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Computational models are most impactful when they explain and characterize biological

phenomena that are non-intuitive, unexpected, or difficult to study experimentally.

Countless equation-based models have been built for these purposes, but we have

yet to realize the extent to which rules-based models offer an intuitive framework

that encourages computational and experimental collaboration. We develop ARCADE,

a multi-scale agent-based model to interrogate emergent behavior of heterogeneous

cell agents within dynamic microenvironments and demonstrate how complexity of

intracellular metabolism and signaling modules impacts emergent dynamics. We perform

in silico case studies on context, competition, and heterogeneity to demonstrate the

utility of our model for gaining computational and experimental insight. Notably, there

exist (i) differences in emergent behavior between colony and tissue contexts, (ii) linear,

non-linear, and multimodal consequences of parameter variation on competition in

simulated co-cultures, and (iii) variable impact of cell and population heterogeneity on

emergent outcomes. Our extensible framework is easily modified to explore numerous

biological systems, from tumor microenvironments to microbiomes.

Keywords: agent-based model, cell population dynamics, computational modeling, emergent behavior,

microenvironment

1. INTRODUCTION

Computational models are in silico tools used to represent a system or phenomenon of interest,
with wide ranging applications in both experimental and clinical settings (Winslow et al., 2012;
Brodland, 2015). With increasingly high resolution and high throughput experimental techniques,
computational models become essential for summarizing, integrating, and exploring high
dimensional data sets. While reactive data-driven computational models are ubiquitous—from
simple, single equations fitting population level aggregate metrics to more complex differential
equation systems—we have yet to realize the full impact of proactive models to provide de novo
insights in cases where experimental techniques are inadequate or insufficient. Computational
modeling has the potential to overcome experimental limitations in three major areas: spatial and
temporal resolution, intra- and intercellular heterogeneity, and environmental context.
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First, biological systems exhibit spatial and temporal variation
as observed in cell fate commitment during development,
cell state commitment in pattern formation, and circadian-
regulated gene expression (Zernicka-Goetz, 2004; Zhang et al.,
2014; Manukyan et al., 2017). Models that are able to capture
such behavior with high temporal and spatial resolution allow
rigorous systems analysis and hypothesis testing that is often not
possible experimentally.

Second, biological systems are highly heterogeneous, both
between and within cell types. The immune system, for example,
is composed of a number of different cell types, each with its own
unique role. Studies have demonstrated remarkable phenotypic
variation within tumor cell populations (Dagogo-Jack and Shaw,
2017) and highly diverse species within microbial communities
(Eckburg, 2005). Homogeneous experimental systems fail to
account for this diversity and its role in shaping behavior. In
addition, heterogeneity within a computational model can be
measured and tuned precisely whereas the same quantification
and control in an experimental setting is much more difficult.

Finally, biological systems exist within diverse environmental
contexts. The tumor microenvironment, for instance, has
received significant attention as a major contributor to disease
prognosis (Balkwill et al., 2012; Quail and Joyce, 2013). Cells
cultured in 2D vs. 3D matrices display notable differences in
growth and behavior (Baker and Chen, 2012; Stock et al., 2016).
Studying cell population dynamics without the environmental
context may lead to inaccurate conclusions; computational
models provide a method for exploring cell behavior within
precisely controlled, dynamic environments.

Agent-based models (ABMs) are particularly well-suited for
addressing these areas to explore how complex, heterogeneous
interactions at the cellular level result in the emergence of spatial
and temporal dynamics at the cell population level (Thorne
et al., 2007; Yu and Bagheri, 2016). ABMs are a bottom-up
modeling technique in which autonomous agents follow a set of
rules that define their actions and interactions with each other
and their environment (Bonabeau, 2002). Specifically, ABMs
can readily incorporate agent heterogeneity and environmental
dynamics with high precision and resolution. Classically used
in the social sciences, ABMs have become increasingly popular
for studying emergent behavior in biological systems, including
bacterial biofilms and infection (Segovia-Juarez et al., 2004;
Gorochowski et al., 2012), tumor growth (Enderling et al., 2009;
Mehdizadeh et al., 2013; Walpole et al., 2015; Norton et al.,
2017), and immune interactions (Folcik et al., 2007; Pienaar et al.,
2015).

In this study, we introduce an extensible ABM framework
designed to interrogate heterogeneous cell systems within
dynamic environments with high spatial and temporal
resolution. A key feature of the model is flexibility in defining
agents and environments through interfaces and modular
intracellular components. We use the presented ABM to
investigate emergent dynamics in three relevant case studies: (i)
to compare cell population dynamics between colony and tissue
contexts, (ii) to explore competition between cell populations,
and (iii) to investigate the impact of heterogeneity on clonal
evolution and emergent dynamics.

2. RESULTS

ARCADE (Agent-based Representation of Cells And Dynamic
Environments) is built in Java, using the MASON library for
multi-agent scheduling and simulation (Luke et al., 2005) along
with a custom, extensible, interface-based framework for defining
agents and environments. At the start of a simulation, selected
agents and environments are added. MASON then runs the
simulation by stepping through agent rules at each time step
(representing 1 min, called ticks). A single simulation of 14 days
(20,160 ticks) requires 5–10min of CPU time on a computer with
Intel R© Core i7 Processor (8x 3.40 GHz) and 19.5 GB of RAM.

2.1. Interfaces Provide an Extensible
Modeling Approach
Java interfaces act as contracts between the underlying model
framework and the implementing classes, guaranteeing that a
certain set of methods are provided. By abstracting out how an
agent interacts with its environment, the model is agnostic to a
specific system and can be easily extended and customized.

Broadly, the model comprises three main packages—
simulation (sim), agents (agent), and environments (env)—
as well as visualization (vis) and utility (util) packages
(Figure 1A). The simulation package handles the processing of
inputs into simulation series, running the simulations, and saving
simulation results to output.

There are three types of agents. First, Cell agents represent
the physical cells within the system, such as tissue, immune,
or bacterial cells (Figure 1B). These agents are introduced into
the simulation and at each tick, they follow their rules defining
how they interact with their surroundings. Second, Module
agents are subcellular entities that represent a certain function
or behavior within a cell, such as metabolism, signaling, and
angiogenesis (Figure 1B). Finally, Helper agents provide a
mechanism for (i) outside perturbations to the system, such as the
introduction of new cell agents or a wound, and (ii) time delayed
behaviors by Cell agents, such as division or movement.

The environment is divided into three distinct layers, all of
which are integrated through a Location object. The Grid
is an abstract layer on which cell agents are contained and
can be defined in a variety of geometries (Figure 1B). Each
Lattice layer tracks nutrients or molecules of interest, such
as glucose or oxygen, and can also be defined in a variety of
geometries (Figure 1B). The geometry of the Lattice layers
does not necessarily need to match the geometry of the Grid,
allowing flexibility in how the environment is defined. Finally,
Component layers provide a mechanism for (i) changes in the
Lattice layers, such as diffusion or introduction of a drug, and
(ii) physical entities within the environment, such as a capillary
bed or matrix scaffolding.

2.2. Modeling Pipeline Emphasizes Flexible
Inputs and High-Resolution Outputs
The model can be run both in GUI form, for real-time
visualization of the simulation, or directly through command
line for rapid simulation (Figure 1C). Simulations are defined
using an XML (.xml) file describing one or more simulation
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FIGURE 1 | Overview of agent-based model framework. (A) Diagram of package structure and interfaces. Agents include Cell, Module, and Helper and

environments include Grid, Lattice, Component, and Location. By importing an interface, a class is guaranteed a certain set of methods with which it can

interact with objects of the imported interface. (B) Interfaces can be implemented into concrete classes in a variety of ways, depending on the system of interest.

Classes with solid border are implemented in our model. (C) Overview of the modeling pipeline. Inputs, defined with an XML (.xml) file, are parsed to create a

simulation series. Within the simulation series, for each random seed, a simulation instance is created. Environments and agents are added to the simulation instance.

The simulation is stepped, and data is output to a JSON (.json) file. Alternatively, the simulation can be run in GUI mode.

series (Supplementary Figure 1A). Simulations within a series
only differ in random seed, analogous to experimental replicates,
and multiple series can be defined within a single input file.

Each series is created by parsing the input file for three tags: (i)
simulation, which specifies model size as well as any profilers
for capturing simulation data, (ii) agents, which describes
the composition and parameters of cell agent populations, and
(iii) environment which defines environment parameters
(Figure 1C, Supplementary Figure 1A). For each seed, a
simulation instance is created. Environments and agents are
added into the simulation instance, and then the simulation is
run for the defined number of ticks. This process is repeated for
all random seeds in the series. Alternatively, if the GUI version
is selected, the simulation is run through the GUI interface once
environments and agents have been added.

Simulation outputs are saved as JSON (.json) files, a
common, lightweight file format that uses human-readable
text to store data (Supplementary Figure 1B). Each output file

includes a summary of the input file, full parameter lists for every
cell population, and location and cell information for all cells at
selected timepoints during the simulation.

