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Accurate target detection and association are vital for the development of reliable target

tracking, especially for cell tracking based on microscopy images due to the similarity

of cells. We propose a deep reinforcement learning method to associate the detected

targets between frames. According to the dynamic model of each target, the cost matrix

is produced by conjointly considering various features of targets and then used as the

input of a neural network. The proposed neural network is trained using reinforcement

learning to predict a distribution over the association solution. Furthermore, we design a

residual convolutional neural network that results in more efficient learning. We validate

our method on two applications: the multiple target tracking simulation and the ISBI cell

tracking. The results demonstrate that our approach based on reinforcement learning

techniques could effectively track targets following different motion patterns and show

competitive results.

Keywords: cell tracking, linear assignment problem, deep learning, deep reinforcement learning, data association,

residual CNN

1. INTRODUCTION

Tracking individual cells in a group is the fundamental of many biomedical analysis tasks, including
understanding how genotypes are related to phenotypes, tracking the early development of organs
and meristems, and potentially tracking the development of cancerous tumors (Cheng et al., 2019,
2020; Han et al., 2019; Hu et al., 2019). It is often necessary to identify individual cells and follow
them over time to gain biological insights from time-lapse microscopy recordings of cell behavior.
Microscopic target tracking can provide technical support for the analysis of other features in
biological andmedical research (Cheng, 2019; Zhao et al., 2020). Therefore, it is of great significance
to find an automatic and reliable way to track multiple cells.

There are many procedures andmethods for tracking objects at the microscopic level. Tracking-
by-detection methods are widely used in multi-target tracking, in which detection and association
are two primary issues. Extensive research efforts have focused on detection, especially in cell-
tracking applications. For target association between frames, the naïve nearest-neighbor method
is commonly adopted but provides unsatisfactory association accuracy. Target association is a
combinatorial optimization problem, which is widely studied in computer science andmathematics
and many such problems are NP-hard. In general, the linear assignment problem is to find
the optimal assignment that maximizes or minimizes the sum of the costs in a cost matrix.
Classic algorithms for the linear assignment include the Hungarian method (Kuhn, 1955), auction
algorithms (Bertsekas, 1992), and certain variant algorithms.

Recently, some data-driven methods have been proposed to solve combinatorial problems.
Vinyals et al. (2015) first proposed a pointer network (PN) to solve combinatorial problems such
as the traveling salesman problem and convex hulls. Inspired by the PN, in Milan et al. (2017), a
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recurrent neural network is used to find the marginal probability
based on the costmatrix. A deepHungarian network based on the
recurrent neural network has also been proposed for multi-object
tracking (Xu et al., 2019).

Substantial progress in artificial intelligence has been made in
supervised learning, where systems are trained on vast amounts
of labeled data (Peng et al., 2019a,b,c, 2020). However, supervised
learning predominantly works in domains with an abundance of
human-labeled data. In many challenging domains, supervised
learning fails due to a lack of available data. Reinforcement
learning (RL) seeks to create intelligent agents that adapt to an
environment by analyzing their own experiences. Bello et al.
(2016) and Khalil et al. (2017) suggested using the RL method
to train the network without the ground-truth labels. Because
it is difficult to obtain optimal solutions for certain NP-hard
combinatorial problems. RL is a branch of machine learning that
focuses on obtaining an optimal policy to solve specific problems.
Following the work of Bello et al. (2016), some researchers have
proposed different deep reinforcement learning (DRL)-based
methods for solving combinatorial problems that have yielded
good performance (Emami and Ranka, 2018; Nazari et al., 2018;
Fu et al., 2019).

This work is motivated by several recent proposed DRL
methods for NP-hard problems. We propose a DRL approach
to automatically search for assignment solutions for a given cost
matrix. Specifically, we first modeled the association of cells
between frame as an linear assignment problem and formulated
the assignment problem with the one-to-one constraint as a DRL
problem. Then, with the objective of minimizing the sum of the
assignment costs, we used DRL to obtain the optimal assignment
solution. To convert the cost matrix into a finite action space, we
employ the residual learning and convolutional neural network
(CNN) to extract features from a set of training samples and use
the pointing mechanism (Bello et al., 2016) to satisfy the one-to-
one constraints of the linear assignment problem. Then, the CNN
is trained with the REINFORCE algorithm (Williams, 1992) to
search for assignment solutions, and the sum of the cost matrix of
the selected solution is used as a reward to adjust the parameters
of the neural networks.

