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Identifying the molecular modules that drive cancer progression can greatly deepen

the understanding of cancer mechanisms and provide useful information for targeted

therapies. Most methods currently addressing this issue primarily use mutual exclusivity

without making full use of the extra layer of module property. In this paper, we propose

MCLCluster to identity cancer driver modules, which use somatic mutation data,

Cancer Cell Fraction (CCF) data, gene functional interaction network and protein-protein

interaction (PPI) network to derive the module property on mutual exclusivity, connectivity

in PPI network and functionally similarity of genes. We have taken three effective

measures to ensure the effectiveness of our algorithm. First, we use CCF data to

choose stronger signals and more confident mutations. Second, the weighted gene

functional interaction network is used to quantify the gene functional similarity in PPI.

The third, graph clustering method based on Markov is exploited to extract the candidate

module. MCLCluster is tested in the two TCGA datasets (GBM and BRCA), and identifies

several well-known oncogenes driver modules and some modules with functionally

associated driver genes. Besides, we compare it with Multi-Dendrix, FSME Cluster

and RME in simulated dataset with background noise and passenger rate, MCLCluster

outperforming all of these methods.

Keywords: driver modules, mutual exclusivity, connectivity, functionally similarity, Markov clustering

INTRODUCTION

Cancer research has shown that gene mutation can disrupt specific cellular pathways that drive
cancer development (Weinstein et al., 2013). Recently, the rapid development of next-generation
sequencing technologies has increased the generation and availability of high-resolution data
related to cancer, providing opportunities for the study of cancer genomes (Wood et al., 2007;
Cancer Genome Atlas Research, 2008; Tomczak et al., 2015; Zhao et al., 2019). The key task
of cancer genomes research is to identify the molecular mutations or drivers. Functionally
related driver mutations in the genome, also known as driver modules or pathways, activate the
mechanisms by which cancer occurs, triggering cancer, driving cancer progression and giving
cancer cells a selective advantage.
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Some computational methods and mathematical models have
been developed to detect driver gene sets, pathways and modules
by using large-scale sequencing data (Hou et al., 2016; Zheng
et al., 2016; Yang et al., 2017; Xi et al., 2018; Ahmed et al.,
2019; Deng et al., 2019; Zhang and Wang, 2019a; Pelegrina
et al., 2020). Existing research show that the members of cancer
driver modules often exhibit specific mutation patterns in cancer
samples, the most significant characteristic is mutual exclusivity
(mutex) which means once one member mutates, the tumor will
gain a significant selection advantage, while later mutations in
other members will not give the tumor a selection advantage.
Most current methods use only mutex to derive the driver
pathway or modules, the other properties of the module are
not fully considered, such as functionally similarity of members
within a module.

Recently, two types of methods for identifying driver modules
or gene sets have been proposed: De novo and knowledge-
based methods. The De novo methods usually exploit two
characteristics from somatic mutation data: high coverage and
mutex (Dees et al., 2012; Vandin et al., 2012; Zhao et al., 2012;
Babaei et al., 2013; Leiserson et al., 2013; Paull et al., 2013; Jia
et al., 2014; Deng et al., 2019; Zhang and Wang, 2019a,b; Dees
et al., 2012; Vandin et al., 2012; Zhao et al., 2012; Babaei et al.,
2013; Leiserson et al., 2013; Paull et al., 2013; Jia et al., 2014; Deng
et al., 2019; Zhang and Wang, 2019a,b). High coverage means
that the driver modules or driver pathway covers a large number
of samples. Mutex represents that one of driver gene mutations
in a pathway are sufficient to interfere with the pathway. For
example, Dendrix (Vandin et al., 2012) identifies driver pathways
with high coverage and mutex by transforming the problem into
a maximum exclusive sub-matrix. MDPFinder (Wu et al., 2015),
Multi-dendrix (Leiserson et al., 2013), ComMDP, and SpeMDP
(Zhang and Zhang, 2016) figure out the maximum exclusion
sub-matrix problem by utilizing the integer linear programming,
focus on identifying mutex gene sets. On the other hand, the
knowledge-based approaches, in addition to somatic mutation
data, other network- and functional phenotype-based data are
combined to detect driver pathway or modules (Hua et al., 2013;
Babur et al., 2015; Kim et al., 2015; Leiserson et al., 2015; Nambara
et al., 2015; Wang et al., 2015; Reyna et al., 2018; La Vecchia and
Sebastian, 2020). These approaches can be subdivided according
to the optimization objectives in the computational problem,
and they are used to define cancer driver modules identification
problems. In the methods of Hotnet (Network, 2012), Hotnet2
(Leiserson et al., 2014), Hierarchical Hotnet (Reyna et al., 2018),
thermal diffusion is a common feature. Diffusion values are used
to extract modules with high connectivity, which are defined by
graph connectivity (usually strong connectivity). Other methods,
such as MEMo (Ciriello et al., 2012), RME (Leiserson et al.,
2015)and FSME Cluster (Liu et al., 2017), use the interaction
network and function relation graph to derive the largest group
in the similarity graph, and derive the group with largest mutex.
Babur et al. (Babur et al., 2015) proposed a seed growth-based
method in the network, which uses TCGA data to identify
pan-cancer modules, and the method determines the growth
strategy based on mutex scores. Dao et al. (Dao et al., 2017)
proposed an ILP method, which combined the definition of