2.3. Tissue Cell Implementation Exhibits
Representative Growth Dynamics
With the framework and pipeline in place, specific classes for
tissue cell agents are implemented within a hexagonal and
triangular environment (Supplementary Figure 2A). Each tissue
cell agent contains ametabolism and signalingmodule (described
in the following section) and can be in one of seven states:
apoptotic, necrotic, quiescent, migratory, proliferative, senescent,
and undecided (Methods). At each tick, each agent steps through
specific decisions based on its current state (Figure 2A). Briefly,
a cell agent increases in age and evaluates if its age is greater than
the defined lifespan. If so, it becomes apoptotic. The metabolism
module is simulated to update energy and volume of the cell.
If the cell is nutrient starved, it becomes necrotic; if there is
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FIGURE 2 | Tissue cell implementation. (A) Flowchart outlining tissue cell agent states and the rules governing transitions between them at each tick of the simulation.

(B) Diagram of the simulation environment structure comprising a hexagonal grid for cells and triangular lattices for molecules. Environment size is defined by radius R

from the center hexagon and a margin M between the cell grid and the molecule lattices. For 3D simulations, layers of 2D simulations are stacked at a height H from

the center layer. (C) Spatial distribution of cell states for colony (left) and tissue (right) growth for a single example replicate (random seed 0) at different timepoints

during the simulation. Scale bars represent 100µm. (D) Plot of total cell count for colony (top) and tissue (bottom) growth for each of n = 50 replicate simulations of

the model with default parameters and settings. Each line shows the trajectory for a single simulation. (E) Plot of average colony diameter for each of n = 50 replicate

simulations of the model with default parameters and settings. Each line shows the trajectory for a single simulation. Dashed and dotted lines indicate experimentally

observed diameters (Conger and Ziskin, 1983; Brú et al., 2003), respectively. (F) Violin plots of doubling times for the simulation (n = 50) calculated using (i) cell count

doublings at t = 7 days and (ii) exponential curve fit to the first 7 days of growth compared to doubling times of the cancer cell lines in the NCI-60 panel (Alley et al.,

1988), both aggregated and separated by pathology. Black circle indicates mean. (G) Scatter plot of colony diameter and number of cells in the colony for colonies

less than 160 µm in diameter across n = 50 replicate simulations. Solid lines show the relationship between colony diameter, number of cells in the colony, and

diameter of a colony cell using an equation fit to experimental data (Meyskens et al., 1984). Dotted lines show the same relationship for an equation of the same form

fit to the simulation results. Colors indicate the difference between the cell diameter calculated directly from the simulation data and the cell diameter predicted by the

experimental fit.
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insufficient energy, it becomes quiescent. The signaling module
is simulated to decide between migratory and proliferative states
for undecided cells. Cells who have reached their division limit
become senescent. This process repeats for all cell agents at the
current tick, and then for each tick of the simulation. Default cell
parameters are derived from literature (Supplementary Table 1).
In addition, we develop a null model for comparison in which
agents simulate their metabolism and signaling modules, but
instead randomly select a cell state (Supplementary Figure 2B).

The environment comprises a hexagonal grid containing
the cell agents and three triangular lattices in which glucose,
oxygen, and a signalingmolecule TGFα diffuse (Figure 2B). Each
hexagon is 30 µm in diameter (side-to-side) and contains, on
average, 2-3 cells depending on total cell volume. The grid is
R = 34 hexagons in radius with an M = 6 hexagon margin, for
a total environment diameter of approximately 2 mm, which is
consistent with experimental observations of the limiting radius
for non-vascularized tumors (Heymach et al., 2010). Because
the hexagonal grid and triangular lattices explicitly account for
volume, the 2D simulations are representative of a 3D cross
section. Simulations in 3D (H > 1) utilize layers of these 2D
simulations, with alternating cell grid offsets to prevent vertical
cell stacking. Default environmental parameters are derived from
literature (Supplementary Table 2).

With high temporal and spatial resolution, we monitor a
number of features over the course of the simulation. We ran
sample growth simulations of colony and tissue growth for 14
days with n = 50 replicates (i.e., different random seeds) and
timepoints taken every 12 h with default, untuned parameters
(Supplementary Table 3). The colony growth simulations are
initialized with a single cell agent, whereas the tissue growth
simulations are initialized with one agent in every location.

For a single simulation, we can capture the spatial distribution
of cell states (Figure 2C). For colony growth, as observed
experimentally, there is a rim of active cells—proliferative and
migratory—surrounding the inactive, quiescent core (Freyer and
Sutherland, 1986; Brú et al., 2003). The rim spans approximately
2 − 4 hexagonal locations (equivalent to 60 − 120 µm),
consistent with literature measurements, which span 25 − 100
µmacross a variety of glucose and oxygen concentrations (Freyer
and Sutherland, 1986). For tissue growth, there exists tissue
homeostasis with the majority of cells in a quiescent state.
Neither the distribution of the cell states nor the thickness of
the rim are specified in the model. Instead, these biologically
relevant behaviors emerge directly from agent and environment
interactions. In contrast, the null model, initialized with a single
cell agent as well as multiple cell agents, fails to show the observed
emergent spatial behavior (Supplementary Figure 2C). Instead,
the cells begin with an equal distribution of all cell states and
quickly fall into irreversible terminal states (necrotic, apoptotic,
and senescent) whereas the full rule set maintains active cell states
(Supplementary Figure 2D).

The total number of cells over time are shown in Figure 2D.
Fitting an exponential curve to the number of colony cells for
the first 7 days gives r2 = 0.98 ± 0.01 across the replicates,
indicating clear early exponential growth. The number of cells
in tissue growth quickly reaches a steady state, further indicating

tissue homeostasis. The diameter growth rate of the colony cells is
1.45 ± 0.09 µm · h−1, which falls well within the experimentally
reported range of 3.78 ± 3.14 µm · h−1 for 15 in vitro cell
lines (Brú et al., 2003) and 1.89 ± 1.09 µm · h−1 for 8 in vitro
tumor spheroids (Conger and Ziskin, 1983). The linear increase
in diameter and early exponential increase in cell number, both
experimentally observed behaviors (Brú et al., 2003; Talkington
and Durrett, 2015), emerge without explicitly defining these
growth dynamics in the model.

Finally, we consider emergent phenomena at the single cell
level. The average doubling time of cells in the simulation,
calculated at 7 days, is 34.6 ± 1.5 or 31.8 ± 1.4 h
depending on calculation method, is well within literature
values of doubling time for human cancer cell lines (Figure 2E)
(Alley et al., 1988). We also find that relationship between
colony diameter, cell number, and cell diameter match the
literature reported relationship between these features for
tumor populations (Figure 2F) (Meyskens et al., 1984). Again,
we note that the model was never trained to meet these
objectives; doubling time and the cell size relationships
emerge de novo.

For the following case studies, we consider temporal, spatial,
and parametric emergent phenomena quantified using three
metrics: growth rate, symmetry, and cell cycle length, respectively
(Methods). Note that cell cycle length is not equivalent to
doubling time; cycle length is the amount of time a cell takes to
complete its cell cycle and is tracked per cell while doubling time
is calculated based on change in population cell counts between
two timepoints. Model parameters are not specifically tuned or
derived to provide these specific emergent outcomes. In addition,
these metrics are not a function of initial state conditions, which
allows us to compare results between simulations.

2.4. Module Complexity and Model
Resolution Impact Emergent Population
Dynamics
To determine how the complexity of subcellular modules,
and thus model resolution, impacts emergent cell population
dynamics, we introduce metabolism and signaling modules with
complex, medium, simple, and random mechanistic detail. Here,
we consider simulations for every combination of metabolism
and signaling module. Note that for case study simulations, the
complex metabolism and complex signaling modules are used.

The metabolism module governs changes in cell energy and
volume as a function of external nutrient availability and internal
cell state (Figure 3A; Methods). Complex metabolism explicitly
accounts for both glycolysis and oxidative phosphorylation
pathways and produces an internal pyruvate intermediate.
Glucose uptake is based on cell surface area, which acts as a
proxy for the number of glucose receptors. Medium metabolism
implicitly accounts for glycolysis and oxidative phosphorylation
and glucose uptake is based on cell volume. Both complex and
medium metabolism use autophagy to regulate cell size. Simple
metabolism assumes constant glucose uptake, energy production,
and growth rate. Randommetabolism takes up a random fraction
of the external nutrients and uses a random fraction of internal
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glucose to produce cell mass. Metabolism module parameters are
derived from literature (Supplementary Table 4).

The signaling module governs the decision between
proliferative and migratory states as a function of the change in
concentration of active PLCγ (Figure 3B; Methods). Complex
signaling is a simplification of an established EGFR signaling
network (Zhang et al., 2007) consisting of 12 species and five
regulatory edges, spanning the nucleus, cytoplasm, and cell
membrane. Medium signaling does not explicitly include the
nuclear compartment, resulting in a network with seven species
and three regulatory edges. Simple signaling further removes the

cell membrane compartment for a network with four species
and three regulatory edges. Random signaling is uncoupled to
external TGFα and selects between the two states with a certain
probability. Signaling module parameters are derived from
literature (Supplementary Table 5).

