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DNA N4-methylcytosine modification (4mC) plays an essential role in a variety

of biological processes. Therefore, accurate identification the 4mC distribution in

genome-scale is important for systematically understanding its biological functions. In

this study, we present Deep4mcPred, a multi-layer deep learning based predictive

model to identify DNA N4-methylcytosine modifications. In this predictor, we for the

first time integrate residual network and recurrent neural network to build a multi-layer

deep learning predictive system. As compared to existing predictors using traditional

machine learning, our proposed method has two advantages. First, our deep learning

framework does not need to specify the features when training the predictive model. It

can automatically learn the high-level features and capture the characteristic specificity

of 4mC sites, benefiting to distinguish true 4mC sites from non-4mC sites. On the

other hand, our deep learning method outperforms the traditional machine learning

predictors in performance by benchmarking comparison, demonstrating that the

proposed Deep4mcPred is more effective in the DNA 4mC site prediction. Moreover,

via experimental comparison, we found that attention mechanism introduced into the

deep learning framework is useful to capture the critical features. Additionally, we develop

a webserver implementing the proposed method for the academic use of research

community, which is now available at http://server.malab.cn/Deep4mcPred.

Keywords: DNA N4-methylcytosine, deep learning, site prediction, webserver, feature representation

INTRODUCTION

Epigenetics refers to the heritable phenotype changes in the function of genes that do not involve
alterations in DNA sequence. DNA methylation refers to the binding of a methyl group on the
nucleotide of DNA (Liu et al., 2019a) under the action of DNA methyltransferases (Dnmt). As one
of the earliest discovered and most in-depth epigenetic regulation mechanisms, it is associated with
normal development and plays an essential role in key biological processes including regulating
gene expression, regulating mammalian growth and development, mediating X chromosome
inactivation, and participating in gene imprinting (Jin et al., 2011). It can be divided into three
categories according to the position of methylation modification: N6-methyladenine (6mA),
5-Methylcytosine (5mC) and N4-methylcytosine (4mC) (Chen et al., 2017; Wei et al., 2019a). The
most prevalent methylation modification in eukaryotes is 5mC (Luo et al., 2015; Xiao et al., 2018)

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2020.00274
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2020.00274&domain=pdf&date_stamp=2020-04-21
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:liao@xmu.edu.cn
https://doi.org/10.3389/fbioe.2020.00274
https://www.frontiersin.org/articles/10.3389/fbioe.2020.00274/full
http://loop.frontiersin.org/people/918070/overview
http://server.malab.cn/Deep4mcPred


Zeng and Liao DNA 4mC Predictor

which consists of methylation at the fifth position of the cytosine
pyrimidine ring and has focused on epigenetic markers in
mammals and plants (Liu et al., 2019a), while 6mA (methylations
on the sixth position of the adenine purine ring) (Liu et al.,
2019a) is the most predominant DNAmodification in prokaryote
and has been found to be related to the regulation of
restriction-modification (R-M) system, DNA mismatch repair,
gene expression, and other aspects (Luo et al., 2015; Xiao et al.,
2018). With the development of high-throughput techniques,
the 4mC (methylations on the fourth position of the cytosine
pyrimidine ring) was discovered in bacteria, and found to
play an important role in protecting genome from invasion in
restriction-modification (R-M) system. Developing methods to
explore more biological functions of 4mC is of significance.

