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The Epithelial–mesenchymal transition (EMT) is a cellular process implicated in
embryonic development, wound healing, and pathological conditions such as cancer
metastasis and fibrosis. Cancer cells undergoing EMT exhibit enhanced aggressive
behavior characterized by drug resistance, tumor-initiation potential, and the ability to
evade the immune system. Recent in silico, in vitro, and in vivo evidence indicates
that EMT is not an all-or-none process; instead, cells can stably acquire one or more
hybrid epithelial/mesenchymal (E/M) phenotypes which often can be more aggressive
than purely E or M cell populations. Thus, the EMT status of cancer cells can prove to
be a critical estimate of patient prognosis. Recent attempts have employed different
transcriptomics signatures to quantify EMT status in cell lines and patient tumors.
However, a comprehensive comparison of these methods, including their accuracy
in identifying cells in the hybrid E/M phenotype(s), is lacking. Here, we compare
three distinct metrics that score EMT on a continuum, based on the transcriptomics
signature of individual samples. Our results demonstrate that these methods exhibit
good concordance among themselves in quantifying the extent of EMT in a given
sample. Moreover, scoring EMT using any of the three methods discerned that cells
can undergo varying extents of EMT across tumor types. Separately, our analysis also
identified tumor types with maximum variability in terms of EMT and associated an
enrichment of hybrid E/M signatures in these samples. Moreover, we also found that
the multinomial logistic regression (MLR)-based metric was capable of distinguishing
between “pure” individual hybrid E/M vs. mixtures of E and M cells. Our results, thus,
suggest that while any of the three methods can indicate a generic trend in the EMT
status of a given cell, the MLR method has two additional advantages: (a) it uses a
small number of predictors to calculate the EMT score and (b) it can predict from the
transcriptomic signature of a population whether it is comprised of “pure” hybrid E/M
cells at the single-cell level or is instead an ensemble of E and M cell subpopulations.
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INTRODUCTION

The epithelial–mesenchymal transition (EMT) is a cell biological
process crucial for various aspects of tumor aggressiveness –
cancer metastasis (Jolly et al., 2017), resistance against cell death
(Huang et al., 2013), metabolic reprogramming (Thomson et al.,
2019), refractory response to chemotherapy and radiotherapy
(Kurrey et al., 2009), tumor-initiation potential (Jolly et al., 2014),
and immune evasion (Tripathi et al., 2016; Terry et al., 2017) –
thus eventually affecting patient survival (Tan et al., 2014). EMT
is a multidimensional, non-linear process that involves changes
in a compendium of molecular and morphological traits, such as
altered cell polarity, partial or complete loss of cell–cell adhesion,
and increased migration and invasion. Cells may take different
routes in this multidimensional landscape as effectively captured
by recent high-throughput dynamic approaches (Karacosta et al.,
2019; Watanabe et al., 2019). The trajectories taken by cancer cells
in the EMT landscape may depend on the dosage and duration
of the EMT induction signal (Stylianou et al., 2018; Katsuno
et al., 2019; Tripathi et al., 2020), and thus may be associated
with varying metastatic potency (Aiello et al., 2018) and varying
degrees of resistance against different drugs (Biddle et al., 2016),
thereby driving a context-specific association of patient survival
with EMT (Chikaishi et al., 2011; Tan et al., 2014; Yan et al., 2016).

Initially thought of as binary, EMT is now considered
as a complex process involving one or more hybrid
epithelial/mesenchymal (E/M) states (Jolly and Celia-Terrassa,
2019). These hybrid E/M states can be more plastic and
tumorigenic than “purely E” or “purely M” ones, thus
constituting the “fittest” phenotype for metastasis (Grosse-
Wilde et al., 2015; Bierie et al., 2017; Pastushenko et al., 2018;
Kröger et al., 2019; Tripathi et al., 2020). Consequently, the
presence and frequency of such hybrid E/M cells in primary
tumors and in circulating tumor cells (CTCs) can be associated
with poor patient survival (Jolly et al., 2019a; Saxena et al.,
2019). Computational methods aimed at quantifying EMT on a
continuous spectrum in order to enhance diagnostic, prognostic,
and therapeutic intervention are therefore indispensable.

Various methods have been developed to obtain a quantitative
measure of the extent of EMT (hereafter, referred to as EMT
score) that cells in a given sample have undergone. Here we focus
on methods accomplishing this task using the gene expression
data. First, a 76-gene EMT signature (76GS; hereafter referred
to as the 76GS method) was developed and validated using gene
expression from non-small cell lung cancer (NSCLC) cell lines
and patients treated in the BATTLE trial (Byers et al., 2013).
This scoring method calculates EMT scores based on a weighted
sum of the expression levels of 76 genes; the weight factor of a
gene is the correlation coefficient between the expression level of
that gene and that of CDH1 (E-cadherin) in that dataset; thus,
the absolute EMT scores of E samples using the 76 GS method
are relatively higher than those of M samples (Guo et al., 2019).
Second, an EMT score separately for cell lines and tumors was
developed based on a two-sample Kolmogorov–Smirnov test (KS;
hereafter referred to as the KS method). This score varies on a
scale of−1 to 1, with the higher scores corresponding to more M
samples (Tan et al., 2014). Third, a multinomial logistic regression

(MLR; hereafter referred to as the MLR method)-based model
quantified the extent of EMT in a given sample on a scale of 0–2.
This method particularly focuses on characterizing a hybrid E/M
phenotype using the expression levels of 23 genes – 3 predictors
and 20 normalizers – identified through NCI-60 gene expression
data. It consequently calculates the probability that given sample
belongs to E, M, or hybrid E/M categories. An EMT score is
assigned based on those probabilities; the higher the score, the
more M the sample is (George et al., 2017). A comparative
analysis of these methods in terms of similarities, differences,
strengths, and limitations, remains to be done.

