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Lung adenocarcinoma (LUAD) is one of the most fatal malignant tumors harmful to
human health. The complexity and behavior characteristics of long-non-coding RNA
(lncRNA)-associated competing endogenous RNA (ceRNA) network in LUAD patients
are still unclear. The purpose of this study was to elucidate the regulatory networks of
dysregulated RNAs, view, and identify potential prognosis signatures involved in LUAD.
The expression profiles of mRNAs, lncRNAs, and miRNAs were obtained from the TCGA
database. In total, 2078 DEmRNAs, 257 DElncRNAs, and 101 DEmiRNAs were sorted
out. A PPI network including 45 DEmRNAs was constructed. Ten hub genes in the PPI
network associated with cell cycle-related pathways were identified and they played key
roles in regulating cell proliferation. A total of three DEmiRNAs, seven DElncRNAs, and
six DEmRNAs were enrolled in the ceRNA network. Except for certain genes without
any published study reports, all the genes in the ceRNA network played an essential
role in controlling tumor cell proliferation and were associated with prognosis in LUAD.
Finally, based on step regression and Cox regression survival analysis, we identified
four candidate biomarkers, including miR490, miR1293, LINC01740, and IGF2BP1, and
established a risk model based on the four genes. Our study provided a global view and
systematic dissection of the lncRNA-associated ceRNA network, and the identified four
genes might be novel important prognostic factors involved in LUAD pathogenesis.
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INTRODUCTION

Despite medical advances, lung cancer remains the leading cause of cancer deaths. Lung cancer
is usually recognized late in its natural history and have a poor prognosis, with an overall 5-year
survival rate of 10–15% (Cagle et al., 2013). The recognition of histologic subtypes of non-small
cell lung carcinoma (NSCLC), namely, adenocarcinoma, squamous cell carcinoma, and large cell
lung carcinoma as the most frequent subtypes, has become important as a determinant of therapy
in this disease (Kerr et al., 2014). In addition, in recent years, the identification of molecular
abnormalities in a large proportion of patients with lung cancer has allowed the emergence of
personalized targeted therapies and has opened new horizons and created new expectations for
these patients (Ezeife and Leighl, 2018). The use of predictive biomarkers to identify tumors that
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could respond to targeted therapies has meant a change in the
paradigm of lung cancer diagnosis (Majeed and Amir, 2018).

Currently, the rapid advancement of high-throughput
technologies offers great opportunities for biomarker
identification (Yu et al., 2018). Non-coding RNAs as biomarker
and therapeutic targets play a significant role in human disease
(Zhou et al., 2018b,c). Among which, long-non-coding RNA
(lncRNAs) are a class of RNA molecules with more than
200 nucleotides in length and have no evident open reading
frames (Fatica and Bozzoni, 2014). These long molecules are
dysregulated among cancers (Yan et al., 2015) and play key roles
in gene regulation and carcinogenesis, including proliferation,
survival, migration, and genomic stability (Gutschner et al., 2013;
Castro-Oropeza et al., 2018). It is believed that the clinical value
of lncRNA is not confined to candidate biomarkers for diagnostic
and prognostic purposes (Shi et al., 2018).

In Salmena et al. (2011) put forward a competing endogenous
RNA (ceRNA) hypothesis. Subsequently, several studies also
mentioned that there is an interplay between lncRNAs and
miRNAs during the tumorigenic process, among which lncRNAs
serve as molecular sponges for miRNAs (Liz and Esteller,
2016). For example, KCNQ1OT1 promotes cell proliferation and
autophagy and inhibits cell apoptosis via regulating miR204-
5p/ATG3 axis, providing a promising target for NSCLC therapy
(Kang et al., 2019). Guo et al. reported that LINC00173 up-
regulated Etk through functioning as a ceRNA by “sponging”
miRNA-218 and led to the up-regulation of GSKIP and NDRG1
in small cell lung cancer (Zeng et al., 2019). LncRNA AGAP2-
AS1 up-regulates ANXA11 expression by sponging miR16-5p
and promotes proliferation and metastasis in hepatocellular
carcinoma (Liu et al., 2019). Thus, the discovery of lncRNA–
miRNA–mRNA networks may lead to a more comprehensive
understanding of the etiology and metastasis mechanism of
cancer. However, the complexity and behavior of lncRNA-
associated ceRNA network remain poorly characterized in lung
adenocarcinoma (LUAD).