interaction density and mutex in the module as the optimization
target. MEMCover (Kim et al., 2015) and MEXCOwalk (Ahmed
et al., 2019) combined mutation data with interaction data
to detect mutually exclusive mutant genomes in the same or
different tissues.

In this work, we get inspired by these existed methods
and present a novel knowledge-based method to identify
cancer driver modules (MCLCluster), which combines mutex,
functional similarity and connectivity in PPI network, multiple
data type is used. Before we compute the mutex, the Cancer
Cell Fraction (CCF) is aided to select stronger signals and
more confident mutations, then the weighted gene functional
interaction network is used to quantify the gene functional
similarity in PPI, exploit graph clustering method based on
Markov to extract the candidate module. The similarity measure
between a pair of genes is defined as PPI network edge
weight through taking into account functional similarity and
mutex. Cluster filter and permutation test is used to test which
cluster to be driver modules. We compare it with those of
three representative approaches [Multi-Dendrix (Leiserson et al.,
2013), FSME Cluster (Liu et al., 2017), and RME (Leiserson
et al., 2015)] on simulated dataset with background noise,
MCLCluster outperform all of these methods. Unlike most of
presented approaches to discover driver modules with mutually
exclusive between all gene pairs, MCLCluster does not necessarily
identify complete exclusivity gene pair, but uses other functional
similarity information to complement interaction data for a
better identification of modules.

METHODS

The identification of the cancer driver modules based on graph
clustering (MCLCluster) is introduced in detail. The schematic
flowchart is shown in Figure 1.

Datasets
GBM and BRCA datasets which including CNVs and SNVs
mutational data are used for testing, which are downloaded from
cBioPortal (Cerami et al., 2012). The GBM dataset contains 550
samples, 1,376 mutant genes, and the BRCA dataset contains
1078 samples, and 1463 mutant genes. We combine non-binary
data (CCF) to provide more information and prioritize more
important mutations (ie, earlier mutations with larger CCF
values). The CCF value indicates the proportion of cancer cells
in the mutant sample. CCF data is extracted from read count
data (Roth et al., 2014). PPI network are derived from Multinet
(Khurana et al., 2013), which contains 109599 interactions
between 14445 genes.

In order to verify the reliability, we produce various
simulation data with random passenger rate and background
noise, and the execution of the entire simulation process use
the algorithm in RME. MCLCluster is compared with Multi-
Dendrix, FSME Cluster and RME in simulation data. Each
simulation datasets contains 500 patients and 200 mutant genes.
Mutation noise is achieved by converting a value with opposite
values (0 for 1 or 1 for 0) in different probability ranges of 0.05 to
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FIGURE 1 | The overview of MCLCluster. (A) Integrate CCF data to choose stronger signals and more confident mutations, and compute the mutex of each gene

pairs. (B) The weighted gene functional interaction network is used to quantify the gene functional similarity in PPI. (C) Compute total similarity as edge weight, then

execute Markov clustering to extract candidate module.

