the
setting of myocardial infarction, they have also been identified
in cancer biogenesis and metastasis formation. Also, in the field
of cancer biology the data for these miRNAs is heterogeneous
and in depending on cancer type they are both associated as a
positive and negative prognostic marker. The heterogeneity of
these results and their role in tumor progression could, however,
pose an obstacle for their use as a cardioprotective agent. As a
solution, patients susceptible to certain cancers that depend on
overexpression of these miRNA need to be identified to prevent
adverse effects from a hypothetical therapeutic miRNA.

How to Deal With Contradictory Results
miR-146a is part of a negative feedback loop in the canonical
pathway of NFkB activation. miR-146a binds to the mRNA
encoding for interleukin-1 receptor associated kinase 1 (IRAK1)
and tumor necrosis factor receptor-associated receptor 6
(TRAF6). Both of this receptor bound factors are essential for
the IL-1 and TNFalpha activation of NFkB (Fish and Cybulsky,
2015; Gao et al., 2015; Milano et al., 2019). As part of that negative
feedback loop miR-146a is highly expressed in atherosclerotic
plaques. However, the overexpression of this miRNA can also
attenuate the inflammatory response as shown in gain and loss
studies in ApoE deficient mice, where miRNA-146a plays an
important part in the attenuation of atherosclerotic plaques
(Fish and Cybulsky, 2015). In a rat model of AMI, EVs from
AT-MSCs overexpressing miR-146a targeted the early growth
response protein 1 in cardiomyocytes decreasing cardiomyocyte
apoptosis, cardiac fibrosis and ultimately improving the heart
function (Pan et al., 2019). Milano et al. (2019) demonstrated
that the passenger strand miR-146a-5p reduced the inflammatory
signaling pathways by directly targeting TRAF6, SMAD4, IRAK1,
NADPH oxidase 4 (NOX4), and myeloperoxidase (MPO) in
a model of doxorubicin/trastuzumab induced cardiomyopathy.
Interestingly, another group showed that with treatment of
doxorubicin alone an upregulation of miR146a occurs, targeting
the receptor tyrosine-protein kinase erbB-4 (ErbB4). Here, a
negative correlation between miR-146a and cardiac function
was confirmed and explained by the suppression of the ErbB4
dependent neuregulin1/ErbB pathway, which is essential for
adult cardiac function (Horie et al., 2010). It is, however,
important to note that these results were only obtained from
in vitro experiments. Both miR-21 and -22 have been associated
with cardioprotective properties by reducing cardiomyocyte
apoptosis and have been found in most EVs from therapeutic
cell product isolates to date (Barile et al., 2016; Gallet et al.,
2016). While there is evidence, that miR-22 also exhibits an
anti-fibrotic effect during myocardial remodeling, overexpression
of miR-21 is clearly associated with promoting cardiac fibrosis
(Table 1). miR-21 directly targets jagged1 and SMAD7 in rat
hearts when overexpressed via AAV9 (Zhou X.-L. et al., 2018).
In the aforementioned experiment, jagged1 suppression activates
cardiac fibroblast proliferation and facilitates cardiac fibroblast
to myofibroblast transformation. In a murine model of AMI,
suppression of SMAD7 via miR-21 led to an increased expression
of Collagen 1 alpha, alpha-smooth muscle actin (alpha-SMA)
and F-actin. In a similar model of AMI in rats, AVV9 mediated
overexpression of miR-22 let to the inhibition of CBP-associated
factor AP1 (Yang et al., 2014). Downregulation of this promotor
leads to the activation of MMP9, which in turn can reduce cardiac
fibrosis. Additionally, miR-22 binds to the mRNA coding for
the TGFbeta receptor 1 (Hong et al., 2016). In mice, silencing
of miR-22 led to increased expression of Collagen 1 alpha 1
and 3alpha1 and an overall increased amount of cardiac fibrosis
after myocardial infarction. Regarding the anti-apoptotic effect
of miR-22, there are contradictory results published to date.
Gurha et al. (2012) and Du et al. (2016) both demonstrated
that SIRT1 and PGC1alpha are both targeted by miR-22 in
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cardiomyocytes. In both experiments, overexpression of miR-
22 lead to increased cell death and reduction in myocardial
mass whereas in the studies published by Huang et al. (2013)
and Hong et al. (2016) cardiac mass increased upon miR-22
overexpression and ischemia/reperfusion injury. Huang et al.
(2013) also demonstrate the targeting of SIRT1 but in their
hands, cardiomyocyte hypertrophy was the predominant finding.
Hong et al. (2016) demonstrated decreased apoptosis levels in the
myocardium and linked that effect to the inhibition of CREB. For
miR-21 the anti-apoptotic effects is shown more robustly between
different research teams (Table 1). miR-21 expression is under
direct control of HIF1alpha but can also influence the expression
of HIF1alpha itself in a positive feedback loop (Liu Y. et al., 2014).
The miRNA targets programmed cell death protein 4 (PCDP4)
and reduces cell apoptosis upon hypoxic stress. This effect has
been demonstrated with EVs containing high levels of miR-21
from different cell types such as CPCs and MSCs (Xiao et al.,
2016; Luther et al., 2018). Both miR-21 and miR-22 exemplify the
various outcomes that can be seen when working with miRNAs in
pre-clinical models. Even within one species there are variations
and sometime contradictory results that can be elaborated by
other groups on both ends of the aisle. Especially miRNAs that
can promote fibrosis can have severe and unwanted effects in the
injured heart and may lead to increase in scar mass. Here, patient
screening and good patient selection may help to prevent these
contradictory results. This can only be achieved by understanding
all pathways that can be altered by each respective miRNA and
tools to identify patients that may be susceptible to treatments
with certain miRNAs.

SUMMARY

The data that has been collected on miRNAs targeting
cardioprotection so far exemplifies the importance of knowing
the relevant targets of miRNAs, since introduction of foreign
miRNAs via exosomal transfer or other clinical relevant
approaches may have some severe side effects. In this context,
it is also worth noting that all of the aforementioned miRNAs
are also involved in tumor biology. Especially miRNAs that
impact neoangiogenesis in myocardial repair are important
factors in tumor angiogenesis as well. In addition, most of
the mechanistical studies have focused on the interaction of

one miRNA on multiple targets. Upon ischemia/reperfusion or
transfer of exogenous EVs the interaction of numerous miRNAs
on multiple potential targets needs to be taken into account.
With current methods, experimental data usually depicts a single
linear arm in a complex matrix of interactions between miRNAs,
mRNAs and transcription factors. Our current understanding
of these complex matrices is only rudimental at best. And
it may also be one of the main reasons why none of the
clinical trials with cell-based therapies or RIPC have delivered
the expected results we anticipated from pre-clinical experience.
As repeatedly highlighted by numerous experts in the field,
understanding the pathways by which a single- or a collection of
miRNAs in an exosome, facilitate cardioprotection will be crucial
for successful clinical translation (Madonna et al., 2016, 2019;
Behfar and Terzic, 2019). Combined effort of computational
models and artificial intelligence in merging and interpreting
the acquired data, might help us in the future to achieve this
goal. Identifying such ‘pathway’ matrices will be detrimental
in defining quality standards for therapeutic exosome or single
miRNA-based products. The past experience from cell-based
therapies have taught us that preclinical data in the field of cardiac
regeneration or cardioprotection does not necessarily translate
into therapeutic success in the clinical setting. Going forward, we
will have to deepen our understanding of miRNA interactions by
strengthen our efforts to collaborate with bioinformaticians for
more sophisticated predictive algorithms.
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