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The design of markerless systems to reconstruct human motion in a timely, unobtrusive

and externally valid manner is still an open challenge. Artificial intelligence algorithms

based on automatic landmarks identification on video images opened to a new

approach, potentially e-viable with low-cost hardware. OpenPose is a library that t

using a two-branch convolutional neural network allows for the recognition of skeletons

in the scene. Although OpenPose-based solutions are spreading, their metrological

performances relative to video setup are still largely unexplored. This paper aimed

at validating a two-cameras OpenPose-based markerless system for gait analysis,

considering its accuracy relative to three factors: cameras’ relative distance, gait

direction and video resolution. Two volunteers performed a walking test within a gait

analysis laboratory. A marker-based optical motion capture system was taken as a

reference. Procedures involved: calibration of the stereoscopic system; acquisition

of video recordings, simultaneously with the reference marker-based system; video

processing within OpenPose to extract the subject’s skeleton; videos synchronization;

triangulation of the skeletons in the two videos to obtain the 3D coordinates of the joints.

Two set of parameters were considered for the accuracy assessment: errors in trajectory

reconstruction and error in selected gait space-temporal parameters (step length, swing

and stance time). The lowest error in trajectories (∼20mm) was obtained with cameras

1.8m apart, highest resolution and straight gait, and the highest (∼60mm) with the

1.0m, low resolution and diagonal gait configuration. The OpenPose-based system

tended to underestimate step length of about 1.5 cm, while no systematic biases were

found for swing/stance time. Step length significantly changed according to gait direction

(p= 0.008), camera distance (p= 0.020), and resolution (p< 0.001). Among stance and

swing times, the lowest errors (0.02 and 0.05 s for stance and swing, respectively) were

obtained with the 1m, highest resolution and straight gait configuration. These findings

confirm the feasibility of tracking kinematics and gait parameters of a single subject in

a 3D space using two low-cost webcams and the OpenPose engine. In particular, the

maximization of cameras distance and video resolution enabled to achieve the highest

metrological performances.

Keywords: movement measurement, gait analysis, computer vision, artificial intelligence, markerless
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INTRODUCTION

The measurement of human motion represents one of the
most interesting and challenging topics of metrology. Optical
motion tracking solutions can be broadly categorized into
marker-based and markerless systems (Winter, 1990; Zhou and
Hu, 2008). Mostly represented by the first group, the modern
technological standards ground on established measurement
principles and techniques: the position of joints and the
orientation body segments are obtained through the three-
dimensional localization of passive (or less often, active) markers,
fixed on subjects’ body and captured by a calibratedmulti-camera
stereophotogrammetric video system (Cappozzo et al., 2005).
The human body is a complex, self-occluding and only partially
rigid entity (Mündermann et al., 2006). Thus, instead of directly
tracking human body pose, these systems work by identifying
common object features in consecutive images (fiducial points
or landmarks), which are used to track the motion of a series of
rigid bodes connected by rotational joints (Winter, 1990). This
solution provides the best metrological performances, in terms of
accuracy in themarkers’ localization (usually in the order of 10ths
of millimeters), repeatability and frequency of measurements
(Ma’touq et al., 2018). Owing to their cost, complexity and
required personnel to run the recording and place the markers
on specific anatomical landmarks, marker-based systems are
mainly used in specialized laboratories for clinical/rehabilitation
applications or entertainment and digital animation (Winter,
1990; Cappozzo et al., 2005).

With the aim of limiting these drawbacks, in the last decades
the interest toward markerless solution has grown rapidly, trying
either to reduce the cost of technology or to simplify the process
(Abbondanza et al., 2016; Ronchi and Perona, 2017; Colyer et al.,
2018; Mizumoto et al., 2018; Tanaka et al., 2018; Tarabini et al.,
2018a; Clark et al., 2019). Markerless systems are based on four
main components, namely a camera system, a body model, the
image features used and the algorithms that determine shape,
pose and location of the model itself (Colyer et al., 2018). Two
families of camera systems can be used, differing by whether
or not they produce a so-called “depth map,” i.e., an image
where each pixel describes the distance of a point in the scene
from the camera. Probably the best-known depth-sensing camera
systems (often referred to as RGB-D cameras as they capture
both color and depth) are Microsoft Kinect, Intel Realsense,
and StereoLabs Zed. These solutions are particularly effective for
real-time full body pose estimation in interactive systems and
videogames (Shotton et al., 2011; Ye et al., 2013), but they also
have limitations that hinder their wide application in clinical or
biomechanical setting: short-range, inoperability in bright sun
light, and potential interference betweenmultiple sensors (Colyer
et al., 2018). In addition, the accuracy in motion tracking is
still lower than marker-based systems, which actually remain the
gold standard.