Our contributions are the following:(1) A simple framework
for cell detection and association based on the idea of (2) We
introduce a formulation that translates the decision making in
the linear assignment problem algorithm into an RL problem. (3)
We propose a novel neural network architecture that end-to-end
maps the inputs to the decision outputs.

The organization of this paper is as follows. Related work is
introduced in section 2. The framework of the proposed method
and training details are presented in section 3. In section 4, some
experiments are conducted to evaluate the performance of our
proposed method. The conclusion is given in section 5.

2. RELATED WORK

2.1. Cell Tracking
A large variety of cell tracking methods have been described in
the existing literature. These cell trackingmethods can be broadly

grouped into two categories: (i) tracking by model evolution and
(ii) tracking by detection.

In tracking by model evolution methods, cell segmentation
and tracking are solved simultaneously in each frame of a cell
video. Typically, thesemethods are driven by data in some feature
space and make a regularity assumption on the smoothness of
the curve. In this framework, cells are represented by parametric
or implicit active contour models. Parametric models utilize
the explicit representations of cell boundaries such as Gaussian
Mixture Models (GMM) (Amat et al., 2014), active meshes
(Dufour et al., 2010), or active contours (Zimmer et al., 2002).
Implicit models often use the level set to represent the cell
contours (Dzyubachyk et al., 2010). These cell tracking methods
have some shortcomings. For example, the parametric method
depends on the chosen parameterization, and the implicit
method is computationally expensive.

Existing cell tracking methods generally adopt the tracking
by detection strategy. The tracking by detection method
typically consists of two stages: the cell detection stage and
cell association stage. In the first stage, the cells are detected
by image segmentation methods. Subsequently, in the second
stage, detected cells are associated with neighboring frames in
real-time or all frames offline. Cell detection can be achieved
by classic image segmentation algorithms based on intensity
features, gradient features, or texture features (Chenouard et al.,
2013; Xing and Yang, 2016). Recently, several deep learning
approaches have shown significant success in cell segmentation
tasks (Ronneberger et al., 2015; Falk et al., 2019; Gupta et al.,
2019).

3. METHODS

In this section we present a tracking by detection approach
to construct the cell trajectories from a time-series microscopy
image sequence. The framework consists of two modules: cell
detection and cell association. The U-Net segmentation method
is employed to detect all the cells in each frame, and then we
adopt the traditional single hypothesis tracking method with
Kalman filter and frame-by-frame data association to produce the
cell trajectories.

3.1. Initial Cell Segmentation
Ronneberger et al. (2015) proposed a new neural network for
cell segmentation, namely U-Net, which has achieved state-of-
the-art results on a wide array of biomedical image segmentation
tasks (Ronneberger et al., 2015; Falk et al., 2019). Since then, most
attempts to improve the performance of cell tracking methods
have been based on the U-Net architecture (Li et al., 2018). In
our approach, cell segmentation is performed using the U-Net
implementation of Ronneberger et al. (2015).

3.2. Cell Time-Series Model
In this work, we assume that each cell can be modeled as a
discrete-time Markov process:

xt = Axt−1 + Qt (1)
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where A is the transition matrix and Qt is the process noise
matrix, which follows a Gaussian distribution. Once the detected
cells are retrieved, the detection results Zt can be viewed as the
measurements, where each measurement zit ∈ Zt is defined as

zit = Hxit + Rt (2)

A Kalman filter can be adopted to use those cell detection
results to predict the state of cells, which can then be used
to formulate the cell association between frames as a linear
assignment problem.

3.3. Deep Reinforcement Learning Based
Cell Association
To solve the target association problem by DRL, we present our
solution architecture in three parts: (1) Problem Formulation.
We formulate the procedure for selecting an assignment solution
as an RL problem to associate target states and measurements.
(2) Neural network architecture. An end-to-end architecture that
maps from the state space to the action space is designed. (3)
Training algorithm. We present the RL algorithm used for the
policy search.