We first consider the effect of these modules on the external
concentrations of glucose, oxygen, and TGFα, independent
of cell state and cell decision processes. Cell agents, fixed
in a quiescent state with no rules, are introduced into the
environment. When these agents contain only the metabolism
module, both glucose and oxygen consumption decrease with
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increasing metabolism complexity (Supplementary Figure 3A,
left). With random metabolism, glucose and oxygen
consumption are similar to complex metabolism given the
parameterization, suggesting that a correctly parameterized
simplification may be sufficient if only external nutrient
concentrations are of interest. There are no time dependent
effects; glucose and oxygen consumption quickly reach a
steady state.

However, when these fixed state agents contain only
the signaling module, TGFα shows time dependent effects
(Supplementary Figure 3A, right). Complex signaling exhibits
an early spike in TGFα before returning to equilibrium whereas
medium and simple signaling both exhibit a dip in TGFα
and establish new equilibriums. The major difference between
complex and simple/medium signaling modules is the number
of regulatory edges, emphasizing the importance of regulation
in biological systems. As expected, (i) TGFα is unaffected
when agents contain only the metabolism module and (ii)
glucose and oxygen are unaffected when agents contain only the
signaling module.

For agents fixed in a quiescent state with pairwise
combinations of modules, there are no significant
differences compared to simulating the modules in
isolation (Supplementary Figure 3B, left). When the
full rule set is added to cell agents, glucose and oxygen
consumption become more dependent on module complexities
(Supplementary Figure 3B, right).

We ran simulations for every combination of metabolism
and signaling module (Supplementary Table 3). Simulations
reflect 14 days of growth (timepoints taken every 12 h) and
reflect outcomes across 20 replicates. Growth rate increases
with higher non-random metabolism complexity, suggesting
more efficient utilization of nutrients to meet energetic and
growth requirements (Figure 3C). For a given metabolism
module complexity, signaling complexity changes early growth
rate dynamics (Supplementary Figure 3C), perhaps due to an
early compromise between the proliferation and migration
governed by PLCγ . The random metabolism module is
unable to meet energetic demands, resulting in negligible cell
growth. Symmetry increases slightly with increasing metabolism
complexity for a given signaling complexity or decreasing
signaling complexity for a given metabolism complexity
(Figure 3C; Supplementary Figure 3C). Overall, long term
symmetry is unaffected by module complexity, except in
simulations with random metabolism in which symmetry
is significantly lower. Cell cycle length ranges between 16
and 24 h. Higher metabolism complexity generally results in
shorter cell cycles; cells are able to more effectively utilize
nutrients to produce cell mass necessary for division (Figure 3C;
Supplementary Figure 3C). Within a given metabolism module,
higher complexity signaling results in a slightly shorter early cell
cycle (Supplementary Figure 3C).

All combinations of modules except those with random
metabolism produce cell colonies with a quiescent core
surrounded by a proliferative and migratory rim (Figure 3D).
There is a distribution of apoptotic cells for all cases except
for random metabolism, which results in a necrotic core

(Figure 3D; Supplementary Figure 3D). This difference further
highlights that the random metabolism module is unable
to regulate nutrient usage to produce sufficient energy for
the cell.

Overall, we observe key spatial and temporal behaviors that
only occur at certain levels of module complexity. For example,
extracellular TGFα concentration profiles are highly dependent
on the complexity of the signaling module and a necrotic
core emerges without a minimal complexity of the metabolism
module. Identifying such relationships offer guidelines on the
resolution of a computational model necessary to capture specific
behaviors in a given biological system.

2.5. Case Study 1: Cell Population
Dynamics Differ Between Colony and
Tissue Contexts
In vitro studies are ubiquitous in biological research, but they
remain limited in their ability to replicate the rich context
of the microenvironment (Kim et al., 2004; Hickman et al.,
2014). This limitation can result in misleading conclusions that
are not relevant or consistent in vivo (Fràter-Schröder et al.,
1987; Toledo and Wahl, 2006) or even in three-dimensional
in vitro culture (Wang et al., 1998). Our model can be used
to identify differences in emergent behavior as a function of
context. In doing so, we are able to (i) distinguish between
cases where the difference is irrelevant or negligible and assume
observations made in vitro hold in vivo, and vice versa, as
well as (ii) guide experimental design to avoid or compensate
in cases where the difference is significant. Here, we simulate
cells with variations in three parameters (crowding tolerance,
metabolic preference, and migratory threshold) in both colony
and tissue contexts, representing in vitro and in vivo experiments,
respectively (Figure 4A; Methods).

Growth rate is non-linearly sensitive to changes in crowding
tolerance and somewhat linearly sensitive to changes in
metabolic preference and migratory threshold (Figure 4B;
Supplementary Figure 4A). Large decreases in crowding
tolerance (< −40%) leads to a significant drop in growth rate as
cells are unable to successfully divide due to physical constraints.
No migratory threshold (−100%) also results in a drop in growth
rate as cells are unable to become proliferative. Symmetry
diminishes with both decreased crowding tolerance and
migratory threshold, but is essentially unaffected by metabolic
preference (Supplementary Figure 4A). Cell cycle length is
sensitive to crowding tolerance, and, to a lesser degree, migratory
threshold (Supplementary Figure 4A). Overall, the sensitivities
of different metrics to changes in parameter values are variable,
with crowding tolerance exhibiting highly non-linear trends.

We define the three representative cell populations based on
known cancerous phenotypes: A (crowding tolerance at +50%
of baseline), B (metabolic preference at +50% of baseline), and
C (migratory threshold at −50% of baseline). We also define
an unmodified cell population X (all parameters at baseline).
Each population exhibits distinct trends in population fraction
over time when simulated in combinations. The relative fraction
of population X generally decreases, confirming that all the
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FIGURE 4 | Case study 1: Context. (A) Diagram of the three sets of simulations. First, three parameters at the cell, metabolism, and signaling scales (crowding

tolerance, metabolic preference, and migratory threshold, respectively) were varied +/− 100% (increments of 10%) and initialized onto an empty environment.

Second, combinations of representative cell populations (A, B, C, and X) were initialized onto an empty environment to represent a colony context. Third, combinations

of representative cell populations (A, B, C, and X) were initialized onto an environment containing a generic cell population to represent a tissue context. (B) Sensitivity

of three metrics to variation in the three parameters calculated as (y − y0)x0/(x − x0)y0 where y is the metric value and x is the parameter value. Circle size indicates

relative fold change in sensitivity to the maximum for a given metric and parameter, circle color indicates absolute sensitivity, and inverse relationships are indicated by

a black border. (C) Relative change in population fraction for each of the four representative populations over time across all combinations under colony and tissue

contexts. Color indicates the other populations included in the simulation; black indicates all three other populations where included. (D) Time course of metric values
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modified populations (A, B, and C) have growth advantages over
the unmodified population (Figure 4C). The relative fraction of
population A generally increases (Figure 4C). Populations B and

C show variable changes in fraction depending on which other
populations are present; they are able to outgrow population
X but not population A, and population C is able to outgrow
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population B (Figure 4C). These colony trends for populations
X, B, and C hold in the tissue context, but the early increase then
gradual return to the initial fraction for population A seen in the
colony context is not observed in the tissue context (Figure 4C).

With the addition of the generic background cell population
in the tissue simulations, increased tolerance for crowding
becomes a more valuable phenotype, resulting in a growth
rate comparable to that in the colony simulations (Figure 4D).
In the colony context, the advantage of increased crowding
tolerance (population A) becomes less important after the
initial burst of growth (Figure 4D). In the tissue context, there
is significantly lower symmetry for all populations (A, B, C,
and X) and higher cycle times for all populations, except A
(Figure 4D). While symmetry and cell cycle length show clear
separation in trajectories between the colony and tissue contexts,
growth rate exhibits overlap between contexts, suggesting that
growth rate is less sensitive overall to the addition of a generic
background population.

In general, when simulating combinations of the
four representative populations in a colony context, the
resulting overall population symmetry and cycle length
are near the average of the constituent populations
(Supplementary Figure 4B). However, growth rate tends to
be higher than the average of the constituent populations when
population A is included, even though population A alone has
the lowest growth rate. This behavior suggests a synergy in
cases where population A is grown with other populations.
In the tissue context, population growth rate and symmetry
are near the average of the constituent populations, but cycle
length is more likely to favor one of the constituent populations,
demonstrating that the addition of a generic background
population changes the emergent dynamics of the system such
that certain phenotypic modifications become more or less
advantageous (Supplementary Figure 4B).

Growth rate is generally higher in colony contexts, though the
increase depends on the constituent populations and decreases
over time (Figure 4E). Symmetry is consistently higher in colony
contexts. Cell cycle length is higher in tissue contexts, except
for combinations containing population A, where cycle length is
essentially equal between the two contexts during early growth
(Figure 4E).

Overall, we observe significant differences between the colony
and tissue simulation contexts across all three metrics of
emergent phenomena. The tissue context simulations generally
exhibit lower growth rates, decreased symmetry, and higher
cell cycle lengths, though population-dependent effects do exist.
These differences might help explain observations in cell culture
that are not consistent in animal models and highlights the
importance of context when designing both computational and
experimental models of biological systems.