Single-molecule real time sequencing (SMRT) technology has
been proposed to detect the 4mC and 6mA sites from the whole
genome (Flusberg et al., 2010). However, using SMRT techniques
to analyze the genome is costly inefficient. Therefore, Yu et al.
(2015) proposed 4mC-Tet-assisted bisulfite-sequencing (4mC-
TABseq) as a new generation of sequencing technology (Illumina
sequencing systems) to identify the genome-wide locations of
4mC for bacterial species more rapidly and cost efficiently.
Although the prediction of 4mC sites by this sequencing
technique has been improved to some extent, recent studies
focus more on the recognition of 4mC sites using machine
learning, which is capable of predicting 4mC sites based on
genome sequences, without any prior experimental knowledge.
There are currently four methods available in literature to
identify 4mC sites, including iDNA4mC (Chen et al., 2017),
4mCPred (Su et al., 2018), 4mcPred-SVM (Wei et al., 2018a),
and 4mcPred-IFL (Wei et al., 2019a). iDNA4mC, as the first
machine learning predictor, encodes sequences by nucleotide
chemical properties and nucleotide frequency to features and
trains support vector machine (SVM) models for prediction
(Liang et al., 2018). Although this method has the ability to
distinguish between 4mC and non-4mC sites, the prediction
accuracy is relatively low overall. Afterwards, He et al. proposed
4mCPred, an SVM-based predictive model trained with position-
specific trinucleotide propensity (PSTNP) and electron-ion
interaction potential features. More recently, 4mcPred-SVM
and 4mcPred-IFL, proposed by Wei et al., further improve
the predictive performance on the same golden benchmark
datasets. The former employs a two-step feature optimization
strategy to improve the feature representation ability, while the
latter uses an iterative feature representation algorithm to learn
critical information from several sequential feature models. Even
though the above methods have improved the performance for
identifying 4mC sites, too few data sets have been adopted to
fully reflect the whole genome and to build robust models.
Consequently, it is eager and indispensable to develop a robust
and strong model to more accurately identify 4mC sites.

In recent years, deep learning is not only developed as a
new research direction in machine learning, but also has made
a lot of achievements in data mining (Lan et al., 2018), speech
recognition (Amodei et al., 2014), machine translation (Sutskever
et al., 2014), natural language processing (Collobert and Weston,
2008; Young et al., 2018), and other related fields (Hong et al.,

2019; Li and Liu, 2019; Liu et al., 2019b; Yang et al., 2019;
Zeng et al., 2019a,b). In the field of computational biology,
deep learning has been widely applied, especially in solving the
problems of genome sequence-based by convolutional neural
networks (CNN) (Nie et al., 2018; Peng et al., 2018; Lv et al.,
2019a; Wang et al., 2019; Zhang et al., 2019a; Zou et al.,
2019). In this paper, we proposed Deep4mcPred, a multi-
layer deep learning based predictive model to identify DNA
N4-methylcytosine modifications. In this predictor, we for the
first time integrate residual network (He et al., 2016) and
recurrent neural network, together with attention mechanism,
to build a multi-layer deep learning predictive system. We
evaluated and compared our predictor with existing predictors.
The comparative results demonstrate that our proposed model
can more accurately identify 4mC sites than the state-of-the-art
predictors. In addition, the proposed method is implemented by
the simple and easy-to-use webserver which is freely available
on http://server.malab.cn/Deep4mcPred.

METHODS AND MATERIALS

Dataset Collection
Previous study has demonstrated that a stringent dataset is
essential for building a robust predictive model (Zeng et al.,
2016, 2017a; Liu et al., 2017; Wei et al., 2017a, 2018b,c; Jin
et al., 2019; Liu, 2019; Su et al., 2019). In existing studies, there
is one golden benchmark dataset proposed by Chen et al. for
performance evaluation and comparison. However, the size of the
dataset is too small to train a deep learning model. Accordingly,
we constructed a larger dataset in this study. We strictly followed
the data processing procedure as introduced in Chen’s study. By
doing so, we can guarantee our dataset the most representative.

Positive Samples Collection
Specifically, there are three main steps for collecting the positive
samples. Firstly, we collected all 41bp long sequences centered
with true 4mC sites from the MethSMRT database (Ye et al.,
2016). Next, we removed the sequences with Modification QV
(modQV) score not <30 as it is the default threshold for
invoking the modification location according to the Methylome
Analysis Technical Note. Next, we used CD-HIT software (with
the threshold of 80%) (Fu et al., 2012) to reduce the identity
of the positives, avoiding the potential of performance biased-
estimation. Ultimately, following the procedure, we collected the
positive samples from three species: Arabidopsis thaliana (A.
thaliana), Caenorhabditis elegans (C. elegans), and Drosophila
melanogaster (D. melanogaster). The details of the positive
samples in the three species are presented in Table 1. Note that
we randomly picked 20,000 positive samples for model training.

