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Purpose: Modern statistics and higher computational power have opened novel
possibilities to complex data analysis. While gait has been the utmost described motion
in quantitative human motion analysis, descriptions of more challenging movements like
the squat or lunge are currently lacking in the literature. The hip and knee joints are
exposed to high forces and cause high morbidity and costs. Pre-surgical kinetic data
acquisition on a patient-specific anatomy is also scarce in the literature. Studying the
normal inter-patient kinetic variability may lead to other comparable studies to initiate
more personalized therapies within the orthopedics.

Methods: Trials are performed by 50 healthy young males who were not overweight
and approximately of the same age and activity level. Spatial marker trajectories and
ground reaction force registrations are imported into the Anybody Modeling System
based on subject-specific geometry and the state-of-the-art TLEM 2.0 dataset. Hip
and knee joint reaction forces were obtained by a simulation with an inverse dynamics
approach. With these forces, a statistical model that accounts for inter-subject variability
was created. For this, we applied a principal component analysis in order to enable
variance decomposition. This way, noise can be rejected and we still contemplate all
waveform data, instead of using deduced spatiotemporal parameters like peak flexion
or stride length as done in many gait analyses. In addition, this current paper is, to the
authors’ knowledge, the first to investigate the generalization of a kinetic model data
toward the population.

Results: Average knee reaction forces range up to 7.16 times body weight for the
forwarded leg during lunge. Conversely, during squat, the load is evenly distributed. For
both motions, a reliable and compact statistical model was created. In the lunge model,
the first 12 modes accounts for 95.26% of inter-individual population variance. For the
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maximal-depth squat, this was 95.69% for the first 14 modes. Model accuracies will
increase when including more principal components.

Conclusion: Our model design was proved to be compact, accurate, and reliable.
For models aimed at populations covering descriptive studies, the sample size
must be at least 50.

Keywords: lower limb kinetics, inverse dynamics, principal component analysis, musculoskeletal model,
validation analysis

INTRODUCTION

In biomechanics, the safety and efficiency of novel surgical
techniques as well as the development of biocompatible products
ultimately rely on its capability of being tested on humans
through clinical trials. The complete development chain of a new
surgical technique or implant and their introduction into clinic
practice is both time-consuming and economically demanding.
Next to it, it is known that patient-specific surgery planning
or implant design can improve the long-time outcome of an
implant (Pietsch et al., 2013; Spencer-Gardner et al., 2016).
This fact is due to the high anatomical variability between
individuals and the different functional activities, which have
a significant effect in the ratio of the force components on
the lower limb between subjects (Kutzner et al., 2010) and on
the functional alignment of the prosthetic components of a
lower limb implant (Smoger, 2016; Spencer-Gardner et al., 2016).
Within this context, methodologies such as statistical models of
the human anatomy as well as kinematics or kinetics that account
for the anatomical inter-variability of the population combined
with biomechanical simulation studies can provide non-invasive
pre-surgical clinical output.

Lower limb kinetics can be estimated based on
musculoskeletal models and ground force plates using inverse
dynamics (Carbone et al., 2012; Galloway et al., 2012; Vaitkus
and Várady, 2015; Bagwell et al., 2016). These techniques do
not often account for patient-specific variability as they use
scaled generic models (Worsley et al., 2011; Vaitkus and Várady,
2015), while it was already widely shown that the geometry of
the musculoskeletal models is very sensitive to muscle force
predictions (Carbone et al., 2012). In addition, and to the authors
knowledge, the available studies merely consider very limited
population samples which may not be representative of the
total variability of the lower limb anatomy. Lastly, the available
literature lacks completeness as, to date, no study has considered
a statistical model of the full lower limb, namely, on demanding
tasks such as the deep squat and the forward lunge.