Recently, novel artificial intelligence algorithms based on
automatic landmarks identification on video images (computer
vision) opened to a new approach for markerless motion capture,
which became potentially feasible with low-cost hardware (Cao
et al., 2016; Colyer et al., 2018; Clark et al., 2019). In that,

machine learning techniques were exploited to identify the
nodes of a skeletal structure describing the posture of a
human subject within a given image frame. As the associated
computational burden made this method practicably unviable,
the process was optimized by a research group from the Carnegie
Mellon University, who released a processing framework called
OpenPose (Cao et al., 2016). OpenPose takes as input color
images from simple web-cameras and using a two-branch
convolutional neural network (CNN) produces as output
confidence maps of keypoints, and affinity for each keypoint pair
(that is, belonging to the same skeleton). This way, OpenPose
allows for the recognition of skeletons of multiple persons in
the same scene. Some Authors adopted these OpenPose-based
solutions as a functional block of their research: an example
is Huang et al. (2017), in which OpenPose was used as an
initialization step for the reconstruction of 3D human shape;
a different approach is presented in Mehta et al. (2017), in
which a 3D skeletal model was obtained starting from a single
planar image.

Although promising results were obtained, the design of
markerless systems able to reliably reconstruct human motion in
a timely, unobtrusive and externally valid manner is still an open
challenge (Colyer et al., 2018). Among the fast-growing studies
on the application to various case studies, only a few focused
on the accuracy of subjects’ three-dimensional reconstruction:
the performance of OpenPose in the computation of the lower
limbs angles were analyzed with a single camera (Gu et al.,
2018), and compared to a multi-camera marker based system.
However, to the best of our knowledge, a targeted metrological
characterization of data processing with multiple viewpoints
is still missing in the case of automated walking analysis. At
present, example of OpenPose applications for the extraction
of gait parameters are scant. We hypothesize that the cameras
resolution and positioning, as well as the walking direction (i.e.,
angle with respect to cameras) could affect the accuracy and
thus feasibility of such systems in the clinical setting. Thus,
this paper aims at describing and validating an OpenPose-based
markerless motion tracking system for gait analysis against a
gold-standard commercial marker-based motion capture system,
discussing the extent to which the aforementioned factors affect
the tracking quality.

METHODS

Experimental Design and Participants
This observational case-series study was designed to determine
the metrological performance of the stereoscopic system featured
by OpenPose. The study involved two healthy volunteers who
performed a walking test at comfortable walking speed within
an instrumented gait analysis laboratory. The two participants
were both 24-years-old male adults, with the following heights
and body masses: 1.73m and 61 kg, 1.82m and 75 kg. They wore
minimal, close-fitting clothes. Participants were instructed about
the aims and benefits of the study, and they both signed a written
informed consent prior to laboratory sessions. As this study
did not involve any clinical intervention or functional/physical
evaluation, the approval from the Ethics Committee was not
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FIGURE 1 | Laboratory setup, schematic (left) and pictorial (right) view.

required. The study was carried out in accordance with the 1964
Helsinki declaration and its later amendments.

The effect of three factors potentially influencing the accuracy
of the proposed system were considered:

1. Cameras’ relative distance: cameras were positioned 1m and
then 1.8m apart;

2. Gait direction, straight or diagonal, defined bymeans of visual
references positioned along the path (the same for all the tests
repetitions). In the second, additional sources of error may
arise from the occlusions between body parts; subjects walked
on a footboard and the walking direction was perpendicular to
the cameras’ connecting axis.

3. Video resolution: high (1,312× 736 pixel), and standard (640
× 480 pixel). Both resolutions were obtained by scaling the
camera native resolution with a cubic interpolation, this way
we avoided the repetition of recording sessions.

Given that each factor assumed two levels, 23 (8) configurations
were possible. Each test configuration was replicated 3 times per
each volunteer; 48 tests were therefore performed.

