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Glioblastoma (GBM) is one of the most common and aggressive primary adult brain
tumors. Tumor heterogeneity poses a great challenge to the treatment of GBM, which is
determined by both heterogeneous GBM cells and a complex tumor microenvironment.
Single-cell RNA sequencing (scRNA-seq) enables the transcriptomes of great deal of
individual cells to be assayed in an unbiased manner and has been applied in head
and neck cancer, breast cancer, blood disease, and so on. In this study, based on
the scRNA-seq results of infiltrating neoplastic cells in GBM, computational methods
were applied to screen core biomarkers that can distinguish the discrepancy between
GBM tumor and pericarcinomatous environment. The gene expression profiles of GBM
from 2343 tumor cells and 1246 periphery cells were analyzed by maximum relevance
minimum redundancy (mRMR). Upon further analysis of the feature lists yielded by the
mRMR method, 31 important genes were extracted that may be essential biomarkers
for GBM tumor cells. Besides, an optimal classification model using a support vector
machine (SVM) algorithm as the classifier was also built. Our results provided insights of
GBM mechanisms and may be useful for GBM diagnosis and therapy.

Keywords: glioblastoma biomarkers, scRNA-seq, mRMR method, support vector machine, pericarcinomatous
environment

INTRODUCTION

Glioblastoma (GBM), with an annual incidence of 3.19 per 100,000, maintains the most common
and aggressive primary adult brain tumor (Stupp et al., 2007, 2017; Chinot et al., 2014;
Gilbert et al., 2014; Ostrom et al., 2016). Currently, the standard therapeutic regimen has been
established, including surgical resection, followed by radiotherapy with concurrent chemotherapy
(temozolomide), then followed by maintenance therapy (temozolomide for 6–12 months) (Stupp
et al., 2005). However, the diffuse nature of GBMs makes it invariably recur after treatment,
rendering local therapies invalid, because the migrating GBM cells outside of the neoplasm core are
usually unaffected by local therapies and hence cause recurrence of GBMs (Darmanis et al., 2017).
The mean disease-free survival is just over 6 months and the mean overall survival also remains
gloomy, with an approximately 25% 2-year survival rate after diagnosis and a 5–10% 5-year survival
rate (Stupp et al., 2005, 2017; Das and Marsden, 2013).

Tumor heterogeneity poses a great challenge to the treatment of GBM, which is determined by
both heterogeneous GBM cells and a complex tumor microenvironment. It is critical important
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for researchers to understand how different types of GBM cells
interact with neoplasm cells through profiling of different types
of cell from cell population in paraneoplastic environment, as
well as identifying the lineage and phenotypes (Darmanis et al.,
2017). Verhaak et al. (2010) has proved bulk tumor sequencing
methods were useful in generating classification schemas of
GBM subtypes, but the heterogeneity of GBM was not unveiled
in essence (Cancer Genome Atlas Research Network, 2008).
Until recently, RNA profiling was limited to ensemble-based
approaches, averaging over bulk cell populations. Therefore, the
advent of single-cell RNA sequencing (scRNA-seq) enables the
transcriptomes of great deal of individual cells to be assayed
in an unbiased manner (Stegle et al., 2015) and has been
applied in head and neck cancer (Puram et al., 2017), breast
cancer (Bajikar et al., 2017), blood disease (Zhao et al., 2017),
and so on. Patel et al. (2014) profiled 430 cells from five
GBM patients using scRNA-seq and described inter-patient
variation and molecular diversity of tumor cells within individual
GBM patients. The diversities of GBM cells within tumors
are responsible for cancer progression and finally result in
treatment failure.

Currently, in order to improve future treatment options,
an increasing number of researchers have focused on the
targeted agents or genes (Liu et al., 2013; Xiao et al., 2014;
Li et al., 2018). Furnari et al. (2007) have identified genetic
molecular mechanisms in GBM patients: (1) dysregulation of
growth factor signaling through amplification and mutational
activation of receptor tyrosine kinase (RTK) genes; (2) activation
of the phosphatidyl inositol 3-kinase (PI3K) pathway; and (3)
deactivation of the p53 and retinoblastoma tumor suppressor
pathways. Moreover, four distinct GBM subclasses, including
neural, proneural (PGFRA/IDH1 events), classical (focal EGFR
events), and mesenchymal (NF1 mutation and loss), were
defined by gene expression studies from The Cancer Genome
Atlas (TCGA) (Verhaak et al., 2010), which also found the
majority of GBM neoplasms had abnormalities in the pathways
(RB, TP53, and RTK) through projecting copy number and
mutation data on these pathways, revealing that this is a
crucial step for GBM pathogenesis. Apart from such researches
focused on tumor or microenvironment, many studies analyzed
the gene expression of immune cells in GBM via scRNA-
seq. Muller et al. (2017) identified 66 new gene sets which
can be applied as biomarkers (such as P2RY12, CD49D,
and HLA-DRA) to distinguish the different lineages of the
macrophage cell subsets.