0.11. The remaining genes are considered to be passenger genes
and the probability of their mutation uses empirical values.

Similarity Measure
In order to consider the module property on mutex, functional
similarity and connectivity in the PPI network, and to facilitate
subsequent graph clustering, we define the edge weights of the
PPI network as the product of mutex and functional similarity
between gene pair.

Functional Similarity
Actually, most of the existing methods widely use cosine
coefficient to measure the functional similarity between entities
in PPI network, which only consider the network structure and
it is too simple to as a functional similarity measurement. So we
develop a new metric to measure the entities similarity in PPI
with the help of theweighted gene functional interaction network
(wgfin), which is downloaded from HumanNet. We use the
correlated log-likelihood scores (LS) as a metric of the interaction
strength between any two genes in wgfin. LSN(gi, gj) represents
the normalized value between gene i and gene j when LS(gi, gj) is
normalized using min-max normalization, the detail is:

LSN
(

gi,gj
)

=
LS

(

gi,gj
)

− LSmin

LSmax − LSmin
(1)

Here LSmin denotes the minimal LS and LSmax denotes the
maximal LS in wgfin. As a result, the similarity S

(

gi, gj
)

between
any two genes that have edges in wgfin is calculated:

S
(

gi,gj
)

=







1, gi=gj
0, e(gi,gj)/∈ HumanNet

LSN
(

gi,gj
)

, (gi,gj)∈ HumanNet

(2)

Here e
(

gi, gj
)

represents the edge between gene i and gene
j. Then, the similarity of gene gn and gene set G =
{

gn1, gn2, . . . , gnp
}

is calculated as follows:

S
(

gn,G
)

=max1≤i≤p(S
(

gn,gni
)

) (3)

At last, according to the BMA (Best-Match Average) method
(Wang et al., 2007; Xiao et al., 2018), the functional similarity of
pgi and pgj in the PPI network is defined. The detail is as follows:

SPij =

∑

g∈Gi
S(g,Gj)+

∑

g∈Gj
S(g,Gi)

|Gi| + |Gj|
(4)

Here Gi and Gj respectively denote the a set of gene connected to
pgi and pgj, and |G| denotes the number of genes in G.
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Mutual Exclusivity (Mutex)
To choose stronger signals and more confident mutations, we
combine the CCF matrix to process somatic mutation. For
each gene, we perform two operations, the one is to delete the
mutation with the lowest CCF value, and the other is to delete one
mutation when the CCF difference between the two mutations
is less than a certain parameter ε (obtain through multiple
experiments, usually small than coverage). In this paper, overall
consider weighing algorithm efficiency and number of modules,
we set the parameter ε = 0.1. The somatic mutation matrix A
is filtered by CCF matrix, then it will be used to compute mutex,
and the detail of each entry is listed as:

Aab =







1, if sample a mutated in a gene b and it CCF

value meet condition

0, otherwise

(5)

In general, mutations between member genes in a driver module
appear to be mutually exclusive. The previous work (Vandin
et al., 2011) proposed that a pathway or module is a group of
genes characterized by high coverage and low coverage overlap.
Coverage represents the patient proportion with at least one gene
mutation in a group of gene, and coverage overlap is equal to the
patient proportion withmore than two genemutations in a group
of gene. The mutex is expressed as:

ME (se) = C (se) − O (se) (6)

Where ME denotes mutex, se denotes the genes sets, C denotes
coverage and O denotes coverage overlap. Here, we calculate the
pairwise and group mutex. Pairwise mutex genes help identify
all gene pairs which are may take part in the same module, and
the group mutex is applied to compute the mutex of all genes in
one module. An example in Figure 1A shows the computation of
coverage, coverage overlap and mutex.