Here, we present a comprehensive evaluation of these
methods – 76GS, KS, and MLR – in terms of quantifying EMT
and characterizing the hybrid E/M phenotype. First, we calculate
the correlations observed across different in vitro, in vivo, and
patient datasets, and observe good quantitative agreement among
the scores calculated using these three methods. This analysis
suggests that all of them, despite using varied gene lists and
methods, concur in capturing a generic trend embedded in the
multi-dimensional EMT gene expression landscape. Second, we
identify which cancer types are more heterogeneous than others
in terms of their EMT status; intriguingly, our results show
that enrichment for a hybrid E/M phenotype contributes to
heterogeneity. Third, we compare the ability of these methods
to distinguish between “pure” individual hybrid E/M cells vs.
mixtures of E and M cells that can exhibit an EMT score similar to
that of hybrid E/M samples. Our results offer proof-of-principle
that the MLR method can identify these differences. Overall, our
results demonstrate the consistency of these EMT scoring metrics
in quantifying the spectrum of EMT. Moreover, two advantages
of MLR method are highlighted – namely, the use of a small
number of predictors to calculate the EMT score, and the ability
to characterize difference between admixtures of E and M cells vs.
truly hybrid E/M cells.

MATERIALS AND METHODS

Software and Datasets
All computational and statistical analyses were performed using
R (version 3.4.0) and Bioconductor (version 3.6). Microarray
datasets were downloaded using GEOquery R Bioconductor
package (Davis and Meltzer, 2007). TCGA datasets were obtained
from the UCSC xena tools (Wang S. et al., 2019). CCLE and
NCI60 datasets were downloaded from respective websites.

Preprocessing of Microarray Data Sets
All microarray datasets were preprocessed to obtain the gene-
wise expression for each sample from probe-wise expression
matrix. To map the probes to genes, relevant platform annotation
files were utilized. If there were multiple probes mapping to one
gene, then the mean expression of all the mapped probes was
considered for that gene.

Calculation of EMT Scores
Epithelial–mesenchymal transition (EMT) scores were calculated
for samples in a particular data set using all three methods. For
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a particular microarray data set, expression of respective gene
signatures was given as an input to calculate EMT score using all
three different methods.

76GS
The EMT scores were calculated based on a 76-gene expression
signature reported (Byers et al., 2013; Supplementary Table S1)
and the metric mentioned based on that gene signature (Guo
et al., 2019). For each sample, the score was calculated as a
weighted sum of 76 gene expression levels and the scores were
centered by subtracting the mean across all tumor samples so
that the grand mean of the score was zero. Negative scores can
be interpreted as M phenotype whereas the positive scores as E.

MLR
The ordinal MLR method predicts EMT status based on the order
structure of categories and the principle that the hybrid E/M state
falls in a region intermediary to E and M. Quantitative estimates
of EMT spectrum were inferred based on the assumptions and
equations mentioned (George et al., 2017; Supplementary Table
S2). The samples are scored ranging from 0 (pure E) to 2 (pure
M), with a score of 1 indicating a maximally hybrid phenotype.
These scores are calculated based on the probability of a given
sample being assigned to the E, E/M, and M phenotypes.

KS
The KS EMT scores were calculated as previously reported
(Tan et al., 2014; Supplementary Tables S3, S4). This method
compares cumulative distribution functions (CDFs) of E and
M signatures. First, the distance between E and M signatures
was calculated via the maximum distance between their CDFs
as follows: For CDFs FE(x) and FM(x) representing the levels
of transcript x for E and M signatures, respectively, the distance
between signatures is assessed by using the uniform norm

||FE − FM|| ≡max
x
|FE(x)− FM(x)| (1)

This quantity represents the test statistic in the subsequent
two-sample test used to calculate the EMT score. The score is
determined by hypothesis testing of two alternative hypotheses as
follows (with the null hypothesis being that there is no difference
in CDFs of M and E signatures): (1) CDF of M signature is greater
than CDF of E signature. (2) CDF of E is greater than CDF of
M signature. Sample with a positive EMT score is M whereas
negative EMT score is associated with E phenotype.

Correlation Analysis
Correlation between EMT scores was calculated by Pearson’s
correlation, unless otherwise mentioned.

Survival Analysis
All samples were segregated into 76GShigh and 76GSlow, MLRhigh

and MLRlow, KShigh and KSlow groups based on the mean values
of respective EMT score. Observed survival distributions are
graphically depicted for each method with the above-mentioned
two categories.