Measurement System and Equipment
Two full-HD webcams (PC-W1, Aukey, Shenzhen, China) with
a native image resolution of 1920 × 1080 pixels and a 1/2.7”
CMOS sensor were used. Cameras acquired images at 30Hz, with
contrast and brightness automatically selected by the software
provided by the manufacturer. Cameras were fastened on an
aluminum bar perpendicular to the strait gait direction at a height
of 2.3m, framing the subject frontally.

A stereophotogrammetric motion analyser (Smart-D,
BTS Bioengineering, Milano, Italy) equipped with eight
infrared cameras sampling at 100Hz was used as reference
measurement system. The system was calibrated according to the
manufacturer’s specification, and the error in markers’ location
reconstruction was 0.2mm on a working volume of 3× 2× 2m.
Figure 1 shows the implemented measurement infrastructure.

Procedures
The measurement process can be summarized as follows:

1. Calibration of the stereoscopic system using planar patterns
(Zhang, 2000; Hartley and Zisserman, 2003). Cameras
calibration was performed within Matlab (v2018b, The
Mathworks Inc., Natwick, USA) by means of the Camera
Calibration Toolbox. A black and white checkerboard whose
geometry is known (70 × 50 cm) is framed by the two
cameras while spanning the checkerboard into the working
volume. The Toolbox returns an estimate of the cameras
internal and external parameters (i.e., lens distortion, camera
relative orientation and position). To get a calibration
metric, the reprojection error is computed by projecting
the checkerboard points from world coordinates into image
coordinates. Mean reprojection error was 0.18 pixels in
the 1-m distance configuration, and 0.12 pixels in the
1.8m configuration.

2. Acquisition of two video recordings, a and b (one per each
webcam), using the cameras of the stereoscopic system. Each
recording allowed to collect between four and five steps,
according to the laboratory dimension, and lasted 4.5–6.5 s.

3. Simultaneous recording using the reference, marker-based
optical system. Twenty-four reflective markers were placed
on the subject in the following anatomical landmarks (see
Figure 2): sternum and sacrum; right and left acromion,
medial and lateral humeral epicondyles, radius and ulnar
styloid process, antero-superior iliac spines, greater trochanter,
medial and lateral femoral epicondyles, medial and lateral
malleoli. This marker set was adapted from standard protocols
used in clinical gait analysis (Davis et al., 1991; Zago et al.,
2017), and was designed to match the skeletal configuration
of OpenPose (Figure 2). To do so, wrists, elbows, knees and
ankles joint centers were located at the midpoint (average) of
medial and lateral markers. Hip joint centers were computed
using regression equations as prompted by the International
Society of Biomechanics standards (Wu and Cavanagh, 1995).
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FIGURE 2 | Stick diagrams as returned by the marker-based optical system

(top, left) and OpenPose model (top, right); corresponding 3D reconstruction

of the skeletal structures during walking (bottom).

4. Video processing within OpenPose to extract the skeleton S of
a (single) subject in each video recording (Sa and Sb).

5. Synchronization of the two videos (see paragraph Data
Synchronization and Spatial Alignment).

6. Triangulation of the skeletons Sa and Sb using the calibration
outcome (step 1) to obtain the three-dimensional coordinates
of the joints and alignment between coordinate system of
step 4.

7. Computation of gait parameters (see paragraph Target
Parameters Computation) based on the three-dimensional
coordinates obtained.

8. Evaluation of the OpenPose accuracy for each single test
according to the metrics defined in the following paragraph.

9. Evaluation of the dependence of accuracy from the factors’
levels using a 3× 2 Analysis of Variance.

Data Processing
A set of 18 2D keypoints coordinates for body pose estimation
(in pixels) are returned by OpenPose from video images; 2D

keypoints are located in relevant body landmarks (such as left
hand, right hand, face, etc.) and were used to determine the
3D Cartesian coordinates, positioning the skeletal model of
the subject in the space with respect to reference system of
one camera. This operation was performed using the Matlab
Computer Vision System Toolbox (v2018b, The Mathworks Inc.,
Natwick, USA), obtaining the 3D stereoscopic triangulation of
the camera pixel coordinates, which included:

• the intrinsic calibration parameters of each camera,
for the assessment of focal lengths, camera centers and
distortion parameters;

• the extrinsic calibration parameters, accounting for the relative
position of cameras;

• the undistortion of pixel coordinates;
• the application of a functional triangulation for each of the

2D keypoints for the identification of the corresponding 3D
coordinates in the epipolar plane.