Hence, in order to create the foundations for the development
and optimization of the design or the durability of orthopedic
implants, it is mandatory to generate appropriate loading
conditions that represent inter-patient variability across the
population (Honari and Taylor, 2013; Bischoff et al., 2014).
Patient-specific finite element analyses are the state-of-the-art
technique to infer quantitative information on a specific design
or performance of an arthroscopic implant (Shu et al., 2018).
Taylor et al. (2012) found most studies to be focusing on

variations on the morphological and bone properties rather than
the consequences of variability because of loading. Furthermore,
it has been proved that the application of single-representative
models can be extended to account for variability by either
parametrically or probabilistically varying the loading/boundary
conditions. These approaches allow model generation which can
significantly extend the coverage of the anatomical variability and
ultimately create a powerful tool to assess the performance of
medical devices (Taylor et al., 2012).

Recent developments in medical imaging significantly
increased the accuracy of the three-dimension computational
anatomical representation, enhancing the anatomical differences
within a determined population (Almeida et al., 2016; Audenaert
et al., 2019). Hence, combining the use of magnetic resonance
imaging (MRI) with musculoskeletal models will provide
us an insight on lower limb kinematics on patient-specific
anatomies. The statistical analysis of kinematic time series
by means of dimensionality reduction techniques such as
principal component analysis (PCA) or independent component
analysis is not novel per se (Daffertshofer et al., 2004; Galloway
et al., 2012), but the inclusion of patient-specific anatomies
is believed to more accurately represent inter-patient kinetic
variability. Such approach, hereby presented, will allow for a large
population of kinetic data to be generated without the time and
the expense of collecting the motion capture data of hundreds of
patients. Simultaneously, it will open the door to the generation
of large simulated populations for use in clinical outcome
simulation studies, injury biomechanics, musculoskeletal disease
models, or implant design optimization (Henak et al., 2013;
Zhang et al., 2016).

While the gait cycle has been the most researched activity
in the current literature, it is not particularly demanding for
the lower limb joints. For the purpose of implant wear testing,
implant fixation, and joint stability analysis, there are other
more challenging activities commonly performed in daily living
that might be of particular interest (Hartmann et al., 2013).
Clinical, experimental, and computational studies have clearly
reported increased complication risk and wear rate under high
contact stress conditions (Kang et al., 2008; O’Brien et al., 2015;
de Ruiter et al., 2017).

In sum, the purpose of this study is to build statistical
models of deep squatting and forward lunging for applications
in pre-clinical testing of orthopedic implants and surgery
in an asymptomatic adult population and ultimately to
analyze and validate the inter-individual variations in
lower limb kinetics.
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MATERIALS AND METHODS

Participants
Fifty-three asymptomatic volunteers participated in the
study. In order to eliminate sex and race differences and
reduce the potential influence of age and body mass
index (BMI), only healthy Caucasian men who were not
overweight and aged between 17 and 25 years are included.
The admission requirement is practicing sports for at
least 2 h a week. The subjects were asked to perform
five times a smooth maximal-depth squat and a right
forward lunge step with a predetermined frequency and
fluency after a short training. In addition, the volunteers
underwent full lower limbs MRI. An ethics committee
(Ghent University Hospital, Belgium) approved these
investigations (EC2014/0286). The characteristics of our
study population are listed in Table 1. Because of missing data,
there was no complete data acquisition for the squat among
the three subjects.

In both examinations, 28 reflective markers are
stuck on the skin on palpable anatomical landmarks.
The application of skin markers to investigate kinetics
is obvious but rather inaccurate. By contrast, using
more accurate measurements with implants would raise
ethical concerns.

Instrumentation
Our motion capture acquisition strategy was based
on a similar study by Deluzio et al. (Deluzio and
Astephen, 2007). Spatial marker trajectory data and
the corresponding force registrations are imported into
the Anybody Modeling System (AMS version 7.1.0,
Anybody Technology, Aalborg, Denmark) (Damsgaard
et al., 2006) as well as geometric data from a 3-Tesla
MAGNETOM Trio-Tim System MRI device (Siemens AG,
Erlangen, Germany).

Musculoskeletal Modeling
Motion capture musculoskeletal models were personalized with
subject-specific bone geometry that was incorporated in a
simulation model from the Twente Lower Extremity Model
(TLEM 2.0) dataset (Carbone et al., 2015). An overview of

the musculoskeletal model input is presented in Figure 1. In
the simulation output, the forces are described in three fixed
perpendicular planes.