In this study, by comprehensively integrating gene and
miRNA expression data of LUAD, the LUAD-related lncRNA–
miRNA–mRNA competitive network was established. We
analyzed and predicted the functions of ceRNA and PPI networks
and established a Cox regression model to predict the overall
survival of patients with lung cancer. Finally, four predictive
genes were identified, including LINC01740, mir1293, mir490,
and IGF2BP1, which could contribute to LUAD. This study
will contribute to understanding the molecular mechanism and
provide new therapeutic targets for LUAD.

MATERIALS AND METHODS

Data Preparation and Differentially
Expressed Gene Analysis
All primitive data of LUAD from The Cancer Genome
Atlas (TCGA) database1 were download through GDC
Data Transfer Tool, including RNA-seq and miRNA-seq of

1https://portal.gdc.cancer.gov/

Transcriptome profiling and Clinical data. EdgeR package (3.3.3
version) (Robinson et al., 2010) in R software was used to
analyze and identify differentially expressed RNAs (DERNAs,
including DEmRNAs and DElncRNAs) and differentially
expressed microRNA (DEmiRNAs) with the thresholds of |
log2FoldChange| > 2.0 and FDR (adjusted p value) < 0.01.
Then, biomart in R package was used to annotate DEmRNAs and
DElncRNAs. The heatmap and volcano plot were constructed by
the ggplot2 package in R software (Zhou et al., 2017).

Functional Enrichment Analysis
clusterProfiler (Yu et al., 2012) package in R was used
to make the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway and Gene Ontology (GO) enrichment analysis,
including biological process (BP), the cellular component (CC),
and molecular function (MF). Pathview (Luo and Brouwer, 2013)
and enrichplot packages (Ito and Murphy, 2013) were used to
visualize the enrichment results. A significance level of adjusted
p< 0.05 was set as the cutoff criteria.

Protein–Protein Interaction Analysis
The DEmRNAs were enrolled in a protein–protein interaction
(PPI) network through the STRING (version 11.0) database2

with a confidence score >0.9. Furthermore, genes with degree
≥25 were selected as hub genes, and we focused the interaction
types among proteins only on physical interaction and co-
expression (Sun et al., 2019). Subsequently, GO and KEGG
analyses of the PPI network modules were carried out using
clusterProfiler package in R.

Construction of the ceRNA Network
According to the hypothesis of ceRNA, a lncRNA–miRNA–
mRNA network was constructed (Zhou et al., 2018a). Relevant
miRNA-target data were obtained from the miRTarBase, and the
support types of targeting were only focused on experiments,
including luciferase reporter assay, Western blot, Northern blot,
or qRT-PCR. Only the miRNA targets that were differentially
expressed between tumor and normal tissue were considered for
the next analysis step. Furthermore, the candidate DElnRNA–
DEmiRNA interactions were selected based on miRcode database
and the following model:

Ytarget =

β0 + β1 ∗miRNA+ β2 ∗ lncRNA+ β3 ∗miRNA ∗ lncRNA+ ε
(1)

wheremiRNA, lncRNA, and Ytarget are the gene expression of
miRNA, lncRNA, and miRNA targets, respectively. β1and β2
represent the effect of miRNA and lncRNA, respectively, on
target by themselves alone (main effects), while β3 represents the
effect of miRNA–lncRNA interaction. If a lncRNA and miRNA
interaction has effects on target expression outcomes, we expect
β3to be non-zero.Here, all the miRNAs andlncRNAs and miRNA
targets should be differentially expressed between tumor and
normal tissue.
2https://string-db.org/
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FIGURE 1 | Distribution of differentially expressed genes in lung adenocarcinoma (LUAD) (| log2FoldChange| > 2.0 and adjusted p value < 0.01) between 533
tumor tissues and 59 normal tissues. The volcano plots described 2378 DEmRNAs (A), 357 DElncRNAs (B), and 101 DEmiRNAs (C). Red stands for up-regulations,
blue stands for down-regulations, and gray stands for normal expression in volcanoes. Each point represents a gene.