Mixture Curve Analysis
For each dataset analyzed using mixture curves, the most M
(pure-M) and most E (pure-E) samples were identified by
ordering samples based on MLR EMT score and selecting the top
and bottom 35 samples, respectively. The mean or median was
calculated for the pure-E and pure-M samples as a representative
of the purified E or M state in the MLR predictor space. From this,
the mixture curve is derived by taking all convex combinations
of purified states. Individual samples within a given dataset were
ranked based on their proximity to the mixture curve using the
usual l2-norm distance. The top 10, 20, 50, and 100 samples
closest to, and furthest from, the mixture curve were used as
representative mixtures of E and M populations and hybrid E/M
signatures, respectively.

RESULTS

Concordance in Capturing EMT
Response
We used three different EMT scoring methods to quantify the
extent of EMT in given transcriptomics data; each method
utilizes a distinct gene set as well as a different underlying
algorithm. In the 76GS method, the higher the score, the more
E a sample is, given that the method calculates as weighted
sum of expression levels of 76 genes, with the weight factor
being correlation coefficient with levels of the canonical E
marker CDH1 (Figure 1A). This method has no specific pre-
defined range of values, although the range of values obtained
are bounded by the maximal possible value of gene expression
detected by microarray. Unlike the 76GS method, the MLR and
KS methods have predefined scales for EMT scores. MLR and
KS score EMT on a spectrum of [0, 2] and [−1, 1] respectively,
with higher scores indicating M signatures (Figures 1B,C). While
MLR and KS methods are absolute, requiring a fixed transcript
signature for EMT score calculation, the 76GS method of EMT
scoring depends on the number and nature of samples analyzed
in a given dataset. Consequently, a hybrid E/M sample may have a
(pseudo) low 76GS score whenever the available dataset contains
more M samples, or a (pseudo) high score for datasets enriched
in E samples. Each scoring method also varies in the number
of required gene transcripts: while the MLR method utilizes 23
entries, the 76GS method requires 76 entires. The KS method
utilizes 315 and 218 transcripts for tumor samples and cell lines
samples, respectively.

We first investigated the extent of concordance in EMT scores
calculated via these three methods for well-studied cohorts of
cancer cell lines: NCI-60 and CCLE (Shankavaram et al., 2009;
Barretina et al., 2012). We expected to see a negative correlation
between EMT scores calculated via 76GS and KS methods and
that between EMT scores using 76GS and MLR methods, whereas
a positive correlation should exist between EMT scores from
the MLR and KS methods. Indeed, for both NCI-60 and CCLE
datasets, the EMT scores calculated via different methods were
found to be correlated significantly with a high absolute value of
correlation coefficients in the expected direction, when compared
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FIGURE 1 | General outline of all three EMT scoring methods. (A) 76GS score is calculated by weighted sum of 76 genes, where EMT scorei is score for ith sample,
wj is correlation of jth gene (Gj ) with CDH1 gene in that dataset to which the sample i belongs, Gij is the jth gene’s normalized expression in ith sample. (B) MLR
utilizes log2(VIM)/log2(CDH1) and log2(CLDN7) space to predict categorization of a sample into E, E/M, or M category. Where PE , PH, and PM are the probabilities of
a sample falling into each phenotype. EMT scorei is the score for ith sample, which is defined in relation to PE , PH, and PM. Figure adapted from George et al. (2017)
with permission. (C) KS score is estimated by the empirical cumulative distributions of epithelial and mesenchymal gene set, denoted by ecdf (GSmes) and ecdf
(GSepi ), respectively. EMT scorei is the maximum vertical distance between the ecdf (GSmes) and ecdf (GSepi ) (given by Eq. 1 in the section “Materials and Methods”)
for a given sample i.

pairwise (Figure 2 and Supplementary Figure S1). Given that the
three scoring methods utilize very different metrics and varying
number of genes to define and quantify EMT, it was remarkable
that all three showed such high consistency in scoring EMT for
these datasets that contained cell lines across various cancer types.

Next, we investigated whether this trend was also present
in the TCGA patient samples of different tumor types. Again,
the trend remained consistent across tumor types – a strongly
positive significant correlation between scores via MLR and KS,
and a strongly negative significant correlation between scores via
76GS and KS and those via 76GS and MLR methods (Figures 3A–
C and Supplementary Figure S2). Among all tumor types
in TCGA data, breast cancer exhibited the highest observed
correlation coefficient across methods (Figure 3C). Thus, the
association between EMT scores and patient survival was assessed
using breast cancer patient samples. The samples were scored
using all three methods and segregated into high and low groups
based on the mean value of each EMT score. The 76GSlow
subgroup can be thought of as similar to the MLRhigh and/or
KShigh ones, given their relatively strong M signature. The three
EMT scoring methods showed consistent trends in predicting
overall survival highlighting that patients with a strongly M
phenotype had better survival probability (Figure 3D), endorsing
the emerging notion that the predominance of EMT in primary
tumors and/or CTCs need not always be correlated with worse
patient survival (Tan et al., 2014; Saxena et al., 2019).