In this study, based on the scRNA-seq results of infiltrating
neoplastic cells in GBM, computational methods were applied
to screen core biomarkers that can distinguish the discrepancy
between GBM tumor and pericarcinomatous environment. The
gene expression profiles of GBM from 2343 tumor cells and 1246
periphery cells were analyzed by maximum relevance minimum
redundancy (mRMR) (Peng et al., 2005). Upon further analysis
of the feature lists yielded by the mRMR method, 31 important
genes were extracted that may be essential biomarkers for GBM
tumor cells. Besides, an optimal classification model using a
support vector machine (SVM) algorithm (Ding and Dubchak,
2001) as the classifier was also built.

MATERIALS AND METHODS

The Single Cell Gene Expression Profiles
of Tumor and Surrounding Tissues
We download the single cell gene expression profiles of 2343
cells of tumor core and 1246 cells of surrounding tissue from
Gene Expression Omnibus (GEO) with accession number of
GSE84465 (Darmanis et al., 2017). 23,460 genes were measured
using Illumina NextSeq 500. Within each sample, we counted
the number of expressed genes, i.e., the number of genes with
mapped reads. The average number of expressed genes in each
sample was 2,581. Our goal is to discriminate the 2343 tumor cells
(positive samples) and 1246 surrounding cells (negative samples).

The mRMR Ranking of Discriminative
Genes
There have been many statistics methods for identifying the
differentially expressed genes (DEGs). But these methods did not
consider the relationships between genes. Usually, the number of
DEGs was too large to apply as biomarker. Therefore, we adopted
the information theory-based mRMR (minimal Redundancy
Maximal Relevance) method (Peng et al., 2005) to overcome this
problem. The mRMR method not only considers the associations
between genes and samples, but also the redundancy between
genes. If several genes are similar, only the most representative
gene will be selected. This approach has been proven to be
effective and has been widely used for many biomedical feature
selection problems (Niu et al., 2013; Zhao et al., 2013; Zhou et al.,
2015; Zhang et al., 2016; Liu et al., 2017), especially in single cell
RNA-Seq analysis (Zhang et al., 2019). The sample size of single
cell data was large and the gene expression was spare. It was easy
to get too many redundant significant genes using traditional
statistical based method, such as t-test. Therefore, the mRMR
was suitable for analyzing single cell data to get small number of
non-redundant biomarkers.

Let’s describe the method mathematically. All genes, selected
genes, to be selected genes can be represented as �, �s, and �t ,
respectively. The relevance of gene g from �t with tissue type t
can be measured with mutual information (I) (Sun et al., 2012;
Huang and Cai, 2013):

D = I(g, t). (1)

And the redundancy R of the gene g with the selected genes
in �s are

R =
1
m

 ∑
gi∈�s

I(g, gi)

 (2)

The goal of this algorithm is to get the gene gj from �t that has
maximum relevance with tissue type t and minimum redundancy
with the selected genes in �s, i.e., maximize the mRMR function

max
gj∈�t

I(gj, t)−
1
m

 ∑
gi∈�s

I(gj, gi)

 (j = 1, 2, . . . , n) (3)
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The evaluation procedure will be continued for N rounds, and all
the genes will be ranked as a list

S = {g′1, g
′
2, . . . , g

′

h, . . . , g
′
N, } (4)

The index h reflects the trade-off between relevance with tissue
type and redundancy with selected genes. The smaller index h is,
the better discriminating power the gene has.

The Single Cell GBM Biomarker
Optimization
Based on the top 100 mRMR genes, we constructed 100 SVM
classifiers and applied an incremental feature selection (IFS)
method (Jiang et al., 2013; Li et al., 2014; Shu et al., 2014;
Zhang et al., 2014, 2015) to identify the optimal number of
genes as biomarker. The svm function from R package e10171
was used to implement the SVM method. Each candidate gene
set Sk = {g′1, g

′
2, . . . , g

′

k}(1 ≤ k ≤ 100) included the top k genes
in the mRMR list.

We used leave-one-out cross validation (LOOCV) (Cui et al.,
2013; Yang et al., 2014) to evaluate the prediction performance
of each SVM classifier. During LOOCV, all of the N samples
were tested one-by-one. In each round, one sample was used for
testing of the prediction model trained with all the other N−1
samples. AfterN rounds, all samples were tested one time, and the
predicted tissue types were compared with the actual tissue types.