Biomarkers Screening and Validation
The status and survival time of LUAD patients were extracted
from the TCGA clinical dataset. Subsequently, the DEmRNAs,
DElncRNAs, and DEmiRNAs identified in ceRNAs were selected
for screening biomarkers. We used univariate Cox regression to
screen prognostic factors (p< 0.05), and those prognostic factors
whose expression levels were significantly relevant to patients’
overall survival (p < 0.05) were selected as primitive biomarkers
(Zhou et al., 2018b; Bao et al., 2019).

Cox Risk Regression Establishment and
Validation
The lncRNAs, mRNAs, and miRNAs raw data were transformed
and normalized in a log2[cpm(x) + 1] manner. Univariate
cox regression was used to select prognosis-associated genes
(p < 0.05) (Zhou et al., 2018a). Subsequently, we performed
Cox regression analysis combined with stepwise regression to
establish a Cox risk model (Zhou et al., 2018a). Finally, a
validation set and Kaplan–Meier survival curves along with a
logrank p test were applied to validate its accuracy (Zhou et al.,
2017; Sun et al., 2019).

RESULTS

Identification of Differentially Expressed
Genes
RNA expression profiles and corresponding clinical data of
533 cohort LUAD patients and 59 normal controls were
downloaded from the TCGA database. Meanwhile, miRNA-
seq data corresponding to 561 patients’ clinical information,
including 515 cohort LUAD patients and 46 normal controls,
were obtained from TCGA. In total, 60,483 transcripts and
1046 miRNAs were obtained. With the cutoff criteria unified,
CPM(gene) > 1, rowSum(CPM) ≥ 2, 32,495 transcripts and 613
miRNAs were selected for the differentially expressed analysis.
After filtering, 5624 DERNAs and 673 DEmiRNAs were identified

with the thresholds of | log2FoldChange| > 2.0 and FDR
(adjusted p value)< 0.01.

In total, 2078 DEmRNAs (1612 up-regulated and 466 down-
regulated, Figure 1A), 257 DElncRNAs (209 up-regulated and
48 down-regulated, Figure 1B), and 101 DEmiRNAs (56 up-
regulated and 45 down-regulated, Figure 1C) were sorted out.

Functional Analysis of DERNAs
Gene ontology and KEGG enrichment analyses were
used to explore the potential function of DERNAs. Ten
biological pathways were highly enriched within cutoff p
value < 0.05. Among them, 12% DERNAs were enriched
in GPCR ligand binding process, and 9.5% DERNAs
were enriched in Class A/1 (Rhodopsin-like receptors)
pathway, and 6.7% DERNAs were enriched in peptide
ligand binding receptor pathways (Figure 2A). Detailed
information of these enriched pathways and associated
genes is summarized in Table 1. The GO functional
enrichment analysis results of DERNAs including MF, CC,
and BP were described in Figures 2B–D. The results show
that the genes mainly focused on receptor ligand activity
function, extracellular matrix, and morphogenesis of an
epithelium process.