Data Processing
The output data from musculoskeletal models are numerous,
multivariate, and multidimensional (Deluzio and Astephen,
2007; Lai et al., 2009). In contrast to some gait studies that
modeled kinematic and kinetic data together, we used only
kinetic data (Deluzio and Astephen, 2007; Reid et al., 2010;
Galloway et al., 2012). We think that integrating linear quantities
(forces) and rotation quantities (angles) is like comparing apples
and oranges. On top of that, the kinetic data in Anybody
is generated by an inverse dynamics approach starting from
the kinematic data.

The beginning and end frames of all motion lab recordings
are not useful due to irrelevant transients. Analogously, the peak
evolution will vary from the center of the recorded data. Hence,
data alignment and trimming are essential prior to incorporating
the subjects’ motion recordings into a statistical model. These
operations are executed using standard implementations in
MATLAB (MathWorks, Natick, MA, United States).

The frame recorded with the peak knee flexion angle is defined
as 50% progress of the motion. Trimming is based on knee
flexion. For the lunge, the best is to consider only the closed
chain part. As such, recordings where the right foot is not on the
right force plate are left aside. Several arbitrary ways to execute
an open-chain motion could be an important source of noise η.
Noise is defined as artifacts when processing the input data to
the output data (Lai et al., 2009). On top of data, we used only
information from the leg that was the most loaded. So, in contrast
to the squat data, a lot of waveform data are not used for the lunge.

Interpolation is performed to ensure that the measurements
are running synchronized in real time. All trimmed
measurements are subdivided into 0–50–100 proceedings,
corresponding to the onset, the middle, and the finish of motion,
respectively. Each set of kinetic data is arranged in a feature
vector and concatenated into a training matrix. The training data
matrix X contains observations in the rows and subjects in the
columns as described in Eqs. [1] to [3].

X =
[
x1, x2, x3, ..., xi, ..., xp−1, xp

]
(1)

TABLE 1 | Demographic and anthropometric characteristics of the study population.

Demographic descriptor Mean (95% CI*) Normal values

Height (cm) 181.79 (180.08–183.51) Not applicable

Weight (kg) 71.75 (69.63–73.88) Not applicable

Body mass index (kg/m2) 21.70 (21.16–22.23) 18.5–25 (Waxman, 2004)

Sport activity (hours a week) 3.40 (2.76–4.03) Not applicable

Center-edge angle (◦) 28.41 (27.19–29.63) 25–39◦ (Audenaert et al., 2012; Ghaffari et al., 2018)

Alpha angle (◦) 64.61 (62.38–66.84) <55◦ (Audenaert et al., 2012; Ghaffari et al., 2018)

Centrum-collum-diaphyseal angle or neck-shaft angle (◦) 129.24 (127.99–130.49) 125–135◦ (Audenaert et al., 2012)

Femoral anteversion angle (◦) 9.40 (7.30–11.49) <15◦ (Audenaert et al., 2012)

*Confidence interval of the mean.
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FIGURE 1 | Overview of data input for the motion capture musculoskeletal simulation model. (A) Motion is performed when standing on two force plates. Motion
capture data synchronized with ground reaction forces are exported as .c3d file. (B) Twenty-eight reflective markers are placed on anatomical bony landmarks.
A MRI scan of the full lower limb is performed. Segmentation of pelvis, thigh, and shank with corresponding positions of marker landscape. (C) Motion capture squat
model. Anybody squat (D) and lunge (E) model.