Since the positive and negative sample sizes were imbalance
and Mathew’s correlation coefficient (MCC) can consider both
sensitivity and specificity (Huang et al., 2015), MCC was used in
IFS optimization. MCC can be calculated as follows:

MCC =
TP× TN− FP× FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

(5)

where TP, TN, FP, and FN stand for true positive, true negative,
false positive, and false negative, respectively.

Based on the LOOCV MCC of each candidate gene set, an IFS
curve can be plotted. The x-axis denoted the number of top genes
that were used in the SVM classifier, and the y-axis denoted the
LOOCV MCCs of the SVM classifiers. Based on the IFS curve,
we can choose the right number of genes which had a good
prediction performance as final biomarkers.

RESULTS AND DISCUSSION

The Discriminative Importance of Genes
We applied mRMR algorithm to evaluate the discriminative
importance of features iteratively. We want to find the features
that were strongly associated with samples groups and were
not redundant with other selected features. Using the mRMR
method, we identified the top 100 most important genes. These
genes were listed in Supplementary Table S1.

The Optimal GBM Biomarker Genes
Selected With IFS Method
After we got the top 100 mRMR genes, we still did not know
how many genes should be selected. To optimize the selected

biomarker genes, we adopted IFS method. Each time, we added
one feature into the previous feature set and got a new feature
set. Then SVM classifiers were built to predict each sample’s labels
during LOOCV. The IFS curve with the number of genes as x-axis
and the prediction performance (LOOCV MCC) as y-axis were
plotted in Figure 1. The peak MCC was 0.812 when 31 genes were
used. These 31 genes were selected as optimal GBM biomarker
genes. The 31 genes were listed in Table 1. The confusion matrix
of the 31 genes were given in Table 2. The sensitivity, specificity,
and accuracy were 0.948, 0.855, and 0.915, respectively.

Since the tumor tissues are usually a mixture of tumor cells and
normal cells, the tumor purity may cause the misclassifications.
To check this, Figures 2A,B showed the t-distributed stochastic
neighbor embedding (t-SNE) plots of predicted GBM cells and
predicted non-GBM cells, respectively. In Figure 2A, it can be
seen that the false positive samples (red dots) and the true
positive samples (black dots) were mixed and they were difficult
to classify. Similarly, in Figure 2B, it can be seen that the false
negative samples (black dots) and the true negative samples (red
dots) were mixed. These t-SNE plots suggested that the GBM
tissues may contain non-GBM cells and the non-GBM tissues
may contain GBM cells, but most cells from the corresponding
tissue were similar and the machine learning algorithm we used
can get the robust single cell biomarkers even when there were
tissue purity issues.

The Biological Functions of the Selected
Genes
Upon analysis by the mRMR method, 31 important genes were
extracted that may be essential biomarkers of GBM. We did Gene

FIGURE 1 | The IFS curve of the top 100 mRMR genes. The x-axis was the
number of genes and the y-axis was the prediction performance, i.e., LOOCV
MCC. The peak MCC was 0.812 when 31 genes were used. These 31 genes
were selected as optimal GBM biomarker genes.
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TABLE 1 | The 31 selected GBM biomarker genes.

Rank Gene Rank Gene

1 TMSB4X 17 VIM

2 IPCEF1 18 ATP1A2

3 MTSS1 19 RPL41

4 S100A10 20 EGR3

5 HTRA1 21 OMG

6 DHRS9 22 LDHA

7 TPI1 23 P2RY12

8 SNX22 24 SPOCK1

9 FCGBP 25 NAMPT

10 TMSB10 26 C1QL2

11 CCL3 27 PTN

12 SLC6A1 28 CCL4

13 SMOC1 29 PDZD2

14 SEC61G 30 LGALS1

15 TGFBI 31 CLDN10

16 CDR1

TABLE 2 | The confusion matrix of the 31 selected genes.

Predicted GBM Predicted non-GBM

Actual GBM 2220 123

Actual non-GBM 181 1065

Ontology (GO) enrichment analysis of these 31 genes. The GO
enrichment results were given in Table 3. It can be seen that
their main function was cell adhesion and their main subcellular
location was extracellular.

TABLE 3 | The GO enrichment results of the 31 selected genes.

