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Deep learning is an effective method to capture drug-target binding affinity, but low

accuracy is still an obstacle to be overcome. Thus, we propose a novel predictor for

drug-target binding affinity based on dipeptide frequency of word frequency encoding

and a hybrid graph convolutional network. Word frequency characteristics of natural

language are used to improve the frequency characteristics of peptides to express target

proteins. For each drug molecules, the five different features of drug atoms and the

atomic bond relationships are expressed as graphs. The obtained protein features and

graph structure are used as the input of convolution neural network and the input of graph

convolution neural network, respectively. A prediction model is established to predict the

drug affinity by calculating the hidden relationship. In the KIBA data set test experiment,

the consistency coefficient of the model is 0.901, which is 0.01 higher than the existing

model, and the MSE (mean square error) of the model is 0.126, which is 5% lower

than the existing model. In Davis data set test experiment, the consistency coefficient

of the model is 0.895, which is 0.006 higher than the existing model, and the MSE of the

model is 0.220, which is 4% lower than the existing model. These results show that our

proposed method can not only predict the affinity better than those existing models, but

also outperform unitary deep learning approaches.

Keywords: drug-target binding affinity, dipeptide frequency of word frequency, graph convolutional network,

variable importance measures, deep learning

INTRODUCTION

The discovery processes of the new drug are not only time consuming, but also cost expensively
(Roses, 2008). It usually spends about $ 2.6 billion and 10–17 years on research and experimental
processes (Yang et al., 2017). One of core method is to find novel targets for existing drugs (Santos
et al., 2016) and overcome the current shortage capabilities of drug discovering (Chu et al., 2019).
It not only reduces experimental cost, but also greatly shortens drug discovery time (Martin et al.,
2018), by eliminating multiple experimental processes such as drug stability (Oprea and Mestres,
2012). How to discover novel target proteins between drugs and targets has become an important
task for drug development. And successful identification of drug-target interactions (DTI) is a
prerequisite in this task (Ezzat et al., 2019).

High-throughput screening (HTS) experiments are often used to identify the biological activity
between drugs and targets, but this method has problems of expensive cost and consumable time
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(Cohen, 2002). DTI prediction in silicon is one of the effective
methods (Liu et al., 2012), and machine learning is a prevalent
way (Yan et al., 2019). Support vector machine (SVM) (Keum
and Nam, 2017) and random forest (RF) (Wang et al., 2018;
Strobl et al., 2019) are often used as predictors in existing research
(Olayan et al., 2018). Although these methods are effective,
shallow learning models may simplify the relationship between
drugs and targeted proteins (Nanni et al., 2020), which are
limited by the size of the dataset (Keogh and Mueen, 2009).
Deep learningmethods have achieved remarkable results inmany
research areas, such as image processing (Zhou et al., 2020),
natural language recognition (Rabovsky and McClelland, 2020),
and bioinformatics (Khurana et al., 2018). Its main advantage
is that hidden relationships are obtained by calculating of non-
linear mapping relationships in original data.

DTI prediction is often considered as a binary classification
problem in existing studies (Ban et al., 2019; Yan et al., 2019;
Le et al., 2020), that whether or not is a correlation. However,
the calculation methods ignore the degree information about
DTI, which is the value of binding affinity. Binding affinity
provides information about the strength of interactions between
drug target (DT) pairs, usually expressed by measures such
as dissociation constant (Kd), inhibition constant (Ki), or the
half maximal inhibitory concentration (IC50) (Cer et al., 2009).
Drug-target binding affinity (DTA) calculated by deep learning
algorithms has important research significance.

DeepDTA is a predictive tool for Drug-target binding affinity
(Ozturk et al., 2018), which is a Convolutional Neural Network
(CNN) that using 1D coding and drug molecular to learn
hidden relationships between features and predicting affinity. In
order to obtain better model performance, WipeDTA (Öztürk
et al., 2019) extracted four text-based information sources to
represent proteins and drug structures on the basis of DeepDTA.
GraphDTA is an effective prediction model (Nguyen and
Venkatesh, 2019), its framework is graph convolutional network
that the inputs are graph structure of drugs. OneHot encoding
is used to represent protein sequences as input for convolutional
neural network. However, these problems what lower expression
ability of protein sequence and low prediction ability are caused
by the loss of correlation of the OneHot encoding for each residue
individually encoded.