The resulting output was the 3D skeletal model of the subject, as
shown in the bottom-right panel of Figure 2.

Prior to further processing, coordinates returned by both the
OpenPose and the marker-based reference system were filtered
using a zero-lag, 2nd order Butterworth filter with a cut-off
frequency of 10 Hz.

Data Synchronization and Spatial Alignment
Since a physical trigger for the synchronization of the cameras
with the motion capture system was not available, we asked the
subjects to perform a sequence of repeated actions (to beat the
right hand on the right hip). The synchronization procedure
was repeated before each single test and it was achieved by
overlapping the time series of the distance between the right wrist
and right hipmarkers returned by the two systems. Prior to do so,
the signals were both downsampled (cubic splines interpolation)
to 30Hz. Drift errors due to different sampling rates (100Hz for
the marker-based system, 30Hz for the webcams) were negligible
given the test duration of a few seconds.

The spatial alignment of the reference systems completed the
measurement systems calibration: the 3D coordinates provided
by the triangulation of OpenPose data were originally expressed
in a reference system located in the optical center of one of the
cameras, oriented as the camera itself. The marker-based system
returns 3D coordinates resolved in global (laboratory) reference
system fixed on the ground at the center of the working volume.
These two coordinate systems were moved to a new, coincident,
reference frame, positioned midway between the two cameras,
with the origin at the ground level and with the axes directed
as those of the original marker-based system. The alignment
procedure was taken from Kabsch (1976) and involved the initial
rotation of the OpenPose reference system, followed by the
translation toward the desired origin.

Target Parameters Computation
Within the OpenPose-based system, the definition of the gait
phases relies on the recognition of the foot condition—stance or
swing (Saggin et al., 2013). The distance between two successive
stance statuses represents the target measurement. In our case,
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FIGURE 3 | Extraction of gait phases from the trajectories of ankle nodes’ velocity, explanatory example taken from a straight gait test. OP, OpenPose-based system;

MB, marker-based optical system.

the processing structure was taken from Tarabini et al. (2018b)
and involved the analysis on the velocities of the nodes located
at the ankle level (Figure 3). Given a window of n elements,
the magnitude of the velocity (v) of the two ankle nodes was
computed as:

v = f ·

√

√

√

√

n
∏

i=1

(xi − xi−1)
2
+

n
∏

i=1

(

yi − y
)2

+

n
∏

i=1

(zi − zi−1)
2

where f is the sample frequency (30Hz). To minimize the
influence of noise and ease foot status detection, a moving
average lowpass filter was then applied on v, with a period of
12 samples (with a 30Hz sampling frequency, the first zero
of the filter transfer function is at 1.25Hz). Two thresholds
on the filtered velocity signal of the ankle node were set
for the identification of the foot status: HystLowSpeed and
HystHighSpeed. These were automatically obtained for each
subject from a complete gait test. After an initial sorting of all
velocities assessed from the test and reorganized in the form of a
histogram, the values were computed as:

• HystHighSpeed: upper threshold limit, as the value
corresponding to 65% of the sorted velocities: when the
joint’s filtered speed was higher than this value, then the foot
was considered in the swing state (1).

• HystLowSpeed: lower threshold limit, equal to 80% of
HystLowSpeed, to avoid erroneous swing’s end caused by small
variations induced by residual noise components. In this case,
the foot was considered in the stance state (0).

To get correct gait parameters’ values, it is essential to consider
complete steps only. For such a reason, four cases were analyzed:

1. Foot enters the considered acquisition window in swing
state (1) and exits still in swing state (1) (if the acquisition

contained at least a complete step, first and last step were
not considered).

2. Foot enters the considered acquisition window in stance
state (0) and exits in swing (1) state (the last step was
not considered).

3. Foot enters the considered acquisition window in swing
state (1) and exits in stance state (0) (the first step was
not considered).

4. Foot enters in the considered acquisition window in stance
state (0) and exits still in stance state (0) (if the acquisition
contained any number of steps, they were all considered).