2.6. Case Study 2: Cell and Module
Parameters Govern Competitive Fitness
Between Cell Populations
Biological systems rarely contain only a single population of cells;
they comprise complex cell-cell interactions that drive emergent

dynamics of the system. Cellular competition has been shown to
impact dynamics in a variety of contexts including development,
aging, and cancer (Gregorio et al., 2016; Merino et al., 2016).
Co-culture systems have been used to study such phenomena
(Kirkpatrick et al., 2011; Goers et al., 2014). Several variablesmust
be considered—cell composition, relative seeding and spatial
separation, culture dimensionality and local environment—all
of which affect temporal and spatial observations and present
challenges for data acquisition (Kirkpatrick et al., 2011; Goers
et al., 2014). Our model provides a platform for in silico co-
culture in which these variables can be easily and precisely tuned
and controlled. Here, we simulate a modified population along
with an unmodified, basal population to specifically interrogate
the how differences in cell phenotype and relative seeding affect
competitive fitness (Figure 5A; Methods).

The crowding tolerance parameter significantly impacts the
fraction and dominance of the modified population in co-culture
simulations (Figure 5B). Significant decreases in crowding
tolerance (−30, −40, and −50%) lead to a decrease in the
fraction of modified population relative to the initial fraction.
Any increase (+10,+20,+30,+40, and+50%) or, unexpectedly,
slight negative decrease (−10% and−20%) to crowding tolerance
leads to an increase in the fraction of the modified population.

Changes in the metabolic preference parameter result in
non-linear changes in the fraction of the modified population
(Figure 5B). Modifying the migratory threshold parameter
follows a linear trend; an increase or decrease in parameter values
results in a decrease or increase in the fraction of modified
population, respectively (Figure 5B). The non-linear trend of
metabolic preference indicates that the fraction of energy derived
from glycolysis has a complex relationship to population fitness
whereas the linear trend of migratory threshold suggests that a
cell more likely to commit to migration instead of proliferation
is a more competitive phenotype relative to the basal population.
For crowding tolerance, the multimodal responses indicate that
both an increased and decreased (to a certain limit) tolerance to
crowding can be advantageous.

The trends observed in changes in modified population
fraction as a function of modified parameter are reflected in
emergent behavior (Figure 5C). Differences in growth rate due
to changes in crowding tolerance are more prominent for
higher initial modified population (Supplementary Figure 5A).
Variations in the crowding tolerance parameter represent
different tolerances to mechanical stress during the competition
for space (Merino et al., 2016). The modified population with
an increased crowding tolerance is able to pack more densely
in the core of the cell colony whereas the population with a
slightly decreased tolerance is incentivized to grow outward;
both strategies are sufficient to outcompete the basal population
(Figure 5D; Supplementary Figure 5B).

Symmetry, a function of spatial distribution, is mostly
unaffected by competition, except with a decrease due to decrease
in crowding tolerance at high initial modified population
(Figure 5C; Supplementary Figure 5A). Cell colonies that look
spatially similar may have distinctly different composition at
the subcellular level (Supplementary Figure 5C). For example,
tumors may appear spatially homogeneous despite being
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composed of highly diverse subpopulations; a biopsy may only
represent a small fraction this diversity (Poleszczuk et al., 2015).
Similarly, microbial colonies, which are largely indistinguishable
spatially, may contain highly diverse mixtures of the component
cells in which competition is driven by cell morphology (Smith
et al., 2016).

Cell cycle length is also essentially unaffected for
metabolic preference and migratory threshold (Figure 5C).
However, increased and slightly decreased crowding
tolerance leads to increased cell cycle length (Figure 5C;
Supplementary Figure 5A). The increased tolerance for
crowding results in greater competition for nutrients, requiring
more time for cell growth before division. However, the benefit
of increased tolerance for mechanical stress outweighs the

disadvantage of a slower cell cycle; this tradeoff allows the
modified population to outcompete the basal population and
highlights the relative (and arguably non-intuitive) contributions
of different modes of competition.

Overall, we observe both linear (migratory threshold),
non-linear (metabolic preference) and multimodal (crowding
tolerance) relationships between the parameter values of the
modified population and the emergent behavior of the system.
The high temporal and spatial resolution of our simulations, in
combination with parametric sensitivity analysis, help identify
when, where, and how the modified population is able to
outcompete the basal population. In addition, identifying
the linearity and transition points of these relationships
provide insight into the mechanisms of the underlying cell-cell
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interactions. The multimodal relationship betweenmodifications
in crowding tolerance and growth dynamics, for example,
demonstrates that there exist two separate mechanisms by which
cells with an increased or decreased tolerance for mechanical
stress can successfully outcompete another population.

2.7. Case Study 3: Intra- and Intercellular
Heterogeneity Impact Clonal Evolution and
Emergent Dynamics
Cell heterogeneity is an intrinsic property of biological
systems, even within clonal populations (Raser, 2004; Lidstrom
and Konopka, 2010; Marusyk et al., 2012). Advancements
in experimental approaches have enabled observation and
quantification of heterogeneity at the single cell level (Schmid
et al., 2010; Walling and Shepard, 2011). However, while
heterogeneity can be measured, it cannot be systematically
varied. Given the ubiquitous nature of heterogeneity, it remains
important to distinguish between functional variation that
selectively arises to improve evolutionary fitness from intrinsic
variation that arises from random fluctuations (Altschuler and
Wu, 2010). Our model allows for explicit control of differences
between cell populations, variation in cell parameters, and
probabilities of stochastic processes. Here, we simulate growth
in both colony and tissue contexts to explore how heterogeneity
within and between cell populations impacts emergent responses
(Figure 6A; Methods).

Growth rate increases with increasing heterogeneity in colony
and tissue simulations (Figure 6B; Supplementary Figure 6A).
Higher background heterogeneity corresponds to lower
growth rate for all populations (A, B, C, and X)
(Supplementary Figure 6B). Symmetry generally decreases
for any increase in heterogeneity or background heterogeneity
(Figure 6B; Supplementary Figures 6A,B). Interestingly, the
change in growth rate and symmetry as heterogeneity increases
is not consistent across different background heterogeneities,
which suggests that background heterogeneity can mask
the effects of heterogeneity in the population of interest
(Figure 6B). Cell cycle length increases with increasing
heterogeneity for most populations; population A is minimally
affected (Figure 6B; Supplementary Figure 6A). Background
heterogeneity does not have a clear relationship to cycle
length; this emergent behavior appears to be less context-
dependent and more population-dependent, as previously noted
(Supplementary Figure 6B).

In general, regardless of context, population A increases
and population X decreases in fraction when simulated in
combination with other populations (Figure 6C). Population
A persists best in colony contexts at higher heterogeneity
(H ≥ 20) and persists best in tissue contexts at lower
heterogeneity (H < 20) (Figure 6C). Change in population
A fraction is unaffected by background heterogeneity
(Supplementary Figure 6C). Populations X, B, and C do
not have clear background heterogeneity trends, but generally
exhibit better population fraction outcomes in tissue contexts as
heterogeneity increases (Figure 6C).

The crowding tolerance parameter (Supplementary Table 1),
which is already higher in population A, is one of the
internal cell parameters now subject to heterogeneity in all
four representative populations. The increased heterogeneity in
the other populations, which are normally less competitive in
tissue contexts than population A, provides a mechanism by
which they can select for cells with a higher crowding tolerance.
This hypothesis is further supported by the observation that
populations B and C persist better in colony contexts, where
there is a weaker selective pressure for higher crowding tolerance
(Figure 6C). In addition, the distribution of the average value
of the crowding tolerance parameter across the replicates
shows a clear evolution toward a higher value (Figure 6D;
Supplementary Figure 6D).

The metabolic preference parameter (Supplementary

Table 4) shows a minor evolution toward a lower value in
the tissue context for population B, in which the parameter
was increased (Figure 6D). There is minimal evolution
of the metabolic preference parameter in the other cell
populations, suggesting that the basal value of metabolic
preference was optimal for the given environment conditions
in these simulations and that there exists a stronger selective
pressure in the tissue context (Supplementary Figure 6D). The
migratory threshold parameter (Supplementary Table 5) shows
a minor increase toward a larger value at very high heterogeneity
(Supplementary Figure 6D) for all populations. In almost all
cases, the variance of the distribution in average parameter
value across replicates increases from the initial distribution
(Supplementary Figure 6E).

The changes in metrics between simulated colony and tissue
contexts with the addition of heterogeneity generally match
trends seen without heterogeneity for symmetry and cycle length:
symmetry is higher and cycle length is lower in the colony context
(Figure 6E). Growth rate shows a significant dependence on
the degree of both heterogeneity and background heterogeneity.
There exist critical values of heterogeneity and background
heterogeneity for which growth rate in colony and tissue
contexts are comparable (Figure 6E). In this system, background
heterogeneity matters when growth rate and symmetry are of
interest, but is less important for cycle length (Altschuler andWu,
2010).

Overall, we observe heterogeneity-dependent emergent
behavior in both colony and tissue contexts. Higher heterogeneity
generally corresponds to higher growth rate, lower symmetry,
and longer cycle lengths, though there are population-dependent
effects as well. As a consequence of heterogeneity, cell
populations evolve toward certain parameter values such as
higher crowding tolerance. Exploring such trends identify how
heterogeneity within and between populations shapes emergent
population dynamics.