In order to overcome the above problems, we propose a
novel feature extraction method which is polypeptide frequency
of word frequency based on natural language word frequency
characteristics to enhance the ability of protein sequence
expression. The network model is constructed by merging the
graph convolutional network that calculates the graph structure
of drugs and the convolutional neural network that calculates
the hidden relationship of protein features. The results of output
are combined as the input of two hidden layers for regression
training and prediction of DTA.

DATA SETS AND FEATURE EXTRACTION

Data Sets
We use two datasets: KIBA dataset (Tang et al., 2014) and
Davis dataset (Davis et al., 2011) (The data sets can obtain
from Supplementary Material), as shown in Table 1. KIBA

TABLE 1 | Units for magnetic properties number of data sets.

Data set Number of proteins Number of drugs Number of correlations

Davis(pKd) 442 68 30,056

KIBA 229 2111 118,254

(Tang et al., 2014) was used as a benchmark dataset to evaluate
the algorithm model. The Davis dataset (Davis et al., 2011) is
lysed selectively using the kinase protein family and associated
inhibitors for the dissofarence constant (Kd) value, including the
affinity of 442 proteins and 68 drugs. We calculate (pKd) value (as
shown in formula 1) regarding the Davis data set use literature
processing method to show.

pKd = − lg(
Kd

1e9
) (1)

It can be seen from Table 1 that the number of true
interrelationships in the KIBA dataset is about three times that
of the statistical interrelationship. KIBA values are calculated
based on combinations of different information sources such as
IC50, Ki, and Kd. We used a filtered version of the KIBA data
set, where each protein and ligand has ten interactions at least
(He et al., 2017).

Drug Molecular Feature Extraction
The graphs of the drugs are constructed by using the GraphDTA
(Nguyen and Venkatesh, 2019) method. It reflects interactions of
internal atom for each SMILES compound. RDkit, open source
chemical informatics package (G, 2013), is used to calculate the
feature vectors of atom and adjacent atomic connection of drugs.
The nodes of the graph represent the features of the drug’s atoms,
and the bonding bonds between the atoms are represented by the
edges. The features vectors of the drug atomic are made up of
five characteristics: atomic class, atomic rank, the total number
of hydrogen atoms, implied value of atoms, and the existence or
absence of aromatic groups. The atomic rank is the sum of the
number of the bond between the current atom and neighboring
atoms and the number of hydrogen atoms. The edge of graph
represents the connection relation of adjacent atoms. The overall
process is shown in Figure 1.

Protein Sequence Feature Extraction
Protein Sequence Representation
The first order-structure vectorization is a prerequisite for data
analysis of protein sequences, formula 2 is used to discretize the
primary structure of the protein.

Sn = R1R2R3....Ri...RL, (n ≤ K) (2)

where Sn is the nth protein data, Ri is the ith amino acid residue
in the protein sequence, K is the number of protein sequences in
the data set.

Polypeptide Frequency of Word Frequency
Term frequency-inverse document frequency (TF-IDF)
algorithm plays an important role in Natural Language
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FIGURE 1 | Drug molecular feature extraction process. The input of the

extraction process of drugs is the drug molecular structure. Each atom is

represented as a node by 5 different characteristics, and the bond between

the atom and adjacent atoms is used as the edge set. The red atom has a

binding bond with two yellow atoms, and no binding bond with the green

atom. The set of nodes and the set of edges are made up of all the atoms

together to form the graph structure representing the current drug molecule.

Processing (NLP) (Kaur and Jatinderkumar, 2019). TF-IDF
is consisted of Term Frequency (TF) and Inverse Document
Frequency (IDF). The algorithm of polypeptide frequency F (as
shown in Formula 3) is similar to the calculation process of TF
in bioinformatics.

F = (v1, v2, v3, ..., v25n )
T (3)

Where, n is the number of 25 residues contained in the
polypeptide, thus 25n different polymers are formed by
dehydration condensation, vi represents the frequency of the ith
feature of the polypeptide. The formula for vi is as follows.

vi=nu/
25n
∑

u=1

nu = nu/(L− 1) (4)

where L represents the length of the protein sequence, nu
represents the occurrence times of uth dipeptide signature in the
protein sequence.

IDF is the reversion document frequency to increase
important weight of TF, as specified in formula 5.