Epithelial–mesenchymal transition can be driven by
diverse biomechanical and/or biochemical stimuli in tumor
microenvironments. TGFβ is one of the best-studied drivers
of EMT, and a recent study identified a signature specific
to TGFβ-induced EMT (Foroutan et al., 2017). EMT scores
calculated via any of the three methods – KS, MLR, and 76GS –
correlated well with the scores calculated for TGFβ-induced EMT
gene signature (Supplementary Figure S3), further endorsing
the equivalence of these methods in identifying the onset of EMT.

After establishing this consistency using in vitro cell line
datasets and TCGA patient samples, we focused on several
publicly available microarray datasets including those of
EMT induction or reversal, isolation of subpopulations, etc.
Each dataset comprised a variety of samples in terms of
different cell lines, conditions, and treatments. An analysis of
different GEO datasets showed that EMT scores calculated
via these three methods, when compared pairwise, were
significantly correlated in the expected direction (Figure 4A
and Supplementary Table S5). Out of 85 different datasets,
a large percentage of them showed trends in the expected
direction (62/85 in KS vs. 76GS; 64/85 in MLR vs. 76GS;
49/85 in MLR vs. KS) (Figure 4B). Strikingly, 43 datasets
were found to be common across all three pairwise
comparisons (Figure 4C), establishing a high degree of
concordance among EMT scores calculated via these three EMT
scoring methods.
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FIGURE 2 | Scatter plot depicting the correlation between the EMT scores of cancer cell line samples calculated via three methods. Each pairwise relation is
estimated by a linear regression line (red), Pearson’s correlation coefficient (R), and p-value (p) reported in each plot. (A) NCI60 dataset and (B) CCLE dataset.

Next, we investigated specific cases where EMT/MET was
induced in various cell lines by different EMT/MET regulators.
Lung cancer cell lines A549, HCC827, and H358 in which EMT
was induced by TGFβ showed higher EMT scores using MLR
and KS methods, but lower scores via 76GS method, compared to
untreated ones (Figure 5A). Similarly, the E breast cancer cell line
MCF-7 transfected to overexpress EMT-inducing transcription
factor Snail exhibited a more M phenotype relative to the
control, as identified via all three scoring methods (Figure 5B).
Consistent trends were seen in EpRAS tumor cells treated with
TGFβ (Figure 5C), and in human mammary E cells HMLE
overexpressing one of the three EMT-inducing transcription
factors (EMT-TFs) – SNAI1 (Snail), SNAI2 (Slug), and TWIST
(Figure 5D). Interestingly, all three scoring methods suggested
that EMT induced by Snail or Slug was stronger than that induced
by Twist (Figure 5D). Further, inducing EMT via overexpression
of EMT-TFs Twist, Snail, Goosecoid, or treatment with TGFβ or
knockdown of E-cadherin was capable of altering the EMT scores
of HMLE cells (Supplementary Figure S4A).

Additionally, these three methods also captured the reversal
of EMT – M–E transition (MET) – induced by MET-inducing
transcription factor GRHL2 in MDA-MB-231 cells (Figure 5E).
Moreover, baseline differences in EMT status between two
hepatocellular carcinoma cell lines identified experimentally (Van
Zijl et al., 2011) were also recapitulated by all three scoring
methods; while HCC-1.2 (referred to as 3p) showed more E
features, HCC1.1 (referred to as 3sp) was relatively more M
(Figure 5F). We also calculated the EMT scores for the dynamic
EMT time series datasets (i.e., cases where more than two time

points were available for EMT induction); all three methods
were able to recapitulate the relevant trends in EMT scores
as expected when EMT was induced in A549 and LNCAP
cells (Supplementary Figures S4B,D). Further, all three EMT
scoring methods captured the trend in the change of EMT
status in prostate cancer E PC3 cells (PC3-Epi) and M cell
lines derived from PC3 (PC-EMT) through interactions with
macrophages (Roca et al., 2013). PC3-EMT cells transfected
with ZEB1-shRNA vector (sh4), but not with the scrambled
control (Scr), indicated an MET (Supplementary Figure S4C).
Finally, we calculated EMT scores for a population of CTCs
collected from breast cancer patients and ex vivo cancer models
and observed heterogeneity in CTCs along the E-hybrid–M
spectrum (Supplementary Figures S4E,F), reminiscent of similar
observations based on immunohistochemical staining of a few
canonical markers (Yu et al., 2013).