FIGURE 2 | Scree plot with the cumulative variance of the modes (or principal components) in the lunge (orange) and squat (purple) kinetic model.
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FIGURE 3 | Relation between the kinetic waveform simulation output and the squat progress for each individual sample in gray. Mean values of the measurements in
green ±2 standard deviations of the first mode in red and blue. The first mode accounts for 33.80% of the inter-subject population variance. Note the different y axis
calibrations.
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FIGURE 4 | Mean values of joint reaction forces during deep squatting in green ±2 standard deviations of the second mode in red and blue. The second mode
accounts for 14.05% of the inter-subject population variance.
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FIGURE 5 | Mean values of joint reaction forces during deep squatting in green ±2 standard deviations of the third mode in red and blue. The third mode accounts
for 11.88% of the inter-subject population variance.
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FIGURE 6 | Mean values of joint reaction forces during lunging in green ±2 standard deviations of the first mode in red and blue. The first mode accounts for
40.87% of the inter-subject population variance.
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FIGURE 7 | Mean values of joint reaction forces during lunging in green ±2 standard deviations of the second mode in red and blue. The second mode accounts for
15.07% of the inter-subject population variance.

An observation expresses several dynamic parameters on a
certain progress of the aligned lunge or squat motion from 0
to 100%. For each participant i, the kinetic model input data

are taken from the musculoskeletal model output. The kinetic
variables are implemented into a subject vector xi for the ith
subject (out of p). p represents the number of training samples,
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FIGURE 8 | Mean values of joint reaction forces during lunging in green ±2 standard deviations of the third mode in red and blue. The third mode accounts for
10.46% of the inter-subject population variance.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 April 2020 | Volume 8 | Article 233

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00233 March 31, 2020 Time: 18:11 # 11

De Roeck et al. Lower Limb Kinetic Models

TA
B

LE
2

|V
al

id
at

io
n

an
al

ys
es

of
th

e
sq

ua
ta

nd
lu

ng
e

st
at

is
tic

al
ki

ne
tic

m
od

el
.W

e
co

ns
id

er
sq

ua
ta

nd
lu

ng
e

m
od

el
s

th
at

ca
pt

ur
e

80
,9

0,
95

,a
nd

98
%

of
in

te
r-

in
di

vi
du

al
po

pu
la

tio
n

va
ria

nc
e.

Va
lid

at
io

n
su

m
m

ar
y

S
q

ua
t

m
o

d
el

Lu
ng

e
m

o
d

el

%
o

f
in

te
r-

va
ri

ab
ili

ty
in

th
e

p
o

p
ul

at
io

n
80

%
90

%
95

%
98

%
80

%
90

%
95

%
98

%

M
od

el
ac

cu
ra

cy
R

M
S

E
(m

ed
ia

n
±

IQ
R

**
)(

B
W

)
0.

01
49
±

0.
01

22
0.

01
07
±

0.
00

87
0.

00
75
±

0.
00

64
0.

00
54
±

0.
00

48
0.

02
48
±

0.
02

10
0.

01
62
±

0.
01

67
0.

01
32
±

0.
01

26
0.

00
82
±

0.
00

83

D
im

en
si

on
al

ity
*

6
10

14
19

5
9

13
17

M
od

el
sp

ec
ifi

ci
ty

R
M

S
E

(m
ed

ia
n
±

IQ
R

**
)(

B
W

)
0.

15
82
±

0.
09

43
0.

15
81
±

0.
09

48
0.

15
83
±

0.
09

46
0.

15
84
±

0.
09

43
0.

12
91
±

0.
08

31
0.

13
10
±

0.
08

15
0.

13
14
±

0.
08

09
0.

13
20
±

0.
08

03

*i.
e.

,t
he

nu
m

be
r

of
m

od
es

.*
*IQ

R
,i

nt
er

qu
ar

til
e

ra
ng

e.

being 53 for the lunge and 50 for the squat.

xi =
[
HJRFx, HJRFy, HJRFz,KJRFx, KJRFy, KJRFz,

]T (2)

The input matrices JRFaxis consist all of 101 observations o.

JRFaxis =



measurement 1
measurement 2

. . .

. . .

measurement 51 (at maximal right knee flexion)

. . .

measurement 101


(3)

D serves as a diagonal matrix with row-wise standard deviations
do for each observation o. The total number of observations is the
multiplication of the number of dynamic variables and aligned
time instances.