Furthermore, KEGG pathway enrichment analysis results
demonstrated that the most significantly enriched pathways
were neuroactive ligand–receptor interaction, alcoholism,
and systemic lupus erythematosus pathways (Figure 2E).
The pathway–pathway interaction network (PPIN) was
constructed based on the DERNAs enriched in same pathway
(Figure 2F). Four pathways were identified in the PPIN,
including alcoholism, maturity onset diabetes of the young,
neuroactive ligand–receptor interaction, and systemic lupus
erythematosus pathway. We noticed that, all the DERNAs
enriched in systemic lupus erythematosus and alcoholism
pathways were up-regulated, except for gene 2354, whose gene
symbol is “FOSB.” Gene annotation of FOSB shows that it was
a proto-oncogene, and it has been implicated as regulators of
cell proliferation, differentiation, and transformation. Similarly,
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FIGURE 2 | GO and KEGG pathway enrichment analysis of DERNAs. (A) The statistical results of genes enriched in biological pathways. The y axis on the left
represents the percentage of genes in each biological pathway, the y axis on the right is –log10(p value) of each enrichment pathway, and the x axis represents the
pathways categories. GO analysis contains the molecular function (B), cellular component (C), biological process (D), the y axis represents the number of target
genes, and the x axis represents the GO categories. (E) The most important KEGG pathways in DERNAs. The y axis represents the pathways, and the x axis
represents enriched gene numbers. The circle size represents the counts of genes in each pathway and the color means adjusted p value. (F) The netplot of KEGG
pathways means enrichment of genes in different pathways. The number adjacent to nodes stands for gene ID. The color bar represents the fold change of genes in
different pathways. *p < 0.05, **p < 0.005, and ***p < 0.0005.

all the genes enriched in maturity onset diabetes of young
pathway were all up-regulated in LUAD. Furthermore, the
results showed that gene 4852 and 2092 were both enriched
in alcoholism pathway and neuroactive ligand–receptor
interaction pathway, and played vital roles in connecting
the two pathways.

PPI Network Analysis
A total of 55 proteins and 453 edges, including 45 DEmRNAs,
were selected in the PPI network. A total of 10 hub genes,
including CDK1, TOP2A, PBK, CDCA8, CDC20, KIF20A,
DLGAP5, NDC80, NCAPG, and CCNA2, were selected from
the PPI network with degree ≥25 and combined score
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TABLE 1 | Enriched biological pathways and associated genes.

Biological pathway No. of genes in
DERNAs

No. of genes in
background

dataset

Percentage of
genes

Fold enrichment p value p-adjusted
(Bonferroni)

GPCR ligand binding 86 336 12.0 2.2 5.05E-14 8.42E-11

Class A/1 (rhodopsin-like
receptors)

68 274 9.5 2.1 1.26E-10 2.1E-07

Peptide ligand-binding
receptors

48 167 6.7 2.5 4.13E-10 6.89E-07

RNA polymerase I promoter
opening

17 31 2.3 4.8 4.09E-09 6.83E-06

Deposition of new
CENPA-containing
nucleosomes at the centromere

15 35 2.1 3.7 2.11E-06 0.003

Nucleosome assembly 15 35 2.1 3.7 2.11E-06 0.003

FOXA transcription factor
networks

24 81 3.3 2.6 5.93E-06 0.009

RNA polymerase I chain
elongation

17 48 2.3 3.1 1.00E-05 0.016

Meiotic recombination 15 42 2.1 3.1 2.99E-05 0.049

Formation of fibrin clot (clotting
cascade)

13 33 1.8 3.4 3.05E-05 0.051

Ligand-gated ion channel
transport

9 17 1.2 4.6 3.11E-05 0.051

Packaging of telomere ends 10 21 1.4 4.1 3.65E-05 0.060

FOXA2 and FOXA3
transcription factor networks

15 43 2.1 3.0 4.12E-05 0.068

RNA polymerase I promoter
clearance

17 54 2.3 2.7 5.79E-05 0.096

RNA polymerase I transcription 17 56 2.3 2.6 9.67E-05 0.161

>0.9 (Figure 3A). Furthermore, the association among these
interacted proteins should be physical interaction or co-
expressed with each other (Figure 3B). We noticed that
eight RNA expression levels were significantly associated with
overall survival outcomes except for CDCA8 and CDC20
(Figures 3C,D). Pathway enrichment analysis results of the 10
hub genes are summarized in Table 2.

Construction of the ceRNA Network in
LUAD
A total of seven DElncRNAs, six DEmRNAs, and three
DEmiRNAs were enrolled in the ceRNA network (Figure 4).
miRTarBase was used to predict the miRNA–mRNA pairs
(Table 3). We only focused on those miRNA–mRNA pairs whose
interaction evidence was validated by experiments, including
luciferase reporter assay, Western blot, Northern blot, or qRT-
PCR.