Negative Samples Collection
The negative samples were also cytosine-centered sequences with
a length of 41bp but are not recognized by the SMRT sequencing
technology. In this case, the number of negative samples per
species are much larger than the corresponding positive samples.
To avoid the data imbalance problem, we randomly selected
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TABLE 1 | Summary of benchmark datasets in three species.

Species Positives Negatives Total

A. thaliana 20,000 20,000 40,000

C. elegans 20,000 20,000 40,000

D. melanogaster 20,000 20,000 40,000

the same number of negative samples with that of the positive
samples in corresponding species for model training.

The Framework of the Proposed Deep
Learning Method
Figure 1 illustrates the overall predictive framework of the
proposed multi-layer deep learning network. For given DNA
sequences, neural network is composed of four layers: the input
layer, the ResNet layer, the LSTM layer and the attention layer, as
seen in Figure 1. The first layer is the input layer. The sequences
of the dataset are encoded by one-hot method and the obtained
features are fed into the subsequent ResNet layer. Through this
residual network model, deeper networks can be built than plain
CNN models for extracting effective global features. The output
feature vectors are utilized as inputs of the LSTM layer. In the
LSTM layer, the bidirectional LSTM model is utilized to gather
feature information from two directions which has been proven
to be more effective than the unidirectional LSTM model. In the
last attention layer, the attention mechanism is introduced to
integrate the output of the LSTM layer for more relevant feature
information. Finally, a fully-connected neural network (FC) is
attached after the attention model and the softmax activation
function is performed to make predictions.

Sequence Representation Using One-Hot
Encoding
Genomic sequences are consisting of four nucleotides: “A”
(adenine), “G” (guanine), “C” (cytosine), and “T” (thymine).
Undetermined bases are annotated as “N.” The nucleotides are
represented using one-hot encoding over four bits. For example,
“A” is represented as the binary vector (1,0,0,0); “G” is encoded as
(0,1,0,0); “C” is encoded as (0,0,1,0); “T” is encoded as (0,0,0,1);
and “N” is (0,0,0,0).

Deep Learning Model Architecture
We developed a novel prediction method, namely Deep4mcPred,
that integrates Long Short Term Memory (LSTM) recurrent
neural network and the attention mechanism into the Residual
Networks (ResNet). The overall architecture of our proposed
model is shown in Figure 1.

Residual Networks (ResNet)
Studies have showed that the overall performance of the network
is greatly affected by the number of network layers when it
comes to convolutional neural network (CNN). To be specific,
the accuracy of the network increases as the depth increases, but
when the depth reaches a certain level, the accuracy begins to

drop rapidly. This is called the degradation problem, making it
difficult to generate very deep neural networks.

To address this, ResNet introduces a residual learning
framework to improve the degradation, which has achieved
great success in the areas of image classification and item
identification in recent studies. The internal residual blocks
of ResNet utilize jump connections, alleviating the problem
of gradient disappearance caused by the increase of depth in
convolutional neural networks.

For an input x, ResNet learns a specific residual function
F(x) = H(x)−x, whereas F(x) = H(x) for plain CNN. Supposing
the residual F(x) = 0, then it occurs identity mapping “shortcut.”
The residual block is performed as follows:

y = F (X, {Wi})+ x

where

F =W2σ (x, Wi)

where the function F denotes the learned residual mapping and
σ represents relu. F and x are added element by element under
the premise of shortcut connections.

But in fact, the residual F(x) will not be zero, so the dimensions
of F and x will be different. The output of the ResNet layer can be
formulated as follows:

y = F (X, {Wi})+Wsx

where Ws is introduced to perform a linear mapping to match
the dimensions. Taking consider of ResNet, it allows the stacked
layer to extract more distinct features of the input x, resulting in
better performance.