D =


d1 0
0 d2

0 . . .

0 0
0 0

. . . 0
. . . 0
0 d606

 (4)

After normalization by row-wise standard deviation in [4] and
[5] as well as mean centering in [6], a residual matrix R is created.
R comprises the entry data for the model M as a measure of
dispersion.

X̃ =

 . . .

. . .

x̃i
. . .

. . .

 = D−1X (5)

R =

 . . .

. . .

x̂i
. . .

. . .

withx̂i = x̃i − x̄ (6)

PCA is a powerful dimensionality reduction technique
developed by Karl Pearson. It is not a method to investigate
the center size of the data but the common variability. PCA is
mathematically defined as an orthogonal linear transformation.
PCA transforms the data; as such, most of the variance of the data
will come to lie in the first components. This allows us to create
statistical models. Altogether PCA is a reliable tool in capturing
the salient features of waveform data (Robbins et al., 2013; Jolliffe
and Cadima, 2016).

Using this for a statistical model, it enables to generate
population data from a small set of clinical data. The kinetic
model should represent waveform data as a linear combination
of vectors, representing the primary modes of variation in
experimental data (Jolliffe et al., 2002; Saliba et al., 2018).
Eigenvalues and eigenvectors have been created by singular value
decomposition.

R = U x L x AT (7)

In Eq. [7], U and A are the left and right singular vectors, so
UT .U = I and AT .A = I because of orthogonality. I refers to the
unity matrix. L is a diagonal matrix that contains the square roots
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of the eigenvalues
√

λk belonging to RTx R, as k
{

1, 2, 3, . . . , p
}

.
AT contains the eigenvectors of RTx R, whereas U has the scaled
versions of the principal component (PC) scores uok. Here, o
corresponds to the observation and k to the PC number. The PC
scores are mentioned in Eq. [8].

zok = uok
√

λk (8)

The PC scores from a single waveform quantify the contribution
of each feature. The variance of the scores for the kth eigenvalue
of RTx R amounts to λk

n−1 , as λk represents the variance of the kth
PC, whereas n is the number of observations.

The cumulative variance of each mode k is defined as

Compactness (M) =
1

p− 1

k∑
m=1

λm (9)

The PC weight matrix W in Eq. [10] involves the correlation
coefficients between components and test subject data.

W = L x AT (10)

A set of patient data can be approximately reconstructed by using
t selected PCs in Eq. [11].

x̂ij = D
√
p− 1

t∑
i=1

uoi
√
liaki + x̄ (11)

As mentioned before, D represents the diagonal matrix
of row-wise standard deviations and p stands for
the subject count.

√
li is the ith diagonal element

of L, also from the singular value decomposition
(Jolliffe et al., 2002; Galloway et al., 2012;
Jolliffe and Cadima, 2016).

Model Validation
Validation is defined as the process of ensuring that the
dimensionality-reduced PCA model accurately represents real-
world kinetics. Probably the most important problem arising
with this process is the choice of the optimal number of
the principal components to be retained. PCA projects the
input data from a high dimensional space into a subspace
of lower dimension, which can then further be divided into
two separate subspaces: the kinetic data subspace, preserving
the essence of the original kinetic data as lossless as possible,
and the noise subspace, corresponding to the remaining tail of
principal components associated with the smallest eigenvalues.
Given the complexity of the problem of optimally defining the
threshold between signal and noise principal components, the
literature on the topic is overwhelming and beyond the scope
of this work. Reliable results in distinguishing components that
express meaningful correlations among variables as opposed to
trivial components, explaining noise, have been provided using
the Monte Carlo permutation test (Peres-Neto et al., 2005).
The principal components were tested for representing valid
correlations as opposed to residual error using the following
two criteria: rank of roots and equality of roots (Jackson, 2005;
Vasco, 2012).

Further, four quantitative model parameters are investigated.
“Goodness” measures are chosen according to the statistical
shape modeling study of Styner et al. (2003) in which there is also
a PCA dimensionality reduction algorithm. This study is, to the
authors’ best knowledge, the first to provide such an approach,
implemented for a kinetic model.