3. DISCUSSION

Computational models are critical for understanding biological
systems (Brodland, 2015; Yu and Bagheri, 2016). Agent-based
modeling in particular has seen increasing applications in biology
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(An et al., 2009; Gorochowski, 2016). A number of agent-based
modeling platforms exist, including Chaste (Mirams et al., 2013),
CompuCell3D (Swat et al., 2012), and FLAME (Holcombe et al.,
2012). We develop the first ABM that uses interfaces custom-
built to formalize the interactions within and among cells and
their environment.

We implemented a tissue cell system within the framework
and demonstrate that, with literature-derived parameters and
no additional parameter fitting, we produce biologically realistic
growth dynamics that are agnostic to a specific cell population.
Three case studies investigating cellular context, competition,
and heterogeneity demonstrate how our model provides unique
insight into biological systems in a manner that is infeasible to
probe experimentally.

First, we analyze the impact of specific cell parameters
and simulate representative populations in colony and tissue
contexts. Second, we systematically vary cell population
parameters and initial conditions of simulated co-culture
experiments to evaluate cellular competition. Finally,
we introduce tunable cell heterogeneity, both within the
representative populations and between the representative and
background populations. Tracking temporal, spatial, and single-
cell data of each simulation across multiple replicates identifies
non-linear trends and non-intuitive relationships. These
observations offer hypotheses on the underlying mechanisms
that could be validated experimentally.

Our framework is readily extensible across many biological
systems, with applications in a variety of areas including drug
development, personalized medicine, and synthetic biology.
The model can be tuned to a specific disease or patient
population context by varying cell parameters and altering the
simulation environment. For example, we could simulate a
highly glycolytic cancer growing in a patient with diabetes by
increasing the metabolic preference for glycolysis parameter and
setting a higher basal concentration of glucose in the simulation
environment. We can then test how various perturbations, such
as excision combined with radiation compared to excision alone,
affects the growth of the tumor. Here, the model acts as an
testbed with which to interrogate new strategies for drug design
and treatment.

This framework can also catalyze a new approach to
translational and personalized therapy by matching the model to
biopsy and imaging data from a patient. Here, the model acts as a
proxy with which to rapidly, inexpensively, and safely simulate a
wide variety of possible interventions to develop patient-specific
treatment regimes that offer more successful outcomes.

Finally, with the advent of engineered cell therapy (Kitada
et al., 2018), this framework can uniquely redirect efforts in
synthetic biology by predicting emergent outcomes. New agents,
representing engineered immune cells with modules specific
to their method of action, can be introduced to the model.
Varying parameters and rules of the these agents, such as receptor
density, binding strength, or target specificity, and observing the
emergent response of the system can identify key design targets
for effective cell therapy. Here, the model acts as a tool with
which to predict novel system response in order to generate
experimentally testable hypotheses.

In conclusion, our framework offers a new computational
approach to interrogate the complexity and emergence of cell
populations de novo. The intuitive nature of ABMs, in which
rules can be explained with natural language and parameters
are derived from literature values, helps bridge the gap between
computational theory and experimental application and provides
an opportunity for interdisciplinary collaboration (Cvijovic et al.,
2014). We do not present a “whole cell” model nor seek
to diminish the utility of reactive, equation-based approaches.
Rather, we acknowledge the inherently multi-scale nature of
biology and have designed a proactive, rule-based modeling
framework to encourage the development of constituent parts
by experts, and the investigation of their impact on emergent
behavior in a variety of systems. This framework can serve as
an invaluable resource that disrupts the status quo of current
research efforts.

4. METHODS

All source code for ARCADE is available on GitHub
at https://github.com/bagherilab/ARCADE.
MASON, a multi-agent simulation library required by
the model, is available at https://cs.gmu.edu/∼

eclab/projects/mason/.

4.1. Model Agents
For the tissue cell implementation, seven cell states were
defined: quiescent, migratory, proliferative, apoptotic, necrotic,
senescent, and undecided. The state defines which rules the
agent follows at each timepoint (Figure 2A). The undecided
state acts as a transition state; undecided cells decide between
migratory and proliferative states based on active PLCγ and
the migratory threshold (MIGRA_THRESHOLD) through the
signalingmodule (Zhang et al., 2007). Each cell agent is initialized
with a volume drawn from a normal distribution (mean =
CELL_VOL_AVG, standard deviation = CELL_VOL_RANGE)
and an age drawn from a uniform distribution (between 0 and
DEATH_AGE_RANGE).

4.1.1. Quiescent
Cells can enter quiescence through a variety of mechanisms
(Valcourt et al., 2012; Yao, 2014). Proliferating cells might become
quiescent without completing the cell cycle due to contact
inhibition (Gos et al., 2005), which occurs when (i) there are
no neighboring locations into which it can divide or (ii) cell
size exceeds the available space. Migratory cells might also
become quiescent through contact inhibition (Abercrombie and
Heaysman, 1953). Cells unable to meet energetic requirements
become quiescent (Valcourt et al., 2012). Tissue cell agents exit
quiescence through external growth signals, such as apoptosis of
a neighboring cell inducing compensatory proliferation or the
removal of contact inhibition (Valcourt et al., 2012; Yao, 2014).

4.1.2. Migratory
Cells that decide to migrate create a helper agent that is called
after a time delay corresponding to the distance the cells needs
to move (HEX_SIZE) and its movement speed (MIGRA_RATE).
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The cell identifies all neighboring locations, including its current
location, meeting the following criteria: (i) adding the new agent
does not increase the total cell volume over the volume of the
location (HEX_VOLUME), (ii) each agent, with the addition, exists
at a height lower than their tolerable height (MAX_HEIGHT),
and (iii) there are no more than 6 agents in the new location.
To enforce normal cell density, no more than one healthy (H)
cell agent is allowed in a location; the cancerous (C) and cancer
stem cell (S) subtypes do not follow this additional constraint.
To represent chemotactic movement (Zhang et al., 2007), each
location i is assigned a score S based on glucose concentration Gi:

S = α
R− ri + 1

2
+ (1− α)

[

β
Gi

G◦
+ (1− β)u

]

where α is affinity (AFFINITY), R is the distance from the center
of the migrating cell, r is the radial distance of location i from
the center of the environment, β is accuracy (ACCURACY), G◦

is the source concentration of glucose (CONC_GLUC), and u is
a random number drawn from a uniform distribution U([0, 1]).
If there are no locations that meet the criteria, the cell becomes
quiescent, representing contact inhibition (Abercrombie and
Heaysman, 1953).

4.1.3. Proliferative
Cells that decide to proliferate create a helper agent that is stepped
along with the rest of the agents until proliferation is complete
or the cell is no longer able to proliferate. At each tick, the
helper agent checks if (i) the cell is no longer proliferative, (ii)
the cell no longer exists at a tolerable height, or (iii) there are
no locations into which the cell can divide. For the latter two,
the cell becomes quiescent, representing contact inhibition (Gos
et al., 2005). Once (i) the cell has doubled in size, which is
controlled by the metabolism module, and (ii) sufficient time
for DNA synthesis has passed (SYNTHESIS_TIME), the helper
creates a new cell agent by dividing the parent cell volume and
module contents by 50%± 5%. The division count for both cells
is then incremented.

4.1.4. Apoptotic
Cells that reach an age above the average life span
(DEATH_AGE_AVG) have an increasingly high probability
of undergoing apoptosis (Elmore, 2007), defined by a cumulative
normal distribution (mean = DEATH_AGE_AVG, standard
deviation= DEATH_AGE_RANGE). Cells that become apoptotic
create a helper that is called after a time delay corresponding to
the duration of apoptosis (DEATH_TIME). The helper removes
the cell from the schedule and the grid—it is no longer stepped
and it no longer occupies space in the environment—which
represents the removal of cell debris and regulated nature
of apoptosis (Edinger and Thompson, 2004). Compensatory
proliferation is also mediated by the helper, which selects a
quiescent neighbor of the cell and sets it to proliferate (Fan and
Bergmann, 2008; Ryoo and Bergmann, 2012).

4.1.5. Necrotic
Cells under sustained energy deficits (ENERGY_THRESHOLD)
undergo necrosis (Edinger and Thompson, 2004; Zong, 2006).
These cells also have a probability of undergoing apoptosis

instead (NECRO_FRAC), to reflect themore continuous nature of
the decision between, and morphology of, necrosis and apoptosis
(Zong, 2006). Necrotic cells are removed from the schedule but
remain in the grid—it is no longer stepped, but continues to
occupy space—which represents the more disorganized nature of
necrosis (Edinger and Thompson, 2004).

4.1.6. Senescent
Cells that reach a replicative limit (DIVISION_POTENTIAL)
have a probability (SENES_FRAC) of becoming senescent or
apoptotic, due to uncertainty about what drives the decision
between the two states (Childs et al., 2014). Senescent cells remain
on the schedule and in the simulation, but are no longer able
to proliferate (Campisi and d’Adda di Fagagna, 2007). Senescent
cells might later become apoptotic/necrotic due to nutrient
deficiency (Wang et al., 2016), but will not apoptose due to age
(Campisi and d’Adda di Fagagna, 2007).