Then, we employed a simple linear regression model
combined with miRcode database to predict the potential miRNA
target by DElncRNAs [see Methods 2.4 model (1)]. In the
model, we specified that the input of lncRNAs should be
(i) differentially expressed between tumor and normal tissues;
(ii) lncRNA expression is associated with overall survival
outcomes (logrank p value < 0.05). Finally, 7 of 53 DElncRNAs,
6 of 340 DEmRNAs, and 3 of 9 DEmiRNAs formed the
ceRNA network. Detailed information about their expression

and association with overall survival outcomes is listed in
Table 4.

Screen Biomarkers and Construction
Risk Model
Three DEmiRNAs, seven DElncRNAs, and six DEmRNAs in
the ceRNA network were selected as candidate biomarkers
for the following step analysis. Subsequently, combined
univariate Cox regression with a logrank test analysis
with p value < 0.05 and 12 variables (miR1293, miR196b,
miR490, C20orf197, SCAT1, C11orf44, MALAT1, VPS9D-
AS1, LINC02473, LINC01740, HOXB7, and IGF2BP1)
were identified. Furthermore, a stepwise regression was
performed according to the 12 variables. Consequently,
four variables including miR490, miR1293, LINC01740,
and IGF2BP1 were harvested in the Cox regression. Risk
score =−0.455∗miR490 + 0.037∗miR1293 + 0.034∗LINC01740 +
0.005IGF2BP1 (Figure 5A).

Afterward, the LUAD patients were divided into two groups
based on the median value of Cox regression model. The
distribution of the risk score along with the corresponding
survival data and the four protective gene expression
demonstrated that the high-risk LUAD patients tended to
experience shorter survival time, and low-risk LUAD patients
were opposite (Figure 5B). Results show that miR490 and
LINC01740 in the high-risk group expression level were lower
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FIGURE 3 | Protein–protein interaction (PPI) network analysis. (A) Ten hub genes in PPI based on the DEmRNAs with a combined score of >0.9 and degree ≥25.
(B) Ten hub genes interaction network. Circles indicate the genes in the PPI network, and the connection indicates the potential interaction between different
mRNAs. The red line means physical interaction, and the black line means co-expression with each other. (C) Gene expression of 10 hub genes between LUAD
tumor and normal tissues. (D) Overall survival curves of the 10 hub genes in LUAD. *p < 0.05.

than that in the low-risk group; meanwhile, miR1293 and
IGF2BP1 were opposite (Figures 5C,D).

DISCUSSION

In this study, a total of 2078 DEmRNAs, 257 DElncRNAs, and
101 DEmiRNAs were identified. GO analysis revealed that the
function of DERNAs is mainly associated with receptor ligand
activity, ligand-gated ion channel transport, morphogenesis of an
epithelium process, and cell–cell adhesion, which play vital roles
in tumorigenesis (Valley et al., 2015; Inoue et al., 2016). Biological
pathway annotation of DERNAs showed that the GPCR ligand
binding process accumulated the largest number of dysregulated
genes (86 DERNAs), which indicated that the pathway may play
an important role in the development and progression of tumors.

In addition, KEGG pathways analysis showed that DERNAs
are mainly enriched in neuroactive ligand–receptor interaction,
alcoholism, systemic lupus erythematosus, metabolism of
xenobiotics by cytochrome P450, and steroid hormone
biosynthesis pathways, which are related to the progression
of many cancers, including lung cancer (Ashton et al., 2010; Bulk
et al., 2017). Among these enriched pathways, the neuroactive
ligand–receptor interaction pathway accumulated the most
dysregulated genes (53 DERNAs), indicating that they were
associated with lung cancer progression. Multiple DERNAs
were enriched in both alcoholism pathway and systemic lupus

erythematosus pathway. To our surprise, all DERNAs enriched
in these two pathways were up-regulated, except for gene 2354,
whose gene symbol is “FOSB.” Gene annotation of FOSB shows
that it is a proto-oncogene, and it has been considered as a
regulator of cell proliferation, differentiation, and transformation
(Liu et al., 2018; Na and Kim, 2018; Park et al., 2019).