Variability in EMT Scores Measures
Tumor Heterogeneity
Recent studies have emphasized that intra-tumor heterogeneity
and inter-tumor heterogeneity can accelerate progression and
metastasis (Lawson et al., 2018). Thus, we were interested in
identifying which tumor types are more heterogeneous with
regard to EMT scores calculated via the three methods. We
grouped the CCLE samples by different tumor types and
calculated the mean and variance of all EMT scores across
a given tumor. The EMT scores, calculated across the three
methods, showed less variation in the EMT scores of the tumor
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FIGURE 3 | Concordance across all three EMT scoring methods in quantification of EMT and survival prediction of tumor patients. Each pairwise relation is
estimated by linear regression (red), Pearson’s correlation coefficient (R), and p-value (p), reported in each plot. (A) TCGA ovarian cancer dataset, (B) TCGA sarcoma
dataset, (C) TCGA breast cancer dataset. (D) Correlation between EMT score (high vs. low) and overall survival (OS) in breast cancer patients. Kaplan–Meier survival
analysis is performed to estimate differences in survival of 76GShigh, MLRhigh, KShigh and 76GSlow, MLRlow, KSlow groups, respectively, in GSE1456. p-values (p)
reported are based on the log rank test. HR (hazard ratio) and confidence interval (95% CI) reported are estimated using cox regression.

types of M origin such as sarcoma and lymphoma, compared
to that of the other tumor types such as breast cancer and
lung cancer (Figures 6A–C and Supplementary Table S7).
The most heterogeneous tumor types identified based on the
variance in EMT scores largely overlapped for all methods:
(a) breast cancer, (b) stomach cancer, (c) NSCLC, (d) bile
duct cancer, and (e) urinary tract cancer (Figures 6A–C). We
also calculated pairwise correlations of EMT scores across all
the tumor types and observed consistently significant trends
(Supplementary Table S8).

One of the proposed mechanisms underlying such
heterogeneity in EMT status has been E–M plasticity, i.e.,
the proclivity of individual cells in a population to obtain
and switch among multiple phenotypic states. Such plasticity
is typically seen to be higher in cells in one or more hybrid
E/M states (Pastushenko and Blanpain, 2019; Tripathi et al.,
2019, 2020). Thus, we asked whether the frequency of hybrid
E/M phenotype contributes to heterogeneity in terms of EMT
scoring. One of the EMT scoring methods – MLR – calculates the
probability of a given transcriptomic profile being associated with
the E, hybrid E/M, or M state, thus enabling us to identify hybrid

E/M samples specifically. First, we found that the variance of
EMT scores was the highest in samples identified as hybrid E/M
as compared to E and M samples (Supplementary Table S6A).
Consistently, a high correlation coefficient value in EMT scores
was maintained, when calculated separately for CCLE samples
in E, E/M, and M categories (Supplementary Table S6B). Next,
we checked the relative frequency and absolute number of
hybrid E/M samples (as defined by MLR method) across tumor
types, among the cases where EMT scores calculated via all
three methods were significantly correlated. Indeed, the tumor
types that met the three conditions – (a) total number of hybrid
E/M samples being more than 10, (b) percentage of hybrid
E/M samples being >20%, and (c) a good correlation among
all three methods – were enriched in the most variable tumor
types (Figure 6D), suggesting hybrid E/M phenotypes contribute
maximally to E–M heterogeneity (Supplementary Table S9).

We also calculated the correlations in EMT scores obtained
from each method, after segregating the cell line samples
into E, E/M, and M, based on predictions from the MLR
method. The correlation coefficients within the E, E/M, and
M subgroups of a given tumor subtype were observed to be
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FIGURE 4 | Plots depicting pairwise comparisons of all three EMT scores. (A) Volcano plots showing the correlation of different EMT scoring methods across 85
different GEO microarray datasets along with the p-values for the respective correlation coefficient values. In each case, –log10(p-value) is plotted as a function of
Pearson’s correlation coefficient. Thresholds for correlation (R < –0.3 or R > 0.3; vertical blue lines) and p-values (p < 0.05; horizontal red line) are denoted. (B) Bar
plots for different categories based on the correlation sign and statistical significance of all three pairwise comparisons across 85 datasets. p < 0.05 and R < −0.3
or R > 0.3. (C) Venn diagram showing the common GEO datasets across all pairwise comparisons that are significantly correlated in the expected direction.

somewhat different than those found for all tumor subtype
samples without any partitioning into E, E/M, and M subgroups
(Supplementary Table S8). These results suggest that while a
generic trend in terms of EMT scores is seen across the three
methods, the categorization in terms of E, E/M, and M may vary
to some degree based on the EMT scoring method used. It should
be noted that while the MLR method classifies samples into three
broad categories (E, E/M, and M), it makes no assumption on the
existence, the number, or the stability of sub-states within each
category. In fact, the scores calculated using the MLR method use
a continuous scale for EMT quantification, which measures the
extent of EMT and thus, reflects, in principle, an entire range of
different partial states of EMT.

Individual Hybrid E/M Samples Are
Different From Hybrid Mixtures of E
and M
A given transcriptomic profile may be classified as hybrid E/M
for several reasons: (a) the sample contains individually hybrid
E/M cells (hybrids), (b) the sample contains a mixture of E and
M cells (mixtures), or (c) the sample contains a combination
of hybrids and mixtures. We sought to distinguish true hybrids
from mixtures based on an additional feature of MLR scoring –
mixture curve analysis (Jia et al., 2019). This analysis quantifies
the distance of a given sample from a “mixture curve” which

connects the position of mean signatures of “pure” E and “pure”
M samples. The farther a given sample is from the mixture curve,
the higher the likelihood of that particular sample containing
truly hybrid E/M cells.