Model Accuracy

Accuracy (M) =
1
p

p∑
i=1

||x̂i(M)− xi||2 (12)

The first validation test that analyzes relevant information
is retained by the model or otherwise states how well the
original data can be reconstructed from the model given the
number of principal components retained. Here, the root-mean-
square error (RMSE) is computed in Eq. [12] as the average
absolute difference between the original training data and the
reconstructed data for models with 80, 90, 95, and 98% variance
of the original data.

Model Compactness
The model will be compact enough if it can describe the variance
in kinetic measurements with a minimal number of modes. Eq.
[9] is used to describe the compactness with the cumulative
variance for a certain number of modes.

Model Generalization

Generalization (M) =
1
Tg

Tg∑
i=1

||x̂i(M′i)− xi||2 (13)

The model generalization quantifies the ability of models to
represent new instances. The generalization ability is evaluated
by performing a series of leave-one-out tests on the training data.
The question here is: how many training samples are necessary to
approach the population precisely? The generalization ability is
therefore a means for post hoc sample size evaluation. If having
enough training samples, we expect the model to be able to
describe unseen data quite accurately (Wang and Shi, 2017). The
generalization value can be interpreted as the median out-of-
sample accuracy value.

The generalization evolution gives the RMSE between the
excluded subject data and the best-matched 95% variance model
M’ values of randomly selected training data by ascending
number of training samples in the model M’. The higher the
Tg test value in Eq. [13], the higher the precision of the median
generalization value. Here the number of models created for each
number of training samples amounts to Tg = 10, 000.

Model Specificity

Specificity (M) =
1
Ts

Ts∑
i=1

||x̂′i(M)− xi||2 (14)

A population model is able to generate new data. The model
specificity measures the soundness of new instances randomly
generated by the developed model M. Models with 80, 90, 95,
and 98% of variance are tested. x̂′i(M) refers to a randomly
generated subject.
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FIGURE 9 | RMSE for the original squat training data versus reconstructed squat data with an increasing number of principal components on the x axis.

We assume that the PCs of the model are normally distributed
(Jolliffe et al., 2002; Jackson, 2005; Galloway et al., 2012). The
specificity estimator is defined in Eq. [14]. For each observation
o, an imaginary subject i is defined by choosing random normal
distributed values n ∈ N (0, 1) for each mode m in the model M
as in Eq. [15].

x̂
′

i,o (M) = x̄o + do
p∑

m=1

n.
√

λm.zm = x̄+ do
p∑

m=1

n.um (15)

The RMSE is defined as the error between the virtually subject
data and the most similar sample in the training dataset. The

specificity value can be interpreted as the median approximation
error of Ts generated subjects. The higher the Ts test value, the
higher the precision of the specificity. Here the number of models
created is set to Ts = 1, 000, 000.

RESULTS

The average hip and knee peak flexion angles are, respectively
95◦ and 104◦ for the lunge and 107◦ and 112◦ for the squat
motion, respectively. The average peak hip joint reaction force
(HJRF) amounts to 3.08 times body weight (BW) for the
maximum-depth squat and 4.76 BW for lunging. The means

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 13 April 2020 | Volume 8 | Article 233

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00233 March 31, 2020 Time: 18:11 # 14

De Roeck et al. Lower Limb Kinetic Models

TABLE 3 | Choosing the optimal amount of principal components for the squat
kinetic datasets.

PC Eigenvalue Percentage Cumulative Rank of Equality
of variance variance roots of roots