Long Short Term Memory (LSTM)
Recurrent Neural Network (RNN) is a powerful neural network
for processing sequential data. The parameter learning of the
RNN is performed by the back-propagation algorithm over time.
When the input sequence is long, a gradient disappearance or
gradient explosion problem occurs, which is termed as long-term
dependency problem.

LSTM is one type of RNN, which introduces the conception
of self-loop to generate a path of continuous gradient flow for
a long time and gating mechanism to control the information
flow, solving the long-term dependency problem. It was firstly
proposed by Hochreiter and Schmidhuber in 1997. From then
on, LSTM has achieved considerable success and has been
widely used in the fields of handwriting recognition, machine
translation, and speech recognition, etc.

The stacked architecture of LSTM is shown in Figure 1. The
output from the ResNet layers is fed into the subsequent LSTM
layer as the input. Then, the LSTM components are updated by
the following formulations:
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FIGURE 1 | The illustration of the deep neural network. It is a four-layer prediction system. Firstly, given sequences are fed to the input layer for feature representation

using one-hot encoding, thus generating feature matrixes. Next, we feed the matrixes to the ResNet layer for extracting global features. After that, in LSTM layer, we

use bidirectional LSTM model to gather feature information from two directions. In Attention layer can learn more relevant feature information. Ultimately, the features

are connected with full connected layer and Softmax can make predictions. If the prediction score is higher than 0.5, the predicted sequences are 4mc sequences;

otherwise, they are not.
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where it , ft and ot represent the input, forget and output
gate, respectively; C′t is an auxiliary value for calculating
the cell memory Ct ; t denotes the recurrent time step; Wx,
Wh, Wc, and b are the corresponding weight values for each
equation; and the current output of LSTM cell is ht at time
step t.

In consideration of bidirectional LSTM, the final LSTM
network is composed of two LSTM networks with opposite
directions. Hence, the i-th deoxynucleotide of the DNA sequence
can be encoded as below:

hi = [
−→
hi

⊕←−
hi ]

Attention Mechanism
Inspired by human attention, the attention mechanism is an
idea for solving problems that focuses on the important factors
while ignoring the unimportant. The attention mechanism can
quickly filter out high-level information from noises, which
has recently demonstrated great success in many relevant
classification tasks. To take advantage of this, we applied the
attention mechanism after the LSTM layer in the model to
obtain the final distinctive feature representation. Let H be
the output vectors [h1, h2, . . . , hs] generated by LSTM layer,
where s is the length of the DNA sequence. As shown in
Figure 1, the following formulations are performed in the
attention layer:

M = tanh (H)

α = softmax
(

WTM
)

r = HαT

whereWT is a transpose of the trained parameter vectorW. Then
the final representation of the attention layer can be encoded
as below:

h∗ = tanh (r)

Softmax
The generated vectors h∗ after the attention module are fed into
a softmax layer for classification as input. The softmax score of
class k will be calculated as follows:

αk =
eh
∗

∑C
k=1 e

h∗

where C denotes the total number of categories, and C = 2 when
dealing with the binary classification tasks.

The softmax function maps and the output of neurons to
numbers between (0–1) and normalizes the sum to 1. In other
words, the output scores of each category can be converted into
a relative probability by softmax. Therefore, the predicted label
can be determined by comparing the predicted probability αk for
each class.

At last, we generated a multi-layered neural network
integrating ResNet with a LSTM layer and an attention
module, which incorporates the strengths behind
ResNet, LSTM, and the attention mechanism. Through
applying such a comprehensive network structure,
feature extraction and learning are combined in an end-
to-end manner, which can significantly improve the
prediction performance.
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Performance Indicators
In our experiment, we used the following four indicators to
evaluate the predictive performance of our proposed model,
including Accuracy (ACC), Sensitivity (SN), Specificity (SP),
and Mathew’s Correlation Coefficient (MCC). They are the four
commonly used indicators for classifier performance evaluation
in other Bioinformatics fields (Zhang et al., 2008, 2018a,b,c,
2019b,c,d; Wei et al., 2017b, 2019b; Zeng et al., 2017b, 2019c;
Chen et al., 2018; Lu et al., 2018a,b; Fu et al., 2019; Gong
et al., 2019; Jin et al., 2019; Liu and Li, 2019; Liu et al.,
2019c,d; Manavalan et al., 2019a,b,c,d; Basith et al., 2020). Their
calculation formulas are as follows:



