IDF = lg(
N

wi
), (i = 1, 2, 3, 4, ..., 25n) (5)

where, in bioinformatics, N is the number of protein sequences
in the data set, and wi is the number of protein sequences
which contain the ith polypeptide. From the formula, it can
be known that the occurrence frequency of current words is
inversely proportional to IDF, so TF-IDF algorithm will assign
a lower feature for the high-frequency words. Which is not
suitable for bioinformatics calculation. Therefore, we propose
the polypeptide frequency of method word frequency, which can
avoid this problem by only calculates the word frequency. As
shown in formula 6:

WF = (wf1,wf2,wf3, ...,wfi, ...,wf25n )
T (6)

where, n is the number of residues that make up the polypeptide,
and wfi is the frequency of the ith polypeptide of word frequency,
as shown in formula 7.

wfi =
wi

N
×

pi

L− 1
(7)

where, wi is the number of protein sequences containing the ith
peptide, N is the total number of proteins contained in the data
set, pi is the number of times that the ith peptide appears in the
current protein, and L is the number of residues contained in the
current protein.

Network Model Construction
A novel model that combining graph convolutional neural
networks and convolutional neural networks are designed to
regressively predict DTA. The multi-layers graph convolutional
neural network is used to obtain the hidden relationships of drug
graphs. The hidden relationships of the polypeptide frequency of
word frequency are obtained through the convolutional neural
network calculation. The output results of the two networks are
combined as the input of fully connected layers. The complete
process is shown in Figure 2.

Graph Convolutional Neural Network of
Drug
We use the improved four types of graph convolutional neural
networks by GraphDTA to discover potential relationships for
the graph structure of drug features, which are GCN (Kipf and
Welling, 2017), GAT (Veličković et al., 2018), GIN (Xu et al.,
2019), GAT-GCN (Nguyen and Venkatesh, 2019). The linear
connected layer that the inputs are results of graph convolutional
neural networks maps to a 128-dimensional features vectors,
which is consistent with the size of feature vectors for protein.

The GCN model is originally proposed by Kipf and
Welling (2017) as a graph structure learner for semi-supervised
classification. In order to meet the requirements of regression in
our work, three graph convolutional units are made that include
a GCN layer and a ReLU activation layer. The number of output
channels is 78, 156, 312, respectively. And a fully connected
layer of 1,024 neurons is created, the results are mapped to a
128-dimensional features vector in the output layer.

Graph Isomorphism Network (GIN) is an improved
algorithm based on GCN. Injective aggregation updates the
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parameters and performs the feature vector mapping to obtain
better model performance. The network model of the five-layer
GIN layer is designed, and each GIN layer consists of two linear
calculations with an output size of 32. The input and output
layers are mapped into 128-dimensional features vectors.

Graph Attention Network (GAT) is different from the GCN
model, the difference is that it calculates the corresponding
hidden information for each node and introduces an attention
mechanismwhen computing its neighboring nodes. The network
model is designed using two GAT layers. In the first layer, the
number of output channel is 78, and the number of attention

nodes is 10. In the second layer, the number of output channel
is 128, and the number of attention nodes is 1. The results
are input to the output layer, which map to a 128-dimensional
features vector.

Based on the GAT and GCN models, GAT- CCN integrates
the advantages of the two models in series to obtain better model
performance. The output channel of the GAT layer is 78, the
number of attention nodes is 10. And the output channel of the
GCN layer is 780. And a fully connected layer of 1,500 neurons is
created, results are mapped to a 128-dimensional features vector
in the output layer.

FIGURE 2 | Network structure diagram.

TABLE 2 | Comparative experimental results of word frequency feature of many different peptides.

Graph neural network model Peptides KIBA Davis

MSE CI Pearson MSE CI Pearson

GAT 1 0.758 0.372 0.323 0.740 0.649 0.436

2 0.176 0.868 0.873 0.231 0.899 0.698

3 0.187 0.858 0.823 0.244 0.861 0.659

GIN 1 0.427 0.696 0.569 0.472 0.802 0.634

2 0.148 0.881 0.856 0.222 0.894 0.687

3 0.151 0.871 0.851 0.239 0.882 0.685

GCN 1 0.803 0.431 0.341 0.834 0.408 0.337

2 0.127 0.898 0.864 0.223 0.894 0.697

3 0.151 0.873 0.846 0.247 0.887 0.691

GAT_GCN 1 0.624 0.798 0.698 0.743 0.644 0.434

2 0.126 0.901 0.893 0.220 0.899 0.701

3 0.191 0.852 0.839 0.224 0.896 0.693

The bold values are maximum.
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Convolutional Neural Network of Protein
Convolutional neural network is used to obtain hidden
relationships in vector of protein features. A 1D convolutional
neural network is designed by analyzing the characteristic
structure of protein word frequency and polypeptide frequency.
The model contains a convolution kernel that the size is 32.
The result of the convolution calculation is input to the fully
connected layer for mapping to 256 neurons, keeping the size of
the drug, and protein consistent.