1 204.85 33.80 33.80 0.001 0.001

2 85.11 14.04 47.85 0.001 0.001

3 71.98 11.88 59.73 0.001 0.001

4 58.21 9.61 69.33 0.001 0.001

5 46.81 7.73 77.06 0.001 0.001

6 31.26 5.16 82.22 0.001 0.001

7 18.13 2.99 85.21 0.001* 0.001

8 15.18 2.50 87.71 1 0.001

9 13.82 2.28 89.99 1 0.001

10 9.55 1.58 91.57 1 0.001

11 8.38 1.38 92.95 1 0.001

12 6.37 1.05 94.00 1 0.001

13 5.57 0.92 94.92 1 0.001

14 4.65 0.77 95.69 1 0.005*

15 3.97 0.66 96.35 1 0.078

Type I error probability is set to 0.05. Rank of roots measure suggests that seven
principal components (PCs) are statistically significant in meaningfully describing
the dataset, corresponding to 85% of data variance, whereas the equality of roots
suggests that 14 PCs are to be included (representing 95.7% of data variance).
*p < 0.05.

for peak knee joint reaction force (KJRF) are still higher:
4.52 BW for squat motion and 7.16 BW for the lunge. The
trimmed original waveform data from HJRF and KJRF of
our musculoskeletal model are represented by gray curves in
Figures 3–8.

A statistical model of kinetic output data from the AMS was
made for deep squatting and another one for lunging. Figure 2
displays the cumulative variance of modes in the statistical model.
The variances of the first three modes in the squat model are
illustrated in Figures 3–5. Together they represent 59.73% of the
population variance. For the lunge, the first three modes accounts
for 66.40% of population variance. More about these modes
are detailed in Figures 6–8. In Table 2, the in-sample model
accuracy and the specificity median RMSE are described for each
model. The boxplots in Figure 9 illustrate the in-sample squat
model accuracy for the ascending number of the components
included. There is a boxplot for every variable in the model.
The median and the interquartile range of the RMSE, when
compared to the initial data, decrease as more PCs are included in
the reconstructed data, as expected. The model accuracies from
the lunge model are quite similar but around one IQR RMSE
higher. In contrast, the lunge model is a bit more compact. For
calculating the out-of-sample accuracy based on leave-one-out
tests, we based on the lunge data because it has the most test data.
The results of the model compactness and the statistical findings
of the permutation testing related to the number of the principal
components used are demonstrated in Table 3.

Regarding Figure 10, for each training data input amount
going from 4 to 52, 10,000 models were created, including 95%
population variance, to reconstruct an excluded subject. Out-of-
sample accuracy RMSE from the reconstructed data versus the

original excluded data are given on the y axis in box-and-whisker
diagrams. The boxplots are log–log-scaled in order to visualize
the downward trend of the out-of-sample accuracy. Also plotted
is a horizontal line of the in-sample model accuracy of our 95%
model. The out-of-sample accuracies are less than 0.1 BW, except
for the KJRF in the transverse plane. From 50 test subjects up,
the out-of-sample accuracies are clearly stagnating for the HJRF
in the frontal and the transverse plane as well as for the KJRF in
the sagittal plane.

DISCUSSION

The validation analysis confirmed that our models have a high
degree of compactness and accuracy. Many types of noise are
in the higher components. The PCA technique has adequately
allowed rejection of the error variance from the model. The
meaningful variance is obviously divided over the first 12 or
14 components. This multidimensionality describes the silent
features in the data and, eventually, they could be linked to
the varying characteristics of the study population. A common
source of meaningless variance originates from data alignment.
It is impossible to avoid this because we do not want to
introduce supplementary noise in the data by aligning them more
stringently. Since all subjects have a BMI lower than 25, skin shift
errors during movements are limited (Cappozzo et al., 1996).

According to the lunge, the model only describes the closed-
chain part of motion for two reasons. First, femoroacetabular
impingement and joint reaction forces are more pronounced at
higher flexion (Audenaert et al., 2012). Secondly, while creating a
model from the onset of the lunge back to the original position,
the model would be no longer compact enough because there is
too much degree of freedom when moving a leg in the air.

The dominant mode is supposed to describe the overall
variance (Jolliffe et al., 2002), as is clearly apparent in the lunge
model. In the squat model, the overall variance is limited for the
HJRF in the frontal and the sagittal plane. This is due to low
hip flexion and rotation moments because the center of gravity
will lie almost perfectly between the hip joints (and not the
knee joints during squat), in contrast to the lunge case. For this
statement, we based on Schwab et al. (2006). They found that, for
young adults, the femoral head position appears to be a reliable
indicator for the gravity line in the sagittal plane during stance
(Schwab et al., 2006).