Sn = TP
TP+FN 0 ≤ Sn ≤ 1

Sp = TN
TN+FP 0 ≤ Sp ≤ 1

ACC = TP+TN
TP+FP+TN+FN 0 ≤ ACC ≤ 1

MCC = TP×TN−FP×FN√
(TN+FN)×(TN+FP)×(TP+FN)×(TP+FP)

− 1 ≤ MCC ≤ 1

where TP (True Positive) represents the number of positive
samples correctly predicted; TN (True Negative) represents
the number of negative samples correctly predicted; FP (False
Positive) represents the number of negative samples incorrectly
predicted to be the positives; FN (False Negative) represents
the number of positive samples incorrectly predicted to be
the negatives.

Moreover, we also used the area under the ROC curve (AUC)
is to quantitively measure the predictive performance of the
model (Yang et al., 2018; Lv et al., 2019b; Niu et al., 2019). A
higher AUC represents a better predictor (Hanley and McNeil,
1982; Liu et al., 2018; Feng et al., 2019; Lai et al., 2019).

RESULTS AND DISCUSSIONS

Comparison of the Proposed Method and
Existing Predictors
To examine the predictive performance of our deep learning
model, we compared several existing predictors with our
model, including iDNA4mC (Chen et al., 2017), 4mCPred
(Su et al., 2018), 4mcPred-SVM (Wei et al., 2018a), and
4mcPred-IFL (Wei et al., 2019a). It is worth noting that
besides our predictor using deep learning, other compared
predictors are all traditional machine learning algorithm -SVM
and different handcrafted sequential features to train their
respective models. For fair comparison, all the predictors are
evaluated with 10-fold cross validation on the same dataset used
in this study.

Table 2 lists the performances of the proposed method
and four existing predictors. We can see that our proposed
deep learning method achieves the highest performance in
two out of three species (C. elegans and A. thaliana), with
only one exception in D. melanogaster, in which our method
is slightly worse than existing predictors. Specifically, for C.
elegans, our predictor achieves 91.5%, 87.2%, 89.3%, and 0.787
in terms of SN, SP, ACC, and MCC, respectively. The overall
performances (ACC and MCC) by our predictor are significantly
better than the runner-up predictor−4mcPred-IFL (with the

TABLE 2 | Performance comparison of the proposed Deep4mcPred and existing

sequence-based predictors.

Species Predictors SN (%) SP (%) ACC (%) MCC

C. elegans iDNA4mc 79.0 77.0 78.0 0.560

4mcPred 82.5 82.6 82.6 0.652

4mcPred_SVM 82.4 80.7 81.5 0.631

4mcPred_IFL 89.0 87.1 88.0 0.761

Deep4mcPred 91.5 87.2 89.3 0.787

D. melanogaster iDNA4mc 83.3 79.0 81.2 0.620

4mcPred 82.4 82.1 82.2 0.646

4mcPred_SVM 83.8 82.2 83.0 0.661

4mcPred_IFL 86.5 88.0 87.3 0.745

Deep4mcPred 87.6 86.6 87.1 0.742

A. thaliana iDNA4mc 76.6 75.5 76.1 0.520

4mcPred 75.5 78.0 76.8 0.536

4mcPred_SVM 77.8 79.6 78.7 0.573

4mcPred_IFL 80.3 84.0 82.2 0.644

Deep4mcPred 86.0 82.9 84.4 0.689

The performances are evaluated with 10-fold cross validation. Note that the performances

of the other methods are cited from existing studies, since the source codes of existing

methods are not available. The value in bold indicates the optimal value of the indicator.