Then combine these two properties (functional similarity and
mutex) to calculate the total similarity as the edge weight of the
PPI network:

ws
(

pg i,pg j

)

=ME
(

pg i,pg j

)

× SPpgipgj
(7)

Candidate Module Extraction
Here, we apply Markov clustering (MCL) to identify clusters in
the PPI network appling the total similarity matrix ws derived by
Equation (7). Markov clustering is an effective biological network
clustering algorithm, which is widely used for the identification of
functional modules (Brohee and van Helden, 2006; Vlasblom and
Wodak, 2009; Shih and Parthasarathy, 2012). After executing the
clustering, closely functional related genes will be grouped into
the same cliques, which are as candidate modules and will be used
for follow-up modules refinement.

The GR = (Np, ǫp) denotes the undirected graph in the PPI
network, in whichNp represents node sets and ǫp represents edge
set. pgi ∈ Np represents the i-th gene, and ws

(

pgi, pgj
)

is the edge
weight of

(

pgi, pgj
)

, ws
(

pgi, pgj
)

> 0 indicate that pgi interact
with pgj in the PPI network, ws

(

pgi, pgj
)

= 0 indicate they are

not interaction. P ∈ R
|Np|×|Np| denotes GR′s adjacency matrix,

the initialization of P is:

P
(

i,j
)

=











ws
(

pg i,pg j

)

if (pg i,pg j)∈ǫp

ws
(

pg i,pgk
)

if (pg i=pg j)

0 otherwise

, k ∈[1,
∣

∣Np

∣

∣ ] (8)

The matrix p can holds the transition probabilities of the Markov
chain defined on GR. p

(

i, j
)

denotes the transition probability
from pgi to pgj. Normalize the matrix P as follow:

P̃
(

i,j
)

=
P(i,j)

∑|Np|

k=1 p(k,j)
(9)

Markov clustering contains two processes, which are known
as ‘Expand’ and ‘Inflate’. When execute the operation process,
the ‘Expand’ and ‘Inflate’ respectively are iteratively assigned to
the stochastic matrix. The calculation formula of the Expand
operation is:

Pexp = P̃∗P̃ (10)

The inflation parameter rp is used in Inflate process to raise
each entry in the matrix p̃. The Inflate process can expand the
unevenness of each column. That is to say, flows increase where
they are already powerful and decrease when they are weak. The
Inflate process is expressed like Equation (9):

Pinf
(

i,j
)

=
P̃(i,j)

rp

∑|Np|

k=1 P̃(k,j)
rp

(11)

Markov clustering starts from the matrix P, and iteratively uses
the Expand and Inflate until convergence. After convergence,
there is one non-zero value in each column of the final matrix,
and those non-zero value in the same row form a node cluster,
we can get them as the candidate modules.

Modules Refinement and Mutex Significant
Test
Not all of the clusters (candidate driver modules) obtained by
graph clustering can be used as driver modules, nor are all genes
in a population members of the module, because it is difficult to
obtain the exact size of the module number. Therefore, perform
the permutation test on each cluster to evaluate the importance
of mutex. However, testing only on the largest cluster may result
in the loss of potential subgroups which may pass the test. In
order to solve this problem, (Ciriello et al., 2012) proposed the
following steps to filter the genes and compute the mutex of the
subgroups while limiting the subgroup size. Given a candidate
module C containing the r gene, if a significant p value is
observed, we will retain the module C, and not consider compute
the mutex of all its subgroups. Or else, we list all subgroups
of r-1 size, for each member belongs to the C, and executes a
permutation test on each subgroup to get a p value. It repeats
recursively until one of these two conditions is met (Ciriello et al.,
2012): a subgroup is significantly mutually exclusive or r = 3
(min_module_size is 3). After testing, only the cluster that gets
the most significant p value is reserved as the driver module.
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TABLE 1 | Results of GBM.

No Driver modules Gene number ME (Exclusivity) P-value ws

1 CDKN2B CDK4 RB1 ERBB2 4 76% 0 0.834

2 TP53 MDM2 MDM4 3 82% 0.001 0.766

3 PTEN PIK3R1 NF1 EGFR 4 78% 0.001 0.741

ws is the average value of ws (The sum of the similarities between the pairs divided by the gene number), and ws is the total similarity calculated by Equation (7).