We concatenate the feature vectors of proteins from
convolutional neural networks and the feature vectors of drugs
from graph convolutional neural networks. And they are input
to two fully connected layers with 512 and 128 neutrons,
respectively. And set the batch size to 512 and the learning rate
to 0.00005.

RESULTS AND DISCUSSION

Performance Evaluation
In this work, the datasets are divided into two parts: training
set and test set. That is, 80% of data instances are used for
training, and 20% are for testing themodels. The performances of
our model are comprehensively compared by several experiment
using evaluation metrics such as Concordance Index (CI), Mean

TABLE 3 | Comparison results of dipeptide features.

Features KIBA Davis

MSE CI Pearson MSE CI Pearson

Dipeptide frequency

of word frequency

0.126 0.901 0.893 0.220 0.899 0.701

Dipeptide frequency 0.148 0.882 0.857 0.239 0.881 0.690

The bold values are maximum.

Squared Error (MSE), as well as Pearson correlation coefficient.
The evaluation indicators are consistent with WideDTA and
GraphDTA. the performance of the predicted models of output
continuous values is evaluated by CI, the formula is as follows.

CI =
1

Z

∑

δx>δy

h(bx− by) (8)

where bx is the prediction value for the larger affinity δx, by
is the prediction value for the smaller affinity δy. Z is the
normalization constant, h(m) is the step function, and as shown
in the following formula:

h(m) =







1, if m > 0
0.5 if m = 0
0 if m < 0

(9)

MSE is often used for the difference between the predicted value
and the actual value vector, and it’s an important index for
evaluating regression models, the formula is as follows.

MSE =
1

n

n
∑

k=1

(bk − δk)
2 (10)

where n is the number of data in the data set of KIBA or Davis,
and other parameters have the same meaning as above.

Pearson correlation coefficient evaluates the difference of the
affinity between the true value and the predicted value, the
formula is as follows.

pearson =
cov(p, y)

σ (p)σ (p)
(11)

where cov indicates the co-variance, p is predicted values, y is
original values, σ represents the standard deviation.

FIGURE 3 | Comparison results of dipeptide features.
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Contrast Experiments and Analysis of
Different Characteristics
In this study, we introduced polypeptide frequency of word
frequency that was a novel way of protein feature extraction. The
peptide frequency includes several methods. For every protein
sequence, we calculated the word frequency characteristics and
frequency of single peptide, dipeptides, as well as tripeptides. And
different graph convolutional network models were designed to
predict drug-target binding affinity. The results of comparative
experiment are shown in Table 2.

When the protein sequence is represented by the word
frequency dipeptide frequency and the GAT_GCN model, the
model is the best predictor for 3 evaluation metrics yielding a CI
of 0.901, a MSE of 0.126, and a Pearson of 0.893 in KIBA data set,
and yielding a CI of 0.895, a MSE of 0.220 and a Pearson of 0.701
in Davis data set. When word frequency dipeptide frequency was
used to represent protein sequences, compared with the second

best GCN model, the CI and Pearson of GAT_GCN model in
KIBA data set are increased by 0.03 and 0.029, respectively, and
the MSE value decreases by 0.01. Compared with GAT and GIN
models, the CI values of GAT_GCN model are 0.033 and 0.020
higher, the MSE values are reduced by 0.050 and 0.022, and
Pearson values are increased by 0.020 and 0.037, respectively. In
the Davis data set, the CI value of GAT_GCNmodel is same with
GAT model as the next-highest model, the MSE value is reduced
by 0.011, and Pearson is increased by 0.003. The CI value of
the GAT_GCN model is 0.005 higher than the GCN and 0.002
higher than GIN. The MSE values are decreased by 0.003 and
0.005, and the Pearson values are increased by 0.004 and 0.006,
respectively. So, the GAT_GCN model has the best performance
in these four models.