TABLE 3 | Performance comparison of the model using the attention mechanism

and the model not using the attention mechanism.

Species Models SN (%) SP (%) ACC (%) MCC

C. elegans ResNet_LSTM_Attention 91.5 87.2 89.3 0.787

ResNet_LSTM 90.9 87.2 89.0 0.781

D. melanogaster ResNet_LSTM_Attention 87.6 86.6 87.1 0.742

ResNet_LSTM 87.7 86.3 87.0 0.740

A. thaliana ResNet_LSTM_Attention 86.0 82.9 84.4 0.689

ResNet_LSTM 84.9 83.9 84.4 0.688

ACC of 88.0% and the MCC of 0.761). The more significant
improvement is observed in A. thaliana, in which our predictor
outperforms existing predictors in all metrics, leading by 5.7%,
2.2%, and 0.045 in terms of SN, ACC, and MCC, respectively.
In addition, we found that our model remarkably improves
the SN in all three species, demonstrating that our deep
learning model can more accurately identify true 4mC sites.
To better illustrate the difference between various models, we
used Delong’s test from the R package pROC to compare the
ROC curves, confirming that the performance gain from fixed-
length to full-length version is statistically significant (p =
0.0005). Generally, the comparative results demonstrate that
our deep learning model is better than existing predictors
using traditional machine learning algorithms in prediction
of 4mC sites. More importantly, our deep learning model
can automatically learn high-level feature representations to
capture the characteristics of 4mC sites, rather than specify
sequence-based features before model training as existing
predictors did.
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FIGURE 2 | Performance of the model using the attention mechanism and the model not using the attention mechanism. (A–C) represent the ROC curves of the two

models in the three species. (D–F) represent the PR curves of the two models in the three species, respectively.

Performance Impact by Integrating
Attention Mechanism
In this section, we evaluated whether or not the attention
mechanism can improve the performance of 4mC site prediction.
Subsequently, we compared the models taking into account
attention mechanism and the model not taking into account
attention mechanism for prediction. Both models were trained
and evaluated with 10-fold cross validation on the dataset used in
this study.

Results in Table 3 show that training with the attention
mechanism, the model achieves 89.3% in ACC and 0.787 in
MCC for C. elegans dataset, achieves 87.1% in ACC and 0.742
in MCC for the D. melanogaster dataset, achieves 84.4% in ACC
and 0.689 in MCC for the A. thaliana dataset, respectively. These
results demonstrate that using the attention mechanism we can
achieve good performances for 4mC sites prediction for different
species. The comparison between the models using and not using
the attention mechanism is shown in Figure 2. We can observe
that the model using attention mechanism performs better than
the model not using the attention mechanism in ROC and PR
curves. The details of the performances for both models are listed
in Table 3. Results show that using the attention mechanism,
the deep learning model can achieve the average improvement
of 0.1% roughly in three species as compared to the model
not using the attention mechanism. This demonstrates that the
attention mechanism indeed helps to capture discriminative
feature representations.

CONCLUSIONS

In this study, we have proposed Deep4mcPred, a novel predictor
for the prediction of DNA 4mC sites. Different from existing

predictors using traditional machine learning algorithms (like
SVM), Deep4mcPred is the first deep learning-based predictor,
in which we integrate residual network and recurrent neural
network–biLSTM to build a multi-layer deep learning predictive
system. As compared to existing predictors, our proposed
method has two advantages. First, our deep learning framework
does not need to specify the features when training the predictive
model. It can automatically learn the high-level features and
capture the characteristic specificity of 4mC sites, benefiting to
distinguish true 4mC sites from non-4mC sites. On the other
hand, our deep learning method outperforms the traditional
machine learning predictors in performance by benchmarking
comparison. It demonstrates that the proposed Deep4mcPred is
more effective in the DNA 4mC site prediction. Moreover, via
experimental comparison, we found that attention mechanism
introduced into the deep learning framework is useful to capture
the critical features.
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