Evaluating Performance
To compare the performance, F1 score is used for evaluating the
power of the identification module. F1 score expressed the trade-
off between accuracy (abbreviated to Pr) and recall (abbreviated
to Re), which can be computed using true positive (abbreviated
to TP), false positive (abbreviated to FP), and false negative
(abbreviated to FN). The details are:

Pr =
TP

(TP+FP)
, Re=

TP

(TP+FN)
, F1=

2 • Pr • Re

Pr+Re
(12)

RESULTS

GBM
We apply MCLCluster to GBM dataset, 3 important driver
modules are identified, the detailed information of them are listed
in Table 1. The interaction among genes within GBM modules
are list in Figure 2. All the genes in these 3 modules are well-
known in the GBM research, they aremembers of the 3 important
signaling pathways and their mutation samples are more than
five percent.

The first module contains the mutation of ERBB2, CDK4,
and CDKN2B, RB1. The mutation of these four genes cover
78% of the samples, and average functional similarity is 0.834,
indicate that the genes in module have similar function. The p-
value calculated by the permutation test is equal to 0, indicate
that the module has significant mutex. Three of these genes
(except ERBB2) are from the RB signaling pathway that related
to G1/S progression. CDKN2B inhibits CDK4, CDK4 inhibits
RB1. CDKN2B and RB1 are core members of the cell cycle
and cell cycle mitosis, the over expression of ERBB2 made the
proliferation activation, and CDK4 has a strong interaction as a
negative regulator of normal cell proliferation (Porta-Pardo et al.,
2015; Tang et al., 2016).

The second module includes the mutation of MDM2, MDM4
and TP53. Most of the MDM2 mutation is amplified in the
sample. TP53 is an important tumor suppressor gene which is
the most common mutant gene in GBM samples. The module
is mutated in 85% of the samples, the mutex of the module is
82%, and average functional similarity is 0.766, indicate that the
genes in module have similar function, the p-value calculated by
the permutation test is equal to 0.001, indicate that the module
has significant mutex. All the members of this module are well-
known members of the p53 signaling pathway (Kim et al., 2015),
which is a key and frequently mutated pathway in GBM related to
aging and apoptosis (Ciriello et al., 2012). This module contains
3 mutually exclusive gene pairs (all of which are significant), and
no gene pair mutates simultaneously (Babur et al., 2015).

The third module consists of deletion of PTEN, the mutation
of PIK3R1, NF1, and EGFR. Deletions in PTEN have been linked
to the proneural subtype of GBM. Mutations in EGFR and NF1
related to the classical GBM subtype, in addition to the PIK3R1
appearing in the GBM pathway of (Greenman et al., 2007), it has
been previously reported to be related to many human cancers
(Vandin et al., 2012). The module is mutated in 82% of the
samples, the mutex of the module is 78%, and average functional
similarity is 0.741, indicate that the genes in module have similar
function, the p-value calculated by the permutation test is equal
to 0.001, indicate that the module has significant mutex. All the
members of this module are core members of RTK/RAS/PI(3)K
signaling pathway.

BRCA
We apply MCLCluster to BRCA dataset, 4 driver modules are
identified, the detailed information of them are listed in Table 2.
The interaction among genes within BRCA modules are list
in Figure 3. Most of the genes in these 4 modules are core
members of the 4 signaling pathways (p53 signaling, PI(3)K/AKT
signaling, ERBB signaling pathway and RB signaling pathway).
They are well-known in the BRCA research and their mutation
samples are more than five percent. Compared with GBM, these
4 modules cover a smaller percentage of samples, indicate that
the mutation heterogeneity or disease heterogeneity of the breast
cancer dataset is greater.