The second mode of the squat model indicates that a
high HJRF component in the transverse plane results in high
KJRF components in the frontal and sagittal plane in order
to counterbalance the downward force at the hip. The third
mode correlates the depth of squatting with the joint reaction
force components in the frontal plane. For the lunge, the
association of the frontal joint reaction force components is
mainly summarized in the second mode. Finally, according to
our interpretation, the third mode of the lunge model may take
alignment errors into account.

The RMSE for model accuracy are far below 0.05 BW, as
opposed to similar studies. The specificity was almost equal
for models with 80, 90, 95, and 98% of variance. It questions
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FIGURE 10 | Accuracy evolution of kinetic lunge data with log–log scaling (boxplot with root-mean-square error of the reconstructed data with 95% variance versus
the original training data) for different levels of prior knowledge expressed as amounts of training data in a kinetic model. The green horizontal line indicates the
in-sample target accuracy.

the relevance of taking the model specificity into account in
this setting. According to the generalization evolution, we could
conclude that, minimally, 50 samples are enough to provide
reliable models at 0.1 BW precision for both squat and lunge
motion. Nevertheless, we recommend exceeding this threshold

number because the in-sample accuracy is still lower, especially
for the squat. Note that gender, age group, BMI group, and race
differences are not included here. Therefore, it is very likely that,
in more heterogeneous populations like the elderly, 50 samples
will be too low to ensure reliable models.
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Unfortunately, electromyography data are not collected
during this study. This could give information about
muscle activation and muscle strength. Motor unit action
potentials could be registered non-invasively by using surface
electromyography. It has been stated several times that the muscle
activation patterns depend on several aspects like training level
and osteoarthritis (Benedetti et al., 2003; Knoop et al., 2012; Mei
et al., 2017). The integration of electromyography and kinetic
data could help to declare aberrant kinetic patterns.

By applying correlation matrix PCA to obtain uncorrelated
maximum-variance linear combinations and given that there is
only kinetic data with limited scaling differences, some more
PCs are required to account for the same amount of covariance
compared to classical covariance matrix PCA (Jolliffe et al., 2002;
Jolliffe and Cadima, 2016). This makes the selection of PCs in
the kinetic data subspace even more crucial to ensure model
validation properties like accuracy, compactness, generalization,
and specificity, which is the major drawback of PCA (Jolliffe
et al., 2002; Peres-Neto et al., 2005; Vasco, 2012). To handle
this, there are numerous methods described in the literature, but
there is no consensus yet. We objectified our selection strategy
based on eigenvalues by considering the validation measures for
different cutoffs. On top of that, for the model generalization and
specificity abilities, we assume multivariate normal distribution
which is seldom true (Vasco, 2012).

The most important limitation of the present work, however,
relates to the population under investigation, namely, young
male, Belgian adolescents and the unknown extent of which
findings can be extrapolated to other populations. Nevertheless,
in general terms, we expect our results to be representative by
extension for a Western European population.

CONCLUSION

We created two models that describe kinetics from both hip and
knee joint, contrary to the limited number of studies available
with PCA analyses of waveform data considering the knee
only (Deluzio and Astephen, 2007; Reid et al., 2010; Galloway
et al., 2012). Since all muscles from the knee, except from
the M. popliteus (Paulsen and Waschke, 2011), are biarticular
and the body should be seen as a whole, a model with the
HJRF as well as KJRF is preferable. We proved that such a

model for 95% of population variance was compact and very
accurate (<0.015 BW). To describe the population at <0.1 BW
precision, our small sample size was still sufficient. Using t-tests
to investigate differences in PC scores in comparing studies
will enable the creation of personalized hip and tibial implants
with specific weight-bearing properties, resulting in prolonged
longevity. In our opinion, this is a very important feature since
total knee arthroplasty and total hip arthroplasty are increasingly
utilized to treat more physically active patients.
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