Evaluation of Accuracy
In each test, the accuracy of the proposed system was evaluated
in terms of two sets of parameters, retrieved from the same
recorded dataset:

• Error in the reconstruction of the trajectories, computed
as the Root Mean Square (RMS) distance between the
trajectories of selected, corresponding skeletal nodes. In
doing so, the most similar physical fiducial points were
considered: wrists, elbows, knees and ankles. Indeed, the
reference and the proposed skeletal structures do not
correspond perfectly. Thus, a minimization procedure was
used to align the thirteen landmarks of the skeleton,
and a roto-translation of the trajectories obtained with
the OpenPose-based system was performed to align them
to the correspondent reference (marker-based coordinates).
The complete procedure is described in Abbondanza et al.
(2016) and Tarabini et al. (2018b) and it is based on
the calculation of the Euclidean distance in each frame
between correspondent keypoints of the two systems. This
method was already used to synchronize trajectories acquired
with different measurement systems, and it proved to be
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FIGURE 4 | Sample trajectories of a landmark (position of the right ankle) obtained from the reference marker-based (black) and markerless, OpenPose-based (blue

and red) systems (top); corresponding RMS distance (bottom).

unbiased also in presence of offset between the skeletal
markers (Abbondanza et al., 2016; Tarabini et al., 2018b).

• Error in gait space-temporal parameters: step length
(distance between consecutive heel-strikes position), stance
and swing time were extracted (Perry and Burnfield,
2010). The RMS error with the correspondent parameters
computed with the reference marker-based system
was computed.

Statistical Analysis
The effect of the three factors (cameras’ distance, gait direction,
and resolution) on the measurement error was assessed using

the following analysis of variance (ANOVA) model design
(Moschioni et al., 2013):

ξ = β0 + β1x1 + β2x2 + β3x3 + β(1,2)x1x2 + · · · + ǫ

where ξ is the dependent variable, namely the skeletal node
position error (RMS) or the error of one of the gait analysis
parameters (step length, stance and swing time), and xi are the
independent variables (previously referred to as factors). β0 is the
global tests average, βi and β(1,2) are used to describe the effect
of the independent variables and their interactions (in particular,
gait direction × camera distance interaction was assessed); ǫ

is the residual, namely the difference between the actual data
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TABLE 1 | Root Mean Square errors measured at different skeleton nodes as a

function of gait direction, camera distance and video resolution.

# Gait type Straight gait Diagonal gait

Distance (m) 1.8 1.8 1.0 1.0 1.8 1.8 1.0 1.0

Resolution LR HR LR HR LR HR LR HR

1 Sternum 25.2 16.8 41.1 22.1 65.8 54.0 69.5 60.1

2 Shoulder, left 32.3 20.0 42.2 26.5 46.2 45.5 52.8 51.2

3 Shoulder, right 27.5 17.7 37.2 22.1 42.1 39.2 48.3 41.2

4 Elbow, left 28.2 18.3 49.8 24.6 69.9 61.6 69.1 58.3

5 Elbow, right 27.2 18.8 50.3 27.9 62.7 74.4 48.5 44.6

6 Wrist, left 23.3 17.1 45.1 22.9 51.6 51.8 79.1 54.0

7 Wrist, right 25.4 16.1 48.6 22.3 65.1 66.9 56.1 48.2

8 Hip, left 33.0 21.9 48.5 29.0 79.9 81.1 67.5 75.7

9 Hip, right 34.6 23.4 50.1 41.4 79.5 82.5 71.6 73.5

10 Knee, left 30.9 23.4 60.0 29.2 53.7 53.0 58.7 55.4

11 Knee, right 33.9 24.8 39.6 19.9 58.4 57.6 63.7 48.3

12 Ankle, left 39.5 26.1 62.2 24.0 69.1 68.7 87.4 103.3

13 Ankle, right 35.8 26.2 34.5 21.4 63.5 62.7 64.9 61.3

- Mean 30.5 20.8 46.9 25.6 62.1 61.5 64.4 59.6

- SD 4.6 3.5 7.9 5.4 11.1 12.6 11.1 16.0

Values in mm.

TABLE 2 | Root Mean Square errors measured between the reference

(marker-based) and OpenPose-based systems on selected spatio-temporal gait

parameters.

Gait type Straight gait Diagonal gait

Distance (m) 1.8 1.8 1.0 1.0 1.8 1.8 1.0 1.0

Resolution LR HR LR HR LR HR LR HR

Step length (cm) 3.26 1.53 7.42 1.93 2.45 1.66 3.25 1.23

Swing time (s) 0.04 0.05 0.05 0.02 0.03 0.03 0.03 0.06

Stance time (s) 0.05 0.05 0.05 0.05 0.07 0.07 0.05 0.08

behavior and the model prediction. A significance alpha level of
5% was implemented throughout.