The first module contains the mutation of PIK3CA, PIK3R1,
AKT1, PTEN. The mutation of these four genes cover 75%
samples, and average functional similarity is 0.824, indicate that
the genes in module have similar function. The p-value calculated
by the permutation test is equal to 0, suggesting that the module
has significant mutex. All genes in this module are core members
of PI(3)K/AKT signaling pathway. AKT1 interact with PTEN,
PIK3R1, and PIK3CA, PTEN inhibits PIK3CA and PIK3R1 (Wu
et al., 2015; Mandal and Ma, 2016).

The second module includes TRPS1, ZNF217 and FBXO31
gene mutations. The mutation of these 3 genes cover 89%
samples, and average functional similarity is 0.811, indicate that
the genes inmodule have similar function. The p-value calculated
by the permutation test is equal to 0, suggesting that the module
has significant mutex Two third of genes are members of the
ERBB signaling pathway, which is an important breast cancer-
related pathway. TRPS1 is a common oncogene that plays an
important role in controlling cell cycle during breast cancer (Wu
et al., 2014). ZNF217 is proved to be a central role in cancer
development, and FBXO31 is proved to be a candidate tumor
suppressor gene, by generating Skp Cullin F-box containing SCF
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FIGURE 2 | List 3 driver module and the interaction among genes in each driver module in the GBM data. Node color shows the role of GBM in different signal

pathways.

TABLE 2 | Results of BRCA.

No Driver modules Gene number ME (Exclusivity) P-value ws

1 PTEN PIK3CA PIK3R1 AKT1 4 72% 0 0.824

2 TRPS1 ZNF217 FBXO31 3 74% 0 0.811

3 TP53 CDH1 MYC 3 80% 0.001 0.721

4 FBXO31 RB1 CCDN1 3 70% 0.001 0.714

ws is the average value of ws (The sum of the similarities between the pairs divided by the gene number), and ws is the total similarity computed by Equation (7).

complex, it causes cell senescence and has consistent tumor
suppressor attributes (Kumar et al., 2005). FBXO31 inhibits
TRPS1 and ZNF217.

The third module contains mutations in TP53, CDH1,
MYC. The mutation of these 3 genes cover 82% samples, and
average functional similarity is 0.721, indicate that the genes

in module have similar function. The p-value calculated by the
permutation test is equal to 0.001, suggesting that the module
has significant mutex. Two third of genes are core members
of the p53 signaling pathway. Loss or down-regulation of the
Ecadherin gene CDH1 at 16q22.1 is associated with breast cancer
proliferation and invasion, MYC is an effective tumorigenic
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FIGURE 3 | List 4 driver module and the interaction among genes in each driver module in the BRCA data. Node color shows the important role of BRCA in different

signal pathways.

activator, a transcription factor, and a key regulator of cell growth,
differentiation, and apoptosis (Amgalan and Lee, 2015; Nangalia
et al., 2015).

The forth module contains mutations in CCND1, RB1 and
CDK4. The mutation of these three genes cover 73% samples,
and average functional similarity is 0.714, indicate that the
genes in module have similar function. The p-value calculated
by the permutation test is equal to 0.001, suggesting that the
module has significant mutex. All of genes in this module

are important members of the RB signaling pathway. CDK4
interacts with CCND1, CCND1 inhibits RB1. CCND1 and
RB1 encode interact proteins that have an important effect in
cell cycle (Placke et al., 2014). CCND1 encodes the cyclind1
protein, it affect the retinoblastoma protein which encoded
through overphosphorylation by RB1 (Rozenchan et al., 2014).
Hyperphosphorylation of RB inactivates its role as a tumor
suppressor gene, so mutations targeting CCND1 or RB1 are of
great significance for tumor proliferation (Salgia et al., 2017).
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FIGURE 4 | The F1 score of MCLCluster, Multi-Dendrix, FSME Cluster and RME in simulation data for 1 module. (A) When noise = 0.05, the F1 score of the four

methods with different passenger rate. (B) When noise = 0.07, the F1 score of the four methods with different passenger rate. (C) When noise = 0.09, the F1 score of

the four methods with different passenger rate. (D) When noise = 0.11, the F1 score of the four methods with different passenger rate.

FIGURE 5 | The F1 score of MCLCluster, Multi-Dendrix, FSME Cluster and RME in simulation data for multiply modules.