In this study, a total of 55 proteins (including 45 DEmRNAs)
were enrolled in the PPI network, and pathway enrichment
analysis was performed based on the 10 hub genes. Most of
the 10 hub genes were associated to cell cycle-related pathways,
including M Phase (Zhang et al., 2018; Chung et al., 2019), Cell
Cycle Checkpoints (Lee et al., 2016; Wenzel and Singh, 2018),
TP53 Regulates Transcription of Cell Cycle Genes (Ni et al.,
2018), and Viral carcinogenesis pathways (Villa, 2013; Shibata
et al., 2016), which play an important role in occurrence and
development of tumors (Florez et al., 2017; Niculescu, 2019).
Cell cycle disorder and cell overgrowth are common biological
characteristic of tumors, leading to increased cell proliferation
and decreased apoptosis (Hsiao et al., 2014; Kebsa et al., 2018).
It should be noted that the cell cycle is a tightly regulated process,
which is frequently aberrant in lung cancer (Shcherba et al.,
2014). By inhibiting the unrestricted cell division and growth of
lung cancer cells, cell cycle-related genes have emerged as new
targets for the treatment of lung cancer (Girek et al., 2019).

Among the 10 hub genes, 9 were significantly associated
with muscle invasive bladder cancer, including CCNA2, CDC20,
CDCA8, DLGAP5, KIF20A, NCAPG, NDC80, PBK, and TOP2A
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TABLE 2 | Reactome and KEGG pathway enrichment results.

Term ID Term description Observed counts Background count FDR

HSA-69278 Cell cycle, mitotic 8 483 8.61E-10

HSA-68886 M phase 6 343 2.74E-07

HSA-68877 Mitotic prometaphase 5 190 7.61E-07

HSA-69620 Cell cycle checkpoints 5 265 3.09E-06

HSA-2500257 Resolution of sister chromatid cohesion 4 118 6.59E-06

HSA-1538133 G0 and early G1 3 27 7.46E-06

HSA-170145 Phosphorylation of proteins involved in the G2/M
transition by Cyclin A: Cdc2 complexes

2 3 3.96E-05

HSA-174184 Cdc20: Phospho-APC/C mediated degradation of
cyclin A

3 68 8.08E-05

HSA-176408 Regulation of APC/C activators between G1/S and
early anaphase

3 76 8.08E-05

HSA-176417 Phosphorylation of Emi1 2 6 8.08E-05

HSA-141444 Amplification of signal from unattached kinetochores via
a MAD2 inhibitory signal

3 90 9.66E-05

HSA-2514853 Condensation of prometaphase chromosomes 2 11 0.00013

HSA-1362300 Transcription of E2F targets under negative control by
p107 (RBL1) and p130 (RBL2) in complex with HDAC1