4.2. Model Environment
4.2.1. Coupled Hexagonal and Triangular Grids
Cell agents exist on a hexagonal grid of radius R using a
hexagonal coordinate system (u, v,w, z) such that (0, 0, 0, 0)
is the center of the environment (Figure 2B). For three
dimensional models (height H > 1), each hexagonal grid layer
(z = 1 − H, ...,H − 1) has alternating offsets: offset a in the
(−u,+w) and offset b in the (+u,−v) direction. The offsets
prevent the cell agents from stacking in columns when simulated
in 3D. Layer z = 0 always has no offset, offset a always has
offset b above, and offset b always has no offset above. Given a
location with coordinates (u, v,w, z), there are six equidistant
neighboring locations in the same layer: (0,+1,-1,0),
(0,-1,+1,0), (-1,+1,0,0), (+1,-1,0,0), (-1,0,+1,0),
(+1,0,-1,0); three equidistant locations above: (0,0,0,+1),
[(+1,0,-1,+1), (-1,+1,0,+1), (0,-1,+1,+1)],
[(0,+1,-1,+1), (-1,0,+1,+1), (+1,-1,0,+1)]; and three
equidistant locations below: (0,0,0,-1), [(-1,+1,0,-1),
(0,-1,+1,-1), (+1,0,-1,-1)], [(0,+1,-1,-1),
(-1,0,+1,-1), (+1,-1,0,-1)] where brackets indicate
the offset of the layer: [no offset, offset a, and offset b].

Each molecule (oxygen, glucose, and TGFα) diffuses on
triangular lattices using rectangular coordinate system (x, y, z)
associated with the main hexagonal grid (Figure 2B). Glucose
and oxygen are introduced from constant sources (CONC_GLUC
and CONC_OXY). Each hexagonal location corresponds to six
triangular lattice locations, indexed clockwise from the upper
center triangle by position p. When cell agents interact with
their local environment, average concentration across the six
triangular locations is used.

4.2.2. Molecule Diffusion
Diffusion of each molecule is calculated using a reaction-
diffusion equation:

∂C

∂t
= D∇2C + Ra + Rs

where C is the concentration, D is diffusivity of the molecule in
the environment (DIFF_GLUC, DIFF_OXY, or DIFF_TGF), Ra
is the rate of consumption/production of the molecule by the cell
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agents, andRs is the rate of production by the vasculature sources.
Consumption and production of molecules (Ra) and the source
production (Rs) are separately managed by cell agents and a sites
component, respectively, which leaves:

∂C

∂t
= D∇2C

A finite difference approximation for this equation in triangular
geometry (Huiskamp, 1991) is solved at each tick t to update the
lattice concentrations for the next tick t + 1t:

Ct+1t = Ct+
4D1t

31s2

(

3
∑

i=1

Ct
i − 3Ct

)

+δ
2D1t

1z2





2
∑

j=1

Ct
j − 2Ct





where 1t is the time step (1 s), 1s is the distance between
two adjacent triangular locations (half of HEX_SIZE), 1z is the
distance between layers (MAX_HEIGHT), i indexes across the
three triangular neighbors in a layer, j indexes across the two
neighbors above and below the layer, and δ is 0 if H = 1 and
1 otherwise.

To check stability of the finite difference approximation, we
perform a von Neumann stability analysis:

λ = 4D1t

(

1

1s2
+ δ

1

1z2

)

For stability, 0 ≤ λ < 1. If not satisfied, we use a pseudo-steady
state approximation:

Ct+1t =
1

3+ δ 31s2

1z2





3
∑

i=1

Ct
i + δ

31s2

21z2

2
∑

j=1

Ct
j





4.3. Metabolism Modules
All metabolism modules except for random metabolism
account for glycolysis and oxidative phosphorylation pathways
for producing energy (ATP) from glucose and oxygen with
a metabolic preference µ for glycolysis over oxidative
phosphorylation (META_PREF). The complex metabolism
module explicitly accounts for a pyruvate intermediate and
glucose/oxygen utilization is based on actual energy requirements
for the given tick. The medium metabolism module maintains
utilization based on actual energy requirements, but does not
use a pyruvate intermediate. The simple metabolism module
assumes utilization based on constant ATP production rate.
Default parameter values are given in Supplementary Table 4.

Several stoichiometric ratios are defined:

• Sglyc = ATP produced per glucose from glycolysis (2
ATP/glucose)

• Soxphos = ATP produced per pyruvate from oxidative
phosphorylation (15 ATP/pyruvate)

• SPG = pyruvate per glucose in glycolysis (2 pyruvate/glucose)
• SOP = oxygen per pyruvate in oxidative phosphorylation (3

oxygen/pyruvate)

4.3.1. Determine Nutrient Availability
At each tick (representing one minute), for each cell agent, the
external glucose Gext and oxygen Oext are calculated from the
environmental glucose G and oxygenO concentrations:

Gt
ext = G

t · V

Ot
ext = O

t · V · ρ

where V is the volume of the hexagonal location
(HEX_VOLUME) and ρ is the solubility of oxygen in tissue
(OXY_SOLU_TISSUE).

4.3.2. Consume Energy
Energy consumed Econs is given by:

Econs = v(E0 + Epr · xpr + Emi · xmi)

where E0 is basal energy consumption (BASAL_ENERGY),
Epr and Emi are additional energy consumed for proliferation
(PROLIF_ENERGY) and migration (MIGRA_ENERGY),
respectively, and xpr and xmi are cell state flags (mi = migratory,
pr = proliferative) which can be on (1) or off (0).

Energy requirement Ereq for the current timepoint includes
Econs and any additional energy E requirement remaining from
the previous time step:

Ereq = Econs + E
t−1

4.3.3. Uptake Glucose
Internal glucose Gint increases by glucose uptake:

Gt
int = Gt−1

int + Guptake

where glucose uptake Guptake varies by module complexity.
For random metabolism:

Guptake = Gt
ext · XGU

where XGU = random number drawn from a uniform
distribution U([0.005, 0.015]).

For simple metabolism:

Guptake = kU ·

(

Gt
ext

V
−

Gt−1
int

v

)

where kU = constant glucose uptake rate
(CONS_GLUC_UPTAKE).

For medium metabolism:

Guptake = kP · v ·

(

Gt
ext

V
−

Gt−1
int

v

)

·

(

1

Savg

)

where kP = ATP production rate (ATP_PRODUCTION_RATE)
and Savg = average ATP produced per glucose calculated as
µ · Sglyc + (1− µ) · Soxphos · SPG.
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For complex metabolism:

Guptake = kG · A ·

(

Gt
ext

V
−

Gt−1
int

v

)

where kG = glucose uptake rate (GLUC_UPTAKE_RATE) and
A = cell agent surface area based on the cell volume.

4.3.4. Calculate Nutrient Requirements
The amount of glucose required Greq, amount of pyruvate
required Preq (complex only), and oxygen uptake Ouptake, can be
calculated depending on module complexity.

For random metabolism:

G
glyc
req = XGR

Ouptake = Ot
ext · XOU

where XGR is a random number drawn from a uniform
distribution U([0.2, 0.4]) and XOU is a random number drawn
from a uniform distribution U([0.2, 0.5]).

For simple metabolism:

G
glyc
req =

µ · α

Sglyc

G
oxphos
req =

(1− µ) · α

Soxphos · SPG

Ouptake = min(Oext ,G
oxphos
req · SPG · SOP)

where α is the constant ATP production rate
(CONS_ATP_PRODUCTION).

For medium metabolism:

G
glyc
req =

µ · Ereq

Sglyc

G
oxphos
req =

(1− µ) · Ereq

Soxphos · SPG

Ouptake = min(Oext ,G
oxphos
req · SPG · SOP)

For complex metabolism:

Greq =
µ · Ereq

Sglyc

Preq =
(1− µ) · Ereq

Soxphos

Ouptake = min(Oext , Preq · SOP)

4.3.5. Generate Energy
Energy is generated through oxidative phosphorylation and
glycolysis based on internal glucose or pyruvate, depending on
the module complexity.

For oxidative phosphorylation with random, simple, and
medium metabolism, the amount of glucose needed in terms of
oxygen GO is calculated as GO = Ouptake/(SPG · SOP).

If Gint > GO:

E
oxphos
gen = GO · Soxphos · SPG

Gint = Gint − GO

If Gint ≤ GO:

E
oxphos
gen = Gint · Soxphos · SPG

Gint = 0

Ouptake = Gint · SPG · SOP

For oxidative phosphorylation with complex metabolism, the
amount of pyruvate needed in terms of oxygen PO is calculated
as PO = Ouptake/SOP.