In addition, Bland-Altman plots were used to graphically
compare gait analysis parameters obtained with the reference and
OpenPose-based systems.

RESULTS

Figure 4 shows an explanatory plot of the original joints
coordinates and of the corresponding measurement error over
time. Overall measurement errors (RMS) are reported in
Tables 1, 2, and graphically summarized in the boxplots of
Figure 5; Table 3 displays the relevant statistic: all factors (p
< 0.01) and interaction (p < 0.001, see Figure 6) resulted to
be statistically significant relative to trajectories reconstruction
error. The lowest error (about 20mm) was obtained with the
1.8m, highest resolution and straight gait configuration, and the
highest (>60mm) with the 1.0m, low resolution and diagonal
gait configuration.

Bland-Altman plots displaying gait parameters comparison
are shown in Figure 7: the proposed system tended to
underestimate step length of about 1.5 cm, while no systematic
biases were found for swing/stance time. Step length significantly
changed according to gait direction (p= 0.008), camera distance
(p = 0.020) and resolution (p < 0.001, see Table 3). Consistently
with trajectories’ RMS, the lowest error in step length (1.53 cm)
was obtained with the 1.8m, high resolution and straight gait
configuration. Among stance and swing times, only for the first
emerged a significant factor, i.e., camera distance (p = 0.038),
and the lowest errors (0.02 s and 0.05 s for stance and swing,
respectively) were obtained with the 1m, high resolution and
straight gait configuration.

DISCUSSION

The findings of this work confirm to the feasibility of tracking
kinematics and gait parameters of a single subject in a 3D space
using two low-cost cameras and the OpenPose engine. The
accuracy of markerless motion tracking depends on three factors:
the occlusions between body parts, cameras position/orientation
and video resolution; considering the best combination of
the considered factors (cameras distance 1.8m, maximum
resolution, and no occlusions due to straight walking) the lowest
error in 3D trajectories reconstruction was about 20mm, the
lowest error in swing/stance time was 0.03 s and 1.23 cm in
step length. Values are comparable with intra-subject variability
in clinical gait analysis investigations (Ciprandi et al., 2017;
Temporiti et al., 2019), thus encourage a preliminary adoption of
OpenPose-based markerless solutions in this setting. However,
it should be noticed that a different configuration (smaller
camera distance, lower resolution or diagonal gait direction) can
negatively affect the results.

Accuracy
In our optimal configuration, average markers RMS was about
20mm. This can be considered a notable result, as it is only
slightly higher than the error reported in a previous study (about
15mm), where however eight cameras (fs = 120Hz) and a
subject-specific, way more complex anatomical model were used
(Corazza et al., 2010). Dunne et al. reported an error of ∼50mm
in reconstructing foot contact position with a single camera
system (Dunn et al., 2014).

While several studies compared the outcome of an OpenPose
markerless system to a traditional marker-based one (Clark
et al., 2019), the majority focused on joint angles (Colyer
et al., 2018) and to the best of our knowledge, none of them
provided gait analysis parameters. Thus, a direct evaluation of
the performances of our system is not straightforward. As a
reference, Kinect-based markerless systems returned a lower
accuracy of 2.5–5.5 cm in step length and a slightly lower
accuracy of 60–90ms in stance/swing time (Latorre et al., 2018).
Previously, Barone et al. obtained comparable or slightly better
results (accuracy of 3.7 cm for step length and 0.02 s for step
duration) but they combined a markerless system with the signal
coming from the accelerometer embedded in a smartphone
(Barone et al., 2016).
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FIGURE 5 | Boxplots of the RMS distance (measurement error) for the straight (left) and diagonal (right) walking tests; cam: cameras, res: resolution; OP, OpenPose.

TABLE 3 | Statistical outcomes from the ANOVA computed on trajectories’ RMS

and on gait spatio-temporal parameters Root Mean Square errors.

Variable Gait

direction

Camera

distance

Resolution Direction

* distance

F p F p F p F p

RMS 392.39 <0.001 8.11 0.005 44.5 <0.001 19.6 <0.001

Step length 7.84 0.008 5.84 0.020 28.46 <0.001 6.09 0.018

Stance time 1.45 0.235 3.24 0.079 4.57 0.038 0.29 0.591

Swing time 10.55 0.002 0.06 0.811 1.22 0.275 0.05 0.817

Statistically significant values are in bold.