2 16 0.00023

HSA-5663220 RHO GTPases activate formins 3 131 0.00023

HSA-174048 APC/C: Cdc20 mediated degradation of cyclin B 2 22 0.00036

HSA-2467813 Separation of sister chromatids 3 178 0.00046

HSA-6804757 Regulation of TP53 degradation 2 35 0.00072

HSA-4615885 SUMOylation of DNA replication proteins 2 40 0.00087

HSA-6791312 TP53 regulates transcription of cell cycle genes 2 49 0.0012

HSA-5688426 Deubiquitination 3 279 0.0013

HSA-597592 Post-translational protein modification 5 1366 0.0013

HSA-69206 G1/S transition 2 128 0.0068

hsa04110 (KEGG) Cell cycle 3 123 0.00045

hsa05203 (KEGG) Viral carcinogenesis 3 183 0.00072

hsa04914 (KEGG) Progesterone-mediated oocyte maturation 2 94 0.0052

hsa04114 (KEGG) Oocyte meiosis 2 116 0.0059

hsa04218 (KEGG) Cellular senescence 2 156 0.0084

(Lee et al., 2012). It indicated that there may exist relative
risk between muscle invasive bladder cancer and LUAD.
Furthermore, we found that all these 10 hub genes were up-
regulated in LUAD tumor tissue. The PPI network showed that
almost all the 10 hub genes could interact with each other, and
DLGAP5, CDK1, and KIF20A play a key role in connecting the
network. Among them, DLGAP5 could physically interact with
PBK, TOP2A, and CDK1, and all mitosis-associated proteins
correlated with poor prognosis for non-small cell lung cancer
patients (Shih et al., 2012; Schneider et al., 2017). In addition,
a previous study reported that CCNA2, CDC20, PBK, and
TOP2A that interacted with CDK1 play vital roles in survival
outcomes in human lung cancer. Loss of cytoplasmic CDK1
could predict poor survival in human lung cancer and confers
chemotherapeutic resistance (Zhang et al., 2011). Hence, we
concluded that these 10 hub genes play key roles in regulating
cell proliferation in LUAD.

A total of three DEmiRNAs, seven DElncRNAs, and six
DEmRNAs were enrolled in the ceRNA network. In ceRNA
network, we found that MALAT1 as a highly conserved lncRNA
whose overexpression has been shown in various cancers, such

as breast, prostate, colon, and liver, especially in early stage
metastasizing patients (Lin et al., 2007; Guffanti et al., 2009; Xu
et al., 2011; Ren et al., 2013). In addition, Ping et al. have reported
that MALAT1 can predict metastasis in early stage NSCLC (Ji
et al., 2003). Consistent with Ping et al., Lars et al. verified
that MALAT1 stimulates migration, invasion, and tumor growth
(Schmidt et al., 2011), although the underlying mechanism
is poorly understood. In our ceRNA network, the expression
of miR490 is down-regulated while MALAT1 and HMGA2
expression is up-regulated in LUAD. One possible explanation is
that aberrant expression of MALAT1 acts as a ceRNA for miR-
490, and high-expression MALAT1 inhibits miR490 and then
increased expression of HMGA2 (the target of miR490), finally
accelerating to tumor progression.

Many homeobox genes, including HOXC8, HOXB7, and
HOXA9, are also “members” of the ceRNA network. A previous
study reported that mis-expression of homeobox genes can
lead to abnormal differentiation and proliferation, leading to a
change in cell identity or homeotic transformation, therefore
playing an important role in carcinogenesis (Samuel and
Naora, 2005). In cancer, homeobox genes function as “tumor
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FIGURE 4 | CeRNA network of LUAD. The triangles indicate miRNAs, circles mean mRNAs, and diamonds represent lncRNAs. Red means up-regulated, and green
means down-regulated.

TABLE 3 | The miRTarBase database revealed interactions between miRNA
and mRNAs.

miRNA mRNA

miR1293 TIMP1

miR196b HOXB8, HOXC8, CD8A, HOXA9, MEIS1, FAS, ETS2, RDX, HOXB7,
GATA6, TGFBR2, PIK3CG, AKT1, MTOR, FOS, IGF2BP1,

miR490 ERGIC3, FOS, SMARCD1, CCND1, PIK3CA, PAPPA, ABCC2,
TGFBR1, HMGA2, TGFA, RHOA, PCBP1, TNKS2, BMPR2,
HNRNPA1

modulators” as their deregulation normally involve either up-
regulation of genes expressed in undifferentiated cells or down-
regulation of genes expressed in differentiated tissue, thus
acting either as oncogenes or tumor suppressor genes (Abate-
Shen, 2002). Almost all the genes in the ceRNA network
have reported that they enrolled or associated with tumor
progression, except for LINC02473, LINC0170, VPS9D1-AS1,
C11orf44, and SCAT1. Hence, taking all these genes in the
ceRNA network into consideration, we combined step regression
and Cox regression analysis and identified four genes as
prognostic biomarkers in LUAD, including miR490, miR1293,
LINC01740, and IGF2BP1.