Simulated Data
Identifying Top One Module
To comparing the four methods (MCLCluster, Multi-Dendrix,
FSME Cluster and RME), we generated simulation samples
considering two parameters (passenger rate and background
noise). The Multi-Dendrix need to input the module size, and

it is difficult to obtain, so considering fairness, Multi-Dendrix is
applied three times for each data set, the module sizes are set
to three, four, and five, respectively. The remaining parameter
used in other three approaches is set to the default value. By
default, MCLCluster will identify multiple modules, the module
with the highest ws and the lowest p-value will be selected. It’s

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 April 2020 | Volume 8 | Article 271

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Zhang et al. Identify Cancer Driver Modules

worth noting that in simulation experiment, we cannot consider
the CCF value.

As shown in Figure 4, when the noise is 0.05, the fourmethods
all achieve high F1 score under different passenger rates. Among
them, MCLCluster received F1 scores above 0.94. In general,
when the noise is greater than 0.07, the F1 scores decrease with
the increase of passenger rate in Multi-Dendrix and RME. In
addition, when noise and passenger rates all greater than or equal
to 0.09, the F1 scores of RME are all less than 0.6. MCLCluster
and FSME Cluster also faces a decline in F1 score, when the
noise is greater than 0.09. MCLCluster have better performance
than the others in all cases, which shows that MCLCluster have
a strong ability to detect mutually exclusive drive modules.
Compared with the other three methods, under different noise
environments, as the passenger rate increases, the MCLCluster
shows good stability.

Identifying Multiply Modules
We identify one to four modules to compare MCLCluster, Multi-
Dendrix, FSME Cluster and RME. The passenger rate is set to
0.05 and 0.10, and the module noise is set to 0.10. We can
see from Figure 5, the F1 scores of the four methods have a
slight downward trend. When the passenger rate is 0.05, the
RME showed a high F1 score relative to Multi-Dendrix in most
cases, and when the passenger mutation rate increased to 0.10,
Multi-Dendrix performed better than RME. TheMCLCluster can
outperform all other methods in any cases, both the increased
module numbers and the two different passenger rates.

CONCLUSIONS AND DISCUSSIONS

We develop a new approach named MCLCluster, which
uses somatic mutation data, Cancer Cell Fraction (CCF)
data, gene functional interaction network and protein-protein
interaction (PPI) network to detect multiple driver modules
that simultaneously display functional similarity and mutation
mutex in cancer. The reliability of MCLCluster is verified
using GBM and BRCA cancer datasets and simulation samples.
Taking GBM as an example, MCLCluster successfully identified
3 driver modules, which include some important and common
driver genes, like CDKN2B, CDK4, RB1, ERBB2, TP53, EGFR
etc., which provided important verification for this method. In
the simulation dataset, the MCLCluster can maintain higher
performance than Multi-Dendrix, FSME Cluster and RME in F1
scores. With the increase of noise, passenger rate and the module

numbers in the simulation data, our method keeps a stable and
sufficiently high F1 score, indicate that the MCLCluster can
accurately identify modules in complex cases. BRCA and GBM
are used as examples to prove the effectiveness of themethod, and
actually it is universal and can be applied to other type of interest
cancer. In this paper, we use a general method to preprocess
the real data set and construct the simulated data set, which is
a feasible method verified by a lot of experiments. In addition,
some parts of our method are general and can be used to solve
other bioinformatics problems, such as the similarity measure
method, which can be used to identify cancer-related microRNA
modules based on microRNA-disease associations.

However, like previous researches of Multi-Dendrix, FSME
Cluster and RME, MCLCluster is also designed for large
sample sets to achieve statistical significance. Therefore, applying
MCLCluster to a small number of samples may have some
limitations. Some extensions can be used to further improve
the MCLCluster method, for example, we can integrate the
methylation andmRNA expression data, and use well-researched
pathways reported in many literatures as a priori information. As
the genome sequencing dataset in TCGA expands to more than
20 types of cancer, MCLCluster will be an important approach to
identify new driver modules in different cancer.
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