The resolution of the stereoscopic system is not constant,
being dependent on the physical distance between the
subject and cameras. The method performances worsen
as the subject distance from the sensor increases: errors
presented in these work are average values, both summarizing
the ideal situation in which the subject is filling the two
image planes and the situation in which the subject
is far from the camera with a less favorable optical
sensor resolution.

Effect of Camera Setup
Occlusions represented the most detrimental factor emerging
from the comparison between gait types. The accuracy of results
obtained in the diagonal gait tests was always lower than those
obtained with a straight gait. In the 3D reconstruction all
the other factors are almost negligible when occlusions are
present. When body parts are occluded, OpenPose provides
an estimation of the hidden landmarks, introducing an error
that propagates in the 3D reconstruction. The problem is
common with all the vision-based measurement systems and
can be solved using more than 2 cameras simultaneously
(most optoelectronic systems use from 6 to 12 cameras)
so that each marker or joint is seen from more than
2 sensors.

Increasing the camera distance (from 1.0 to 1.8m) in
straight gait tests improved the accuracy of the reconstruction

by 22.5%. Cameras relative distance and orientation
influences the uncertainty of the triangulation, affecting the
dimensions of the volume where the triangulated point can
be placed. By positioning the two cameras further apart,
the framed person is seen from a different perspective and
the cameras are more convergent. This leads to a decrease
of the capture volume where the triangulated point can be
placed, but also a lower uncertainty in the triangulation
process. In short, the higher the cameras distance, the
narrower the working volume—but characterized by a
higher accuracy.

When increasing video resolution, the error decreased of
about 46% (1.0m camera distance) and 32% (1.8m camera
distance). By increasing the video resolution, the uncertainty in
the identification of the landmarks coordinates on the 2D images
decreases, and the 3D reconstruction results more accurate.
This comes at a cost: the main drawbacks are either higher
processing time, to a first approximation linearly dependent
to the number of pixels in the image, and more expensive
hardware required to data processing. The spatial resolution
of the system is not constant in the observed volume: the
pixel to distance conversion factor depends on the position
of the subject with respect to the cameras; consequently,
the optical resolution worsen when the subject is far and
occupies a small portion of the image. The problem can
be solved by putting more cameras surrounding the subject
and observing the motion from different directions, as in
common optoelectronic systems. Since in our test the subject
distance from the cameras varied approximately between 2 and
6m, errors’ numerical values are the average between optimal
conditions (in which the subject fills the image) and worst ones.
Consequently, in static applications when the subject is not
moving, we can expect better performances with respect to values
reported here.

Limitations and Perspectives
This pilot study was limited to two healthy subjects; a
larger population could be considered in further research
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FIGURE 6 | Effects plot for the RMS distance, according to the gait type (walking direction), cameras distance and resolution (left). Gait type×distance interaction

plot (right). Cam: cameras, res: resolution; OP, OpenPose.

FIGURE 7 | Bland-Altman plot of the pooled (selected) gait parameters, comparison between the OpenPose- and the marker-based systems.

to address, for instance, the effect of body size on the
tracking accuracy, as well as potential effects of clothes. It is
advisable that future research lines address the metrological
characterization of multi-camera systems, which will enable
a complete 360 degrees view of the subject. In this, the
occurrence of occlusions will be minimized, and a more accurate
reconstruction is expected, at the expenses of a more complex
hardware infrastructure.

CONCLUSION

In this work, a metrological characterization of OpenPose
processing in the context of gait analysis by mean of low-cost
stereoscopy was presented. Intentionally, no changes were made
to the original software interface, working instead on the test
configuration and on the influence factors in the metrological
setup. Thus, all the insights concern the actual processing
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algorithms, not considering improvements deriving from the
optimization or tuning of the code for a specific task.

Although future improvements in OpenPose performance are
expected, both in terms of accuracy in landmarks identifications
and processing speed, the proposed analysis considered general,
“external” factors that will remain practically valid. In particular,
we showed that the maximization of cameras distance and
video resolution enabled to achieve the highest metrological
performances. Therefore, system accuracy could further be
improved by reducing the presence of occlusions not only
through a better joint location prediction in the source images,
but also multiplying the number of cameras, thus obtaining a
perspective closer to the straight walking condition.

This work points the way to further applications in
environments where a video-based acquisition would be
particularly useful, i.e., those where a quick and economical
evaluation by non-expert operators is required.
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