By searching these genes in PubMed, we found that miR490
and IGF2BP1 have been studied for their mechanism in or
association with tumor progression. Gain- and loss-of-function
studies of miR490 showed that it regulates cell proliferation
and is required for induction of in vitro migration and
invasion (Zhao and Zheng, 2016). miR490 overexpression
reduced proliferation, promoted G1 arrest and apoptosis,

and suppressed migration and invasion (Sun et al., 2016).
In our study, miR490 expression was significantly lower in
lung cancer than in normal tissues, and survival analysis
result showed that the lower expression miR490 predicted
poor survival in lung cancer. Opposite to miR490, IGF2BP1
expression is up-regulated, and the high expression level of
IGF2BP1 showed poor overall survival outcomes in lung
cancer. Studies reported that IGF2BP1 has been traditionally
regarded as an oncogene and potential therapeutic target
for cancers (Huang et al., 2018). It plays essential roles in
embryogenesis and carcinogenesis, regulating the expression
of some essential mRNA targets required for the control of
tumor cell proliferation, growth, and invasion, and associating
with a poor overall survival and metastasis in various types of
human cancers (Gong et al., 2016). However, there is no public
report on miR1293 and LINC01740 according to a PubMed
search. Univariate Cox regression analysis showed that high
expression of miR1293 tended to show poor survival outcomes
(logrank_pvalue < 0.0001), and high expression of LINC01740
tended to show good survival outcomes (logrank_value = 0.048).
Our results suggest that the four predictive genes may play crucial
roles in the pathomechanism of LUAD and act as potential
prognostic biomarkers.

Although a four-predictive gene signature was constructed
and appears to be potential prognostic biomarkers in clinical
application, there are some limitations. First, the prognostic
value of LINC01740 is not very satisfactory. Second, the binding
affinities between lncRNA and miRNA were predicted by simple
linear regression model and miRcode and should be further
experimentally investigated. Third, the function and mechanism
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TABLE 4 | Information about differentially expressed RNAs and miRNAs in ceRNA network.

DERNAs/DEmiRNAs Log2FC p value FDR logrank_pvalue

miR1293 4.00 2.2e-13 1.20e-12 9.48e-05

miR196b 3.94 1.91e-31 2.80e-30 3.45e-02

miR490 −2.31 7.58e-07 2.63e-06 3.53e-02

C20orf197 3.06 9.22e-19 7.80e-18 0.003

SCAT1 2.87 3.25e-23 3.89e-22 0.006

C11orf44 2.32 9.35e-07 2.45e-06 0.019

MALAT1 2.09 5.96e-10 2.22e-09 0.023

VPS9D1-AS1 2.86 3.57e-38 9.82e-37 0.029

LINC02473 4.18 5.18e-25 6.98e-24 0.045

LINC01740 3.32 6.55e-07 1.74e-06 0.049

HMGA2 5.77 1.22e-22 1.39e-21 0.152

TIMP1 1.53 5.33e-25 7.16e-24 0.961

HOXB7 2.09 2.99e-17 2.24e-16 0.006

IGF2BP1 6.41 4.26e-21 4.34e-20 0.042

HOXA9 1.77 1.51e-07 4.33e-07 0.371

HOXC8 2.67 3.23e-13 1.66e-12 0.315

FIGURE 5 | Predictive gene signature analysis. (A) Forest map based on the risk score model. Left vertical dotted line indicates protective genes and right risk genes.
(B) The scatter diagram based on survival time and log2(risk score). The red means alive and green means death. The higher log2(risk score) is, the shorter the time
survival. (C) Differentially expressed predictive genes that were enrolled in the risk model heatmap. (D) Overall survival curves of four predictive genes in LUAD.

of the four predictive genes in LUAD need to be further
studied by experiments.

In conclusion, we established the disordered ceRNA network,
which is beneficial to understanding the relationship among
lncRNA–miRNA–mRNA and provides efficient strategies for

subsequent functional studies of them. In addition, we identified
that miR1293, miR490, LINC01740, and IGF2BP1 might be novel
important prognostic factors involved in LUAD pathogenesis,
and the risk score model is helpful in studying the overall survival
outcome in LUAD.
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