GO term FDR P-value Genes

GO:0007155 cell
adhesion

0.0068 8.26E−07 EGR3, LGALS1, OMG, PTN,
S100A10, CCL4, SPOCK1,
TGFBI, CLDN10, MTSS1, PDZD2,
P2RY12

GO:0022610
biological
adhesion

0.0068 8.74E−07 EGR3, LGALS1, OMG, PTN,
S100A10, CCL4, SPOCK1,
TGFBI, CLDN10, MTSS1, PDZD2,
P2RY12

GO:0031012
extracellular matrix

0.0029 1.57E−06 LGALS1, OMG, HTRA1, PTN,
SPOCK1, TGFBI, VIM, SMOC1

GO:0005615
extracellular space

0.0107 1.56E−05 LGALS1, OMG, HTRA1, PTN,
CCL3, CCL4, SPOCK1, TGFBI,
TMSB4X, TPI1, NAMPT

GO:0005576
extracellular region

0.0107 1.87E−05 ATP1A2, LDHA, LGALS1, OMG,
HTRA1, PTN, S100A10, CCL3,
CCL4, SPOCK1, TGFBI,
TMSB4X, TPI1, VIM, FCGBP,
NAMPT, PDZD2, SMOC1, C1QL2

GO:0005578
proteinaceous
extracellular matrix

0.0107 2.30E−05 LGALS1, OMG, PTN, SPOCK1,
TGFBI, SMOC1

GO:0044421
extracellular region
part

0.0108 2.89E−05 ATP1A2, LDHA, LGALS1, OMG,
HTRA1, PTN, S100A10, CCL3,
CCL4, SPOCK1, TGFBI,
TMSB4X, TPI1, VIM, FCGBP,
NAMPT, SMOC1

We compared the 31 genes with reported GBM signatures in
GeneSigDB (Culhane et al., 2012) and found that the 31 genes
were significantly overlapped with a signature called “Human

FIGURE 2 | The t-SNE plots of predicted GBM cells and predicted non-GBM cells. (A) The t-SNE plots of predicted GBM cells. It can be seen that the false positive
samples (red dots) and the true positive samples (black dots) were mixed and they were difficult to classify. (B) The t-SNE plots of predicted non-GBM cells. It can be
seen that the false negative samples (black dots) and the true negative samples (red dots) were mixed. These t-SNE plots suggested that the GBM tissues may
contain non-GBM cells and the non-GBM tissues may contain GBM cells, but most cells from the corresponding tissue were similar and the machine learning
algorithm we used can get the robust single cell biomarkers even when there were tissue purity issues.
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Glioblastoma_Morandi08_22genes” which were from Table 1
of Morandi et al. (2008): the 22 up-regulated genes following
camptothecin (CPT) treatment in both U87-MG and DBTRG-05
cells. The hypergeometric test p-value was 0.0157.

Among the 31 genes, several of them plays roles in
tumor metastasis. Thymosin β4 (TMSB4X/Tβ4) is associated
with tumor metastasis and progression which plays a role
in cell proliferation, migration, and differentiation through
a TGFβ/MRTF Signaling Axis (Morita and Hayashi, 2018).
TMSB4X expression was associated with cancers in a stage- and
histology-specific manner and could be an effective prognostic
parameter and prognostic index. Thus far, the relationship
between TMSB4X and GBM remain unknown. IPCEF1 is the
C-terminal half of CNK3 which is required for HGF-dependent
Arf6 activation and migration during cancer metastasis (Attar
et al., 2012). MTSS1 plays an important role in cancer
metastasis. Previous researches indicated that MTSS1 as a
potential tumor biomarker and its reduced expression associated
with bad prognosis in many cancers. In GBM, MTSS1was
reported as a potential tumor suppressor and prognostic
biomarker which could suppress cell migration and invasion
(Zhang and Qi, 2015).

Several genes can facilitate cancer progression. S100A10 is
a calcium binding protein which is found to be significantly
correlated with poor survival in patients with gliomas
(Sethi et al., 2012). S100A10 has been involved in cancer
progression, but the unique function is not well understood
(O’Connell et al., 2010). HTRA1 encodes a ubiquitously
expressed serine protease with prominent expression in the
vasculature. Inhibition of HTRA1 could deregulate angiogenesis
in the tumor stroma which plays an important role in
tumor progression (Chien et al., 2006; He et al., 2010;
Klose et al., 2018).

There are several other reported tumor genes. DHRS9
is a member of the short-chain dehydrogenases/reductases
(SDR) family. Recent research found that SDR family members
have been involved in tumors (Hu et al., 2016). TPI1
encodes an enzyme, consisting of two identical proteins, which
catalyzes the isomerization of glyceraldehydes-3-phosphate
(G3P) and dihydroxy-acetone phosphate (DHAP) in glycolysis
and gluconeogenesis. TPI1 was down-regulated in response to
LLL12 treatment and validated using immunoblot (Jain et al.,
2015). It may serve as potential therapeutic targets in GBM
(Jain et al., 2015).

CONCLUSION

Glioblastoma is the most aggressive and incurable primary brain
cancer in adults. The most common survival time after diagnosis
is 12–15 months, with 5-year survival rate <5%. Symptoms of
GBM are non-specific at early stage and the cause of GBM
remains elusive. We analysis the data from 2343 tumor cells and
1246 periphery cells using mRMR and IFS method to characterize
infiltrating tumor cells, and to define the cellular diversity.
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