If Pint > PO:

E
oxphos
gen = PO · Soxphos

Pint = Pint − PO

If Pint ≤ PO:

E
oxphos
gen = Pint · Soxphos

Pint = 0

Ouptake = Pint · SOP

For glycolysis with random, simple, and mediummetabolism:

If Gint > G
glyc
req :

E
glyc
gen = G

glyc
req · Sglyc

Gint = Gint − G
glyc
req

If Gint ≤ G
glyc
req :

E
glyc
gen = Gint · Sglyc

Gint = 0

For glycolysis with complex metabolism:

If Gint > Greq:

E
glyc
gen = Greq · Sglyc

Gint = Gint − Greq

Pint = Pint + Greq · SPG

If Gint ≤ Greq:

E
glyc
gen = Gint · Sglyc
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Gint = 0

Pint = Pint + Gint · SPG

Note that for complex and medium metabolism, between
oxidative phosphorylation and glycolysis, additional glucose can
be diverted through glycolysis to compensate for an energy deficit
(E < 0 and Gint > 0) in cases where there is not enough oxygen
for complete oxidative phosphorylation. The two pathways do
not occur sequentially in real systems so this step ensures that
the glycolysis pathway can be used to produce energy under
hypoxic conditions.

Greq = max

(

Greq,
−(E − Econs + E

oxphos
gen )

Sglyc

)

4.3.6. Update Energy
The final energy level, for all complexities, is given by:

E
t = E

t−1 + Egen − Econs

where Egen = E
oxphos
gen + E

glyc
gen for complex metabolism.

4.3.7. Generate Cell Mass
Cells will generate cell massm during (i) proliferation and (ii) size
maintenance, depending on module complexity, when not under
an energy deficit (E ≥ 0). Cells use a fraction of their internal
glucose and pyruvate fm (FRAC_MASS) to produce cell mass. The
cell aims to main a critical massmcrit .

For random metabolism where (xpr = 1 andm < 2mcrit):

1m = XU

[

Gint

φ

]

Gint = Gint − XU · Gint

where XU is a random number drawn from a uniform
distribution U([0, 1]) and φ is the glucose recovered from cell
mass (MASS_TO_GLUC).

For simple metabolism where (xpr = 1 and m < 2mcrit and
Gint > kM · ρ · φ):

1m = kM · ρ

Gint = Gint − kM · ρ · φ

where kM is a constant growth rate (CONS_GROWTH_RATE) and
ρ is cell density (CELL_DENSITY).

For medium metabolism where (xpr = 1 and m < 2mcrit) or
(m < 0.99mcrit):

1m = fm

[

Gint

φ

]

Gint = Gint · (1− fm)

For complex metabolism where (xpr = 1 and m < 2mcrit) or
(m < 0.99mcrit):

1m = fm

[

λ · Gint

φ
+

(1− λ) · Pint

SPG · φ

]

Gint = Gint · (1− fm · λ)

Pint = Pint · (1− fm · (1− λ))

where λ is the relative contribution of glucose and pyruvate to
cell mass (RATIO_GLUC_TO_PYRU).

4.3.8. Consume Cell Mass
For complex and medium metabolism, a cell consumes cell mass
through autophagy (Glick et al., 2010) when (i) it is under an
energy deficit and is larger than the minimum viable mass (E < 0
and m > mmin) or (ii) it is not under and energy deficit, is above
its desired size, and it not proliferating (E ≥ 0 andm > 1.01mcrit

and xpr = 1):

m = m− kA

Gint = Gint + kA · φ

where mmin is the minimum mass the cell agent tolerates
(MIN_MASS_FRAC) and kA is the rate of autophagy
(AUTOPHAGY_RATE). Simple and random metabolism do
not have a mechanism to consume mass.

4.3.9. Update Cell and Environment
Cell volume is updated from cell mass m using cell density ρ as
v = m/ρ. For complex metabolism, interval pyruvate is removed
through conversion to lactate at rate kL (LACTATE_RATE):

Pint = (1− kL) · Pint

The external glucose and oxygen environments are updated
based on final uptake by the cell:

G
t+1 = G

t ·

(

1−
Guptake

Gt
ext

)

O
t+1 = O

t ·

(

1−
Ouptake

Ot
ext

)

4.4. Signaling Modules
The complex signaling module is based on a published EGFR
gene-protein interaction network (Athale et al., 2005; Zhang
et al., 2007). The medium and simple signaling modules
are further simplifications of this network. For the random
signaling module, cells become migratory with a certain
probability (MIGRA_PROB). Default parameter values are given
in Supplementary Table 5.

At each tick (representing 1 min), for each agent, the external
TGFα concentration is determined from the lattice. The system
of equations is iteratively solved using a forward Euler method
with time steps of 1 s. The external TGFα concentration in the
lattice is then set to the new value. Cell agent state is defined by
the relative fold change 1 in active PLCγ :

1 =
max([PLCγ ]t , [PLCγ ]t−1)

min([PLCγ ]t , [PLCγ ]t−1)
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where t is the current tick. Cells in an undefined state with
1 greater than migratory threshold θ (MIGRA_THRESHOLD)
become migratory; otherwise they become proliferative:

{

1 > θ : xmi = 1 xpr = 0
1 ≤ θ : xmi = 0 xpr = 1

}

where x is the cell state flag (mi = migratory, pr = proliferative).

4.4.1. Regulatory Weighting
Regulatory interactions are simplified into weights w of the
following form:

wk = 1±
Xi

WK+ Xi

where i indicates the regulatory species, ± indicates an increase
(+) or decrease (−) in rate, and WK is the corresponding
weighting parameter given in Supplementary Table 5.

4.4.2. Uptake and Transport
For simple signaling, extracellular TGFα (X1) forms a complex
with EGFR and is internalized into cytoplasmic TGFα-EGFR
(X2). Membrane EGFR is not explicitly considered. Inactive
PLCγ (X3) converts to active PLCγ (X4) and vice versa (Athale
et al., 2005; Zhang et al., 2007).

dX1

dt
= k6 − k1X1wGwC − k3X1

dX2

dt
= k1X1wGwC − k2X2

dX3

dt
= k5X4 − k4(1− X4)wP

dX4

dt
= k4(1− X4)wP − k5X4

For medium signaling, extracellular TGFα (X1) and
membrane EGFR (X2) form a TGFα-EGFR complex (X3)
that autophosphorylates into p-TGFα-EGFR (X4) (Athale
et al., 2005; Zhang et al., 2007). Unlike complex signaling, the
translation of TGFα and EGFR are no longer explicitly included;
TGFα secretion and EGFR insertion occur at constant rates.
The complex is internalized into cytoplasmic TGFα-EGFR (X5),
which can then dissociate. Inactive PLCγ (X6) converts to active
PLCγ (X7) and vice versa (Athale et al., 2005; Zhang et al., 2007).

dX1

dt
= k−1X3 − k1X1X2 − k7X1 + k11

dX2

dt
= k−1X3 − k1X1X2 − k6X2 + k10

dX3

dt
= 2k1X1X2 − 2k−1X3 − k2X3wG + k−2X4wC − k3X3

dX4

dt
= k2X3wG − k−2X4wC − k4X4

dX5

dt
= k3X3 + k4X4 − k5X5

dX6

dt
= k9X7 − k8(1− X7)wP

dX7

dt
= k8(1− X7)wP − k9X7

For complex signaling, extracellular TGFα (X1) and
membrane EGFR (X2) form a TGFα-EGFR complex (X3)
that autophosphorylates into p-TGFα-EGFR (X4) (Athale et al.,
2005; Zhang et al., 2007). The complex is internalized into
cytoplasmic TGFα-EGFR (X5), which can then dissociate into
cytoplasmic EGFR (X6) and TGFα (X7). Both EGFR and TGFα
are translated from EGFR RNA (X8) and TGFα RNA (X9),
respectively (Athale et al., 2005; Zhang et al., 2007). Inactive
PLCγ (X10) converts to active PLCγ (X11) and vice versa (Athale
et al., 2005; Zhang et al., 2007). EGFR RNA and TGFα RNA
are generated from a nucleotide pool (X12) (Athale et al., 2005;
Zhang et al., 2007).

dX1

dt
= k−1X3 − k1X1X2 + k9X7 − k11X1

dX2

dt
= k−1X3 − k1X1X2 + k8X6 − k−8X2 − k10X2

dX3

dt
= 2k1X1X2 − 2k−1X3 − k2X3wG + k−2X4wC − k3X3

dX4

dt
= k2X3wG − k−2X4wC − k4X4

dX5

dt
= k3X3 + k4X4 + 2k−5X6X7 − 2k5X5

dX6

dt
= k5X5 − k−5X6X7 + k14X8 − k6X6 − k8X6 + k−8X2

dX7

dt
= k5X5 − k−5X6X7 + k15X9 − k7X7 − k9X7

dX8

dt
= k16X12wE − k18X8

dX9

dt
= k17X12wT − k19X9

dX10

dt
= k13X11 − k12(1− X11)wP

dX11

dt
= k12(1− X11)wP − k13X11

dX12

dt
= −k16X12wE − k17X12wT + k18X8 + k19X9

4.4.3. Initial Concentrations and Regulatory Species
For simple metabolism, initial concentrations (in nM) are
X6 = 0.333, and X7 = 0.667. Extracellular TGFα (X1) is given
by CONC_TGF. All other species are initially at 0. Regulatory
species are internal glucose (determined from the metabolism
module) for G, X4 for C, and X2 for P.

For medium metabolism, initial concentrations (in nM) are
X2 = 25, X6 = 0.333, and X7 = 0.667. Extracellular TGFα
(X1) is given by CONC_TGF. All other species are initially at
0. Regulatory species are internal glucose (determined from the
metabolism module) for G, X7 for C, and X4 for P.