When the GAT_GCN model is used as a graph calculator,
compared with the word frequency single peptide frequency and
the word frequency tripeptide frequency, the CI values of word

FIGURE 4 | Frequency chart of word frequency peptides. The X-axis is the peptide amino acid combination, and the Y-axis is the word frequency polypeptide

frequency score. (a) Are the scores of the single peptide frequency of word frequency, (b) are the scores of the tripeptide frequency of word frequency, (c) are the

scores of the dipeptide frequency of word frequency, and (d) are the scores of the dipeptide frequency. The red lines represent the upper and lower quartiles. The first

and second columns are the Davis data set, and the first and second columns are the KIBA data set.
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frequency dipeptide frequency in the KIBA dataset are higher
by 0.103 and 0.049, the MSE values are reduced by 0.498 and
0.065, respectively. In the Davis data, CI values are 0.251 and
0.003 higher, the MSE values are decreased by 0.578 and 0.004,
and Pearson values are increased by 0.195 and 0.054, respectively.
The word frequency dipeptide frequency characteristics can also
obtain the optimal index when combined with GIT, GAT, GCN
models in the KIBA and Davis data sets, indicating that the
word frequency dipeptide frequency characteristics have the best
performance index compared to other characteristics.

Word Frequency Comparison Experiment
We also compared the differences in dipeptide frequencies with
or without word frequency characteristics. The results are shown
in Table 3 and Figure 3.

After adding the word frequency characteristics based on the
dipeptide frequency, the MSE decreased by 0.022 and the CI and
Pearson increased by 0.009 and 0.033 in the KIBA data set, and
MSE decreased by 0.019 and the CI and Pearson increased by
0.018 and 0.009 in Davis data set. This shows that the dipeptide
frequency of word frequency is more conducive to the prediction
of the classifier than the dipeptide frequency, and has better
represented ability for protein sequences.

Analysis of Protein Features
Through the analysis of comparative experiments, we found that
the model was obtained the best performance metrics when
dipeptide frequency of word frequency be used to represent
protein sequences. For every protein, we calculated the mean and
variance in the Davis and KIBA datasets, respectively. The results
are shown in Figure 4.

In the Davis dataset and the KIBA dataset, the distribution of
score are basically same. The single peptide frequency of word
frequency features scores are mainly concentrated between 0.20
and 0.61, and the variances are mainly concentrated between
0.007 and 0.220. Although there is a high features scores and large
variance, the features have too high differences in the vectors of
feature. And the number of features is only 25 dimensions, which
contributes less to the spatially specific division of the model.
Although the tripeptide frequency of word frequency features
have a huge number of 15,625 dimensions, the scores are mainly
distributed below 0.018, and the variances are mainly distributed
below 0.003. The features have small differences between data,
and there are a lot of features with value of 0. The scores of
dipeptide frequency of word frequency characteristic mainly have
a distribution range between 0 and 0.14, and the variances have a
main distribution range between 0 and 0.0149, which has a good
score and data difference.

Compared with the dipeptide frequency of word frequency,
the score of dipeptide frequency are mainly distributed below
0.17, and the variances are mainly distributed between 0 and
0.021. Although it has a good score, the difference is high
in vectors of feature, as same as the word frequency single
peptide frequency. In order to discover the difference between
the frequency characteristics of dipeptide and word frequency
dipeptide, we draw a histogram of the frequency distribution

FIGURE 5 | Histogram of frequency distribution. Yellow represents the

histogram of the frequency distribution of the word frequency dipeptide, red

represents the histogram of the frequency distribution of the word frequency

dipeptide, and orange represents the overlap between the two.

of the two and perform overlapping processing, the results are
shown in Figure 5.

After adding the word frequency characteristics, the number
of dipeptide frequency of word frequency features is less than that
of the dipeptide frequency in the score intervals [0.025, 0.175]
and [0.250, 0.300]. And the number of dipeptide frequency of
word frequency features is more than that of dipeptide frequency
features in the score intervals [0, 0.025] and [0.175, 0.250].
Dipeptide frequency features distribution is at [0, 0.35], and the
dipeptide frequency of word frequency features distribution is at
[0, 0.45], and the interval range is greater and more continuous.
It shows that the frequency characteristics of words can play
a role in reducing non-significant features and improving
score difference.