First, we determined the mixture curves based on the
CCLE samples. We ranked all cell lines in the CCLE dataset
based on their EMT scores and identified the top 35 most
E (i.e., lowest 35 in terms of MLR EMT scores) and top
35 most M samples (i.e., highest 35 in terms of EMT MLR
scores). Then, the mixture curve was determined based on the
convex combinations of mean signatures of these 35 “pure”
E and 35 “pure” M reference samples. All the CCLE cell
lines identified as hybrid E/M were then plotted alongside
the mixture curve (Figure 7A) and their distances from
the curve were calculated. While some samples fell close
to the curve, many deviated substantially (Figure 7B). We
subsequently picked the farthest and the closest 10, 20, 50,
and 100 samples from the mixture curve and calculated their
EMT scores. Intriguingly, the mean EMT score of samples
farthest from the mixture curve was different than that of
the closest samples as calculated using MLR, irrespective
of the number of samples chosen (Figure 7C). Similarly,
another “mixture curve” based on median of 35 “pure” E and
“pure” M reference samples was obtained from CCLE dataset
(Supplementary Figure S5A); the cell lines closest to either
mixture curve tended to be more E than the ones farthest
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FIGURE 5 | Bar plots showing EMT scores of different cell lines calculated using the three EMT scoring methods. (A) EMT induction is shown in three cell lines –
A549, HCC87, and NCIH358 (GSE49664). (B) EMT induction in MCF7 cell line (GSE58252). (C) EMT induction in EpRas cells (GSE59922). (D) EMT induction by
different EMT-inducing transcription factors. “a” denotes statistical significant difference (p < 0.05, n = 3, two-tailed Student’s t-test) for pairwise comparison of a
given set with untreated (first column), “b” denotes the same when compared with empty vector (EV; second column) (GSE43495). (E) MET induction by GRHL2 in
MDA-MB-231 cell line (GSE36081). (F) Two cell lines of hepatocellular carcinoma with varying EMT status (GSE26391). Each control case has been compared to
EMT/MET induced case (*p < 0.05, n = 3, two-tailed Student’s t-test; error bars represent standard deviation).

from the curve (Figure 7C and Supplementary Figure S5B).
Qualitatively, speaking 76GS and KS methods showed similar
results (Supplementary Figures S5C–F).

In order to distinguish the hybrid E/M samples from mixtures
of pure E and pure M samples, we lastly characterized the
composition of the closest and farthest hybrid E/M samples by
estimating the percentage of M phenotype (%M) in each sample
based on the convex combination “mixture curve” in the two-
dimensional space (VIM/CDH1 expression; CLDN7 expression).
While the difference in mean values of the composition (%M)
of closest and farthest samples was marginal, but their overall
distributions in terms of %M differed substantially (Figure 7D).
This analysis demonstrates the possibility of a quantifiable
compositional difference between truly hybrid E/M samples and
mixtures of E and M cells.

DISCUSSION

Epithelial–mesenchymal transition is a reversible and dynamic
process which has been shown to be activated during cancer
progression. EMT involves a multitude of changes at both
molecular and morphological levels. Various attempts to
characterize the spectrum of EMT at molecular and/or

morphological levels have been made recently, enabled by
latest developments in multiplex imaging, single-cell RNA-
seq and inducible systems (Mandal et al., 2016; Pastushenko
et al., 2018; Stylianou et al., 2018; Cook and Vanderhyden,
2019; Devaraj and Bose, 2019; Karacosta et al., 2019; Wang
W. et al., 2019; Watanabe et al., 2019; Lam et al., 2020).
These approaches have highlighted the dynamical nature of
EMT in driving cancer progression in patients (Jolly and
Celia-Terrassa, 2019), and the heterogeneity in EMT status
in cell lines and patient samples (Panchy et al., 2020; Shen
et al., 2020). Further, various approaches to quantify the EMT
spectrum of samples based on different signatures of tumor
types have been made (Foroutan et al., 2017; Puram et al.,
2017). Among all the methods available for EMT scoring, we
have compared the ones that are more generalized – KS (Tan
et al., 2014), MLR (George et al., 2017), and 76 GS (Byers
et al., 2013; Guo et al., 2019). These three methods use different
combinations of genes and metrics; however, they show a very
good concordance among them in terms of identifying an
empirical trend along the EMT axis.

Here, we compared the aforementioned EMT scoring metrics
for their ability to identify the onset and extent of EMT/MET
via calculating EMT scores for cell line cohorts NCI-60 and
CCLE, TCGA cohorts from multiple subtypes, and datasets
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FIGURE 6 | Variance and mean of EMT scores in CCLE samples grouped by tumor subtype, highlighting the most variable tumor types (circled). (A) 76GS EMT
scores, (B) MLR EMT scores, and (C) KS EMT scores. (D) Venn diagram showing the overlap between each tumor type based on the abundance of hybrid samples
as defined by the MLR method, where #EM > 10 denote the cases where the absolute number of hybrid E/M samples in a tumor subtype is >10; %EM > 20
denote the cases where the percentage of cell lines identified as hybrid E/M in a given tumor subtype is >20%.