For complex metabolism, initial concentrations (in nM) are
X2 = 25, X6 = X7 = 5, X8 = X9 = 2.5, X10 = 0.333,
X11 = 0.667, and X12 = 5. Extracellular TGFα (X1) is given by
CONC_TGF. All other species are initially at 0. Regulatory species
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are internal glucose (determined from the metabolism module)
for G, X11 for C, and X4 for E, T, and P.

4.5. Simulation Data Analysis
4.5.1. Doubling Time
Doubling time is given by (tb − ta) · ln 2/ ln (Nb/Na) where t is
time andN is the number of cells. Doubling time is calculated for
each seed at 7 days (a = 0 and b = 7) across n = 50 replicates.
Doubling time is also calculated by ln 2/r where r is obtained by
fitting an exponential curve N = N0 exp (t · r) to each seed for
the first 7 days across n = 50 replicates.

4.5.2. Colony Diameter
Colony diameter D is calculated as the average of the
diameter across the three hexagonal axes using D =

C
[

max(umax − umin + 1, 0) +max (vmax − vmin + 1, 0)
+max (wmax − wmin + 1, 0)

]

/3 where subscripts max and min
refer to the maximum and minimum, respectively, of the given
hexagonal coordinate across all cell locations at a given timepoint,
and C is a scaling factor of 30 µm · hex−1 (HEX_SIZE). Colony
diameter is calculated at each timepoint for n = 50 replicates.

4.5.3. Cell Diameter
Assuming a cylindrical cell whose volume v is calculated as v =

πr2h where r is radius and h is height, cell diameter d is given
by d = 2

√

v/πh using an average height of h = 4.35, which is
calculated as half the max cell height (MAX_HEIGHT).

4.5.4. Fraction Occupancy
At a given seed and timepoint, the fraction occupancy at a radius
r from the center is given by n/Nr where n is the number of agents
of the state or population of interest and Nr is the maximum
possible number of locations at radius r in a hexagonal grid. Note
that fraction occupancy can exceed 1 as there can be more than a
single agent per location.

4.5.5. Relative Fraction Change
For simulations in which there are multiple populations, the
relative change in the fraction of a given population is calculated
as (x − x0)/s where x is the fraction of the population, x0 is the
initial fraction of the population, and s is a scaling factor equal
to 1 − x0 or x0 if the change (x − x0) is positive or negative,
respectively. For simulations using the tissue context, the healthy
background population is not included in the calculation.

4.6. Emergent Behavior Metrics
4.6.1. Growth Rate
Growth rate quantifies the temporal emergence of colony
diameter over time, in units of µm · day−1. For each time index i
in [2, 2.5, ..., 14] days, a least squares linear fit between timepoints
[1, 1.5, ..., ti] and colony diameters [D1,D1.5, ...,Di] is performed
(Python, function polyfit from package numpy with degree
of 1). The growth rate is taken as the slope of this line.

4.6.2. Symmetry
Symmetry quantifies the spatial emergence of colony shape at a
given timepoint, ranging from 0 (not symmetric) to 1 (perfectly
symmetric). In hexagonal coordinates, the colony is perfectly

symmetric if for each location (u,v,w), the corresponding five
locations (-w,-u,-v), (v,w,u), (-u,-v,-w), (w,u,v), and
(-v,-w,-u) are all occupied. For a given seed and timepoint,
for each unique occupied location i, the number of unoccupied
corresponding locations ni is determined. Duplicate locations are
not counted. Symmetry is calculated as:

1−
1

N

N
∑

i

ni

5

where N is the number of unique occupied locations.

4.6.3. Cycle Length
Cycle length quantifies the parametric emergence of cell cycle
length, in units of hours. Each cell agent tracks the number of
ticks (minutes) between when it switches to a proliferative state
and when it successfully divides to create a daughter cell agent.
For a given seed and timepoint, cycle lengths are first averaged
per agent, then averaged across all agents.

4.7. Data Fitting
4.7.1. Colony Size
For Figure 2G, an equation relating number of cells n, cell
diameter d, and colony diameter D given by:

n = a
(

Db/dc
)

with parameters a, b, and c (Meyskens et al., 1984), was fit to
simulated data using non-linear least squares (Python, function
curve_fit from package scipy.optimize).

4.7.2. Parameter Statistics
The average value x of each cell parameter across all cells at each
timepoint is calculated for n = 20 replicates. The mean (µ) and
standard deviation (σ ) of these averages are estimated using:

µ =
1

n

n
∑

i=1

xi σ =

√

√

√

√n−1

n
∑

i=1

(xi − µ)2

The distribution of average parameter values across replicates
at a given timepoint is compared to the initial distribution
of averages at t = 0 using a t-test with paired samples
(Python, function ttest_rel from package scipy.stats).
The variance of average parameter values across replicates at
a given timepoint is compared to the variance of the initial
distribution at t = 0 using Levene’s test (Python, function
levene from package scipy.stats).

4.8. Case Study Simulations
First, we select three parameters to reflect common cancerous
cell phenotypes: (i) crowding tolerance (MAX_HEIGHT), which
captures a cell’s tolerance for crowding (Supplementary Table 1);
(ii) metabolic preference (META_PREF), which controls
a cell’s preference for using glycolysis over oxidative
phosphorylation to produce energy (Supplementary Table 4);
and (iii) migratory threshold (MIGRA_THRESHOLD), which
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governs a cell’s tendency to migrate instead of proliferate
(Supplementary Table 5). The crowding tolerance parameter
quantifies the sensitivity of cells to contact inhibition, a
phenomenon where cells stop growing even with sufficient
nutrients when they reach a certain level of confluency (Swat
et al., 2009). Cancerous cells exhibit reduced, or lack of, contact
inhibition (Hanahan and Weinberg, 2011). The Warburg effect,
in which cancerous cells predominantly produce energy through
glycolysis rather than oxidative phosphorylation even in the
presence of sufficient oxygen, is captured by the metabolic
preference parameter (Heiden et al., 2009; Hanahan and
Weinberg, 2011) Finally, cancer cell motility is an important
factor in metastasis. We use the migratory threshold parameter
to control the cell agent decision between migratory and
proliferative states (Zhang et al., 2007).

Input options used to run the simulations are summarized in
Supplementary Table 3.

4.8.1. Case Study 1: Context
We perform a sensitivity analysis on these parameters by varying
the parameter value +/− 100% in increments of 10%. For
each parameter and modification, cells were seeded in isolation
and simulated for 14 days with 20 replicates and timepoints
taken every 12 h. Four representative populations were selected:
A (crowding tolerance at +50% of baseline), B (metabolic
preference at+50% of baseline), C (migratory threshold at−50%
of baseline), X (all parameters at baseline). All four representative
populations have the ability to exit quiescence without external
stimulation; in contrast, the generic background population
used for tissue context simulations is unable to exit quiescence
without stimulation. These populations, and combinations
thereof, were simulated in isolation (colony, representing
an in vitro context) and in an environment containing a
generic background cell population (tissue, representing an
in vivo context). Simulations were run for 15 days with
the representative populations introduced at t = 1 day. All
simulations were run with 20 replicates with timepoints taken
every 12 h.

4.8.2. Case Study 2: Competition
A modified population is created by varying one of the
three parameters (crowding tolerance, metabolic preference, and
migratory threshold) between−50% and+50% in increments of
10%. This modified population is initialized into the simulation
alongwith an unmodified, basal population in different ratios and
simulated for 14 days. All simulations contain 20 replicates with
timepoints taken every 12 h.

Note that we specifically focus on interactions between
two populations, as is common with most co-culture studies
(Goers et al., 2014). Including additional populations in our
simulation is straightforward (one can introduce an additional
cell agent or modify the parameters of an existing cell agent).
However, including additional populations in an experimental
setting is more difficult and may not necessarily form a
more accurate representation of system; for example, a co-
culture model of the blood-brain barrier system performed

better than the mono- and tri-culture models (Hatherell et al.,
2011; Goers et al., 2014). This counter-intuitive observation
further motivates the need for a computational model with
which to interrogate population interactions. In this case,
our framework can be used to guide experimental design by
identifying the minimal number of populations necessary to
model a system.

4.8.3. Case Study 3: Heterogeneity
Within the model, certain cell parameters (such as initial cell
volume and age) are derived from a distribution. However,
the internal cell parameters are constant among cell agents
within a given population. To add heterogeneity to these
parameters, each cell agent was modified to draw its parameter
values from truncated normal distributions with means
equal to the defined parameter values and variances dictated
by a new heterogeneity parameter (HETEROGENEITY,
Supplementary Table 1). Daughter cells of the agent use the
parent parameter values as the mean of the truncated normal
distributions from which it draws its parameter values, enabling
clonal evolution in which population means can tend toward
more “fit” values.

We vary the heterogeneity within representative cell
populations and simulate their evolution in both colony and
tissue contexts. For the colony context, the generic background
population also contains heterogeneity H0, termed background
heterogeneity, whose value is not necessarily equal to that of
the representative populations. Simulations were run for 15
days with the representative populations introduced at t = 1
day. All simulations contain 20 replicates with timepoints taken
every 12 h.
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