Analysis of Variable Importance Measure
The protein dipeptide frequency of word frequency is composed
of 625-dimensional features. The Variable Importance Measures
(VIM) is used to analyze the contribution of each feature.
In bioinformatics, Random Forest (RF) is a commonly used
classification and regression model (Belgiu et al., 2016). And
its unique advantage is to calculate VIM (Rawi et al., 2018),
compared with other machine learning algorithms such as
support vector machine (SVM). We used the RF model
containing 10,000 decision trees to obtain the VIM score of
features in the dipeptide frequency of word frequency, as
shown in Figure 6. Features of non-zero VIM score have 199
dimensions, indicating that there’s much noise in the vectors of
features. The 27-dimensional features what a contribution>0.5%
are listed in Figure 7. The top five dipeptide frequency of word
frequency features are PE (20.1%), WT (6.6%), AA (4.4%), EB
(3.9%), and VV (3.2%). This shows that PE (the combination of
proline and glutamic acid) is significantly related to the affinity
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FIGURE 6 | Dipeptide frequency of word frequency VIM score. Its X-axis and Y-axis are 25 kinds of amino acids. Each point represents the importance score of the

corresponding dipeptide frequency of word frequency characteristic variable. The color from white to purple represents the score from low to high.

FIGURE 7 | Features ranking diagram with contribution >0.5%.

prediction, which is about three times of the second highest WT
(the combination of tryptophan and threonine) and much larger
than other combinations.

Comparison of Existing Models
The predictor of our work was compared with state-of-the-art
methods what DeepDTA,WideDTA, and GraphDTA by using an
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TABLE 4 | Algorithm comparison experiment results.

Features KIBA Davis

MSE CI MSE CI

DeepDTA 0.194 0.863 0.261 0.878

WipeDTA 0.179 0.875 0.262 0.886

GraphDTA 0.139 0.891 0.229 0.893

This model 0.126 0.901 0.220 0.899

The bold values are maximum.

independent test set in Davis and KIBA. The results are shown in
Table 4.

Our method outperformed state-of-the-art methods with two
main quality metrics as CI and MSE in Davis and KIBA.
Compared with the DeepDTA andWipeDTA models, our model
reduced the MSE by 0.068 and 0.041, which increased the CI
by 0.048 and 0.026, respectively in the KIBA dataset. And MSE
decreased by 0.061 and 0.062, CI increased by 0.021 and 0.013,
respectively, in the Davis data set. It shows that the graph neural
network model with input as the graph structure of the drug
can obtained better performance. Our method outperformed the
GraphDTA model using the same graph convolutional neural
network, the MSE decreased by 5% (0.007) and the CI increased
by 0.01 in the KIBA data set, the MSE decreased by 4% (0.009)
and the CI increased by 0.006 in the Davis data set. It shown that
the dipeptide frequency of word frequency has better ability to
express targeted proteins and can obtain better predictionmodels
than 1D coding.

CONCLUSION

The DTA plays an important role in the discovery of new drugs.
Dipeptide frequency of word frequency which is a novel feature
extraction method is employed to represent protein sequences
by natural language processing techniques. In addition, we use
graphs to represent the drugs structure where the nodes is
constructed by five different features and the edges represent
atomic bond relationship. A network model is constructed,
it is consisted of three parts: convolution neural network,
graph convolution neural network, and fully connected layers.
Convolutional neural network that input is dipeptide frequency
of word frequency is to calculate hidden relationships of protein
data. Graph Convolutional neural network is constructed to
calculate hidden relationships for the graphs of drugs. The results
of the two network models are mapped and combined to the
fully connected layer predicting DTA. The results of peptide
frequency comparison experiment showed that the dipeptide
for the division of the spatial relationship was better than the
monopeptide and tripeptide, so that the model performance
can be obtained better. The results of the dipeptide frequency
comparison experiment showed that adding word frequency
characteristics for the dipeptide frequency can reduce the

features difference. In comparison experiment of state-of-the-
art model, our model has improved performance comparing
with DeepDTA and WideDTA models, which indicating that
the graphs can express the structure of drugs better. And
experimental results show that our model has better performance
than the GraphDTA model using graph convolutional neural
network. In the KIBA dataset, MSE decreased by 5% (0.007)
and CI increased by 0.01, and in the Davis dataset, MSE
decreased by 4% (0.009) and CI increased by 0.006. It showed
that the frequency characteristics of word frequency dipeptide
could represent protein sequences better. Through the analysis
of protein features, we observed that the vector have certain
differences and intensity when the average score of the features
is below 0.014 and the variance score is below 0.015, which
are more conducive to the spatial division. In the analysis of
variables importance, it was found that PE, WT, AA, EB, and
VV had a high contribution to model prediction, among which
PE (the combination of proline and glutamate) was highest
by 20.1%. Besides drug discovery, the Dipeptide frequency of
word frequency proposed in this work may also be applied
in other field to represent protein sequence. Thus, it has the
practical significance.
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