FIGURE 7 | Distinguishing between hybrid E/M cells vs. mixtures of E and M cells. (A) Scatter plot showing CCLE cell lines that display a hybrid E/M phenotype (red)
on the mixture curve (dotted curve) determined by the mean of 35 pure E (orange) and pure M (blue) reference samples in CCLE dataset. (B) Scatter plot showing
the 100 farthest (purple) and 100 closest (green) samples based on the distance from the mixture curve. (C) Bar plots showing EMT scores of N (10, 20, 50, and
100) closest and farthest hybrid E/M samples from mixture curve. (D) Mesenchymal proportion (%M) distribution of the 100 closest and farthest hybrid samples from
mixture curve. *p < 0.05, N = 10, 20, 50 and 100, two-tailed Student’s t-test; error bars represent standard deviation.
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containing samples with overexpression and/or knockdown of
many EMT/MET inducers such as TGFβ, Snail, Slug, Twist,
E-cadherin, and GRHL2 (De Craene and Berx, 2013). The
remarkable concordance among EMT scores calculated via the
methods analyzed above suggests the existence of a macroscopic
signal that can resolve the extent of EMT in a given sample
amidst the complexity of EMT and the networks regulating
it. It is plausible that within these regulatory networks, there
exist key nodes forming one (or more) core circuit(s) which
receive(s) a large number of inputs and may have diverse
outputs, reminiscent of bow-tie structures seen in biological
networks of cell-fate decision-making (Friedlander et al., 2015).
This idea of core circuit(s) driving EMT is substantiated by
transcriptomic meta-analysis identifying common signatures for
EMT driven by distinct inducers (Taube et al., 2010; Liang
et al., 2016). For instance, one network motif commonly
found in core circuits regulating EMT and associated traits
is a mutually inhibitory feedback loop between two “master
regulators” driving opposing cell phenotypes (Hong et al., 2015;
Huang et al., 2015; Saha et al., 2018); for instance, ZEB1
driving EMT and miR-200 driving MET (Jia et al., 2017). An
intricate coupling among such feedback loops may give rise
to a spectrum of EMT phenotypes as has been seen across
cancer types in cell lines, CTCs, and primary tumor biopsies
(Armstrong et al., 2011; Huang et al., 2013; Schliekelman et al.,
2015; Andriani et al., 2016; Iyer et al., 2019; Markiewicz et al.,
2019; Varankar et al., 2019).

In addition to EMT score concordance, the three methods
showed excellent agreement in their ability to identify the most
EMT-variable tumors. Most tumors of M lineage, including
sarcoma samples, were shown to be least variable, as evidenced
by the similarity among samples having M assignment in
the CCLE dataset. This contrasts with breast cancer, NSCLC,
bile duct cancer, urinary tract cancer, and stomach cancer,
which exhibited the largest degree of variability in terms
of their inherent EMT status in addition to being less M
on average. The observations concerning the EMT status of
sarcomas, breast cancer, and NSCLC are well-supported by
existing experimental data (Blick et al., 2008; Schliekelman et al.,
2015; Jolly et al., 2019b); however, the relationship between
EMT status and heterogeneity among samples of a particular
tumor type requires further investigation. Our results also
demonstrate a link between the predominance of hybrid E/M
status and heterogeneity patterns, possibly emerging due to
relatively higher plasticity of cells in one or more hybrid E/M
phenotypes (Pastushenko et al., 2018; Tripathi et al., 2020). Our
findings are clinically relevant as tumor types having a greater
number of hybrid E/M cells may require alternative treatment
strategies compared to those containing predominantly E or
predominantly M populations, necessitating future investigations
into improved therapeutic design based on an analysis of EMT
status and variability.

This comparative analysis of the three methods shows two
key advantages of MLR method. First, it uses the least number
of genes to calculate an EMT score – 23 genes required by
MLR compared to 76 genes by 76GS, and 315 genes for tumor
and 218 genes for cell lines by KS. This feature is important

because 23 genes can be relatively easily measured experimentally
without microarray or RNA-seq. Second, the MLR method,
by virtue of its underlying theoretical framework, is capable
of isolating hybrid E/M samples and has been expanded to
identify whether the resultant gene expression is more likely to
derive from “true” individual hybrid E/M samples or admixtures
of E and M samples. While, in theory, other methods could
adopt similar adaptations to address this issue in the future,
the resolution of E, M, and hybrid E/M populations through
those methods would require analyzing a higher dimensional
subspace of the original predictors, given the large number
of genes used by those methods to calculate EMT scores.
This feature contrasts with that of MLR method, where the
mixture analysis is performed directly on the two-dimensional
EMT predictor space (CLDN7 and VIM/CDH1) utilized by
this method. Distinguishing between these possibilities is critical
because the behavior of mixtures of E and M samples vs. truly
hybrid E/M samples can be strikingly different; a recent study
showed that the presence of hybrid E/M cells is essential to form
tumors in mice, a task which could not be achieved as efficiently
by co-cultures of E and M cells alone (Kröger et al., 2019).
Previously, multiple studies have implicated the role of hybrid
E/M phenotype with worse survival (Grosse-Wilde et al., 2015;
Grigore et al., 2016). To date, it has not been established whether
it is pure hybrids or mixtures of E and M cells which correlate
with clinically observed parameters. Our results highlight the
utility of using the MLR method for effectively distinguishing
between these two possibilities, and future work should address
the relationship between the purity of hybrid E/M samples and
clinical outcome.

Our analysis shown here suffers from following limitations.
First, in terms of classifying hybrid E/M into “pure” hybrid
E/M vs. mixtures of E and M subpopulations, we have
considered mutually exclusive criteria: (a) a sample identified
as hybrid E/M at a bulk level contains mixtures of E and M
subpopulations, and (b) a sample identified as hybrid E/M at a
bulk level contains all “true” hybrid E/M cells. However, many
cell lines may contain cells in each of the three phenotypes
in varying ratios (Ruscetti et al., 2016; George et al., 2017;
Jia et al., 2019). Thus, future efforts should aim to identify
the relative proportions of these three different phenotypes
in a given sample. Second, although we show that among
the samples identified to be lying closest vs. farthest from
the “mixture curve” by MLR, all three EMT scoring metrics
suggested that the ones lying closest to the curve are more
E than the ones lying farthest from the same, we lack a
clear biological interpretation of this observation. Future efforts
will focus on comparing the morphological and functional
behavior of the CCLE cell lines identified to be closest vs.
farthest from the “mixture curve” generated based on the CCLE
samples. Third, our current efforts focus on microarray data
because the gene signatures utilized by all three methods were
identified on this platform. Although the MLR method has
been implemented on RNA-seq datasets by regressing the values
obtained from microarray and RNA-seq analysis on a case-by-
case basis (Kilinc et al., 2019; Lourenco et al., 2020), varying
sensitivity of microarray and RNA-seq methods needs to be
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incorporated for future efforts in assessing these EMT scoring
methods systematically.
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FIGURE S1 | Scatter plot depicting the correlation between the EMT scores of
cancer cell line samples, calculated via three EMT scoring methods. Each pairwise
relation is estimated by a linear regression line (red), Spearman’s correlation
coefficient (R) and p-value (p) reported in each plot. (A) NCI60 dataset and
(B) CCLE dataset.

FIGURE S2 | Scatter plot depicting the correlation between the EMT scores of
different tumor types in TCGA dataset, calculated via three methods. Each
pairwise relation is estimated by a linear regression line (red), Pearson’s correlation

coefficient (R), and p-value (p) reported in each plot. (A) Lung squamous
cell cancer, (B) colon adenocarcinoma, and (C) colon and rectal
adenocarcinoma.

FIGURE S3 | EMT score correlation with TGFβ-specific EMT scoring method
in CCLE dataset. (A) Pearson’s correlation coefficient and (B) Spearman’s
correlation. Correlation coefficient (R) and p-value (p) reported in each
plot.

FIGURE S4 | EMT scores of different EMT time series datasets and CTCs. (A)
GSE24202 – EMT induction by different EMT regulators. (B) GSE84002 – EMT
and MET induction over time by GFP, SNAI1 and SNAI2. (C) GSE43489 –
EMT/MET induction in PC3 cell line. (D) GSE17708 – EMT induction over time. (E)
GSE55470 – CTCs from breast cancer patients. (F) GSE50991 – CTCs from
ex vivo lung cancer model (∗p < 0.05, n = 3, two-tailed Student’s t-test; error bars
represent standard deviation for n = 3). Graphs (E) and (F) represent kernel
density plots.

FIGURE S5 | (A) Scatter plot showing 100 farthest and closest samples based on
the distance from mixture curve defined by median of 35 most pure E and pure M
CCLE samples. (B) MLR EMT score for N (10,20,50,100) closest and farthest
hybrid samples from median mixture curve. Bar plots showing EMT scores of N
(10, 20, 50, 100) closest and farthest hybrid samples from mean mixture curve.
(C) 76GS EMT score and (D) KS EMT score. Bar plots showing EMT scores of N
(10, 20, 50, 100) closest and farthest hybrid samples from median mixture curve.
(E) 76GS EMT score (F) KS EMT score (∗p < 0.05, N = 10, 20, 50, and 100,
two-tailed Student’s t-test; error bars represent standard deviation for the given
value of N).

TABLE S1 | 76 gene signatures.

TABLE S2 | List of predictors and normalizers used for calculation of EMT
using MLR method.

TABLE S3 | Epithelial and mesenchymal signature used in KS-statistic
(tumor signature).

TABLE S4 | Epithelial and mesenchymal signature used in KS-statistic (cell
line signature).

TABLE S5 | EMT score correlation in the list of 85 microarray GEO datasets.

TABLE S6 | EMT scores in E, E/M and M categories of CCLE samples, as defined
by MLR EMT scores. (A) Mean and standard deviation of EMT scores in E, E/M
and M samples. (B) Correlation between EMT scores across E, E/M and M
categories.

TABLE S7 | Most variable and least variable tumor types based on the coefficient
of variation of EMT scores.

TABLE S8 | Pairwise correlation between all three EMT scores in subcategories
(E, E/M, and M) across all tumor types of CCLE data.

TABLE S9 | Abundance of hybrid E/M samples in different tumor types.
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