3.3.1. Problem Formulation

3.3.1.1. The formulation of linear assignment problem
Assume that the cell trajectories can be denoted as a set �t−1 =
{ω1

t−1,ω
2
t−1, ...,ω

Mt−1
t−1 } at time t − 1. Each element of �t−1

corresponds to a cell trajectory. To find their associated new
measurements at time step t, each trajectory would be predicted
by a Kalman filter and then find the possible association between
predicted cell states and new measurements. Let the set B =
{x̂1t|t−1, x̂

2
t|t−1 · · · , x̂

Mt−1
t|t−1)} represent the predicted states for all the

existing cells at time t−1. Then the association mapping from set

B to the measurement set Zt = {z1t , z2t , ..., z
Nt
t } can be treated as

an assignment problem.
The values of the cost matrix D are calculated through

the location distance between the elements of set B and the
measurements as shown in Figure 1. Unlike the conventional
association cost matrix, we construct a new cost matrix that
considers the association event. To be specific, matrix D
is defined as

D =
(

3 ϒ

Ŵ 3T

)
(3)

where D is a (Mt−1 + Nt) × (Mt−1 + Nt) square matrix, with
the row and column indices representing the Mt−1 prediction
from trajectories and Nt measurements. The matrix D consists of
four sub-matrices 3(Mt−1 × Nt),ϒ(Mt−1 ×Mt−1), and Ŵ(Nt ×
Nt) implies that the corresponding target’s state is judged as
"Tracked", "Lost," and "New," respectively. In the sub-matrices
ϒ(Mt−1 × Mt−1) and Ŵ(Nt × Nt), we define the value of the
diagonal element as a distance threshold and other elements to
be ∞. Here, when a predicted state is highly self-associated, we
consider it to be lost. An estimated state that highly associates

FIGURE 1 | Illustration of the proposed association matrix. {x̂it|t−1}2i=1 is the

prediction by the Kalman filter. {ẑit}3i=1 are the measurements.

itself is considered as a new target. The elements of the sub-
matrix 3(Mt−1 × Nt) are the distances between the prediction
state and measurements.

3.3.1.2. RL formulating for the linear assignment problem
The standard RL formulation starts with an MDP: at time step
t ≥ 0, an agent is in a state st ∈ S , takes an action at ∈ A,
receives an instant reward rt ∈ R and transitions to the next state
st+1 ∼ p(·|st , at). A policy π :S 7→ P(A) gives a mapping from
any state to a distribution over actions π(·|st). The objective of RL
is to search for a policy that maximizes the expected cumulative

rewards over a horizon T, i.e., maxπ J(π) : = E[
∑T−1

t=0 rtγ
t;π],

where γ ∈ (0, 1] is a discount factor and the expectation is
w.r.t. randomness in the policy π as well as the environment
[e.g., the transition dynamics p(·|st , at)]. In practice, we consider
parameterized policies πθ and aim to find θ∗ = argmax J(πθ ).

To formulate the procedure of selecting assignment solution
algorithms into an MDP, we specify below the state space S ,
action space A, reward function rt and transition dynamics
st+1 ∼ p(·|st , at).
State Space S. The set of states (S) is defined as all costs of the
predicted cell assigned to the detected cell. In this sense, the set S
varies according to the number of tasks in the instance.
Action SpaceA.The agent can choose to either assign a predicted
cell to a detected cell or not. Thus, we define the action space as
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A = {0, 1}, where 1 represents the predicted cell assigned to a
detected cell and 0 represents otherwise.
Reward rt. Formost RL applications, designing a reward function
is always a critical part, especially when the agent needs to
precisely perform actions in a complicated task. A good reward
function will make the agent learn more efficiently and achieve
better results. By contrast, an agent with a poor reward function
may suffer slow convergence or even produce undesirable results.
The objective of the linear assignment problem is to minimize the
total cost of the assignment solution. To achieve this objective,
we design the reward function as the sum of the assignment cost
after producing an assignment solution. Given a cost matrix
C = {cij}, i = 1, ...,N, j = 1, ...N and a selected assignment
solution X = {xij}, i = 1, ...,N, j = 1, ...N, the reward rt can be

defined as rt =
∑N

i=1

∑N
j=1 cijxij.

Transition st. In our work, the state transition is deterministic
after an action has been chosen because it can directly assign the
corresponding task to the person.

3.3.2. Architecture Details
The input of our residual CNN (ResCNN) is a cost matrix C
that can be treated as the sum of a probability distribution for
matching X and a noise V as

C = X + V (4)

The sequence-to-sequencemodels the linear assignment problem
(Milan et al., 2017; Emami and Ranka, 2018) with the aim of
learning a mapping function F(C) = X to directly predict
the probability distribution. For ResCNN, we adopt the residual
learning framework to train a residual mapping R(C) ≈ V , and
then we have X = C−R(C). Figure 2 illustrates the architecture
of the proposed ResCNN for learningR(C). In the following, we
explain the architecture of ResCNN.

Our proposed neural network is similar to the image
denoising network introduced in Zhang et al. (2017). The input
of the neural network is a cost matrix that can be regarded
as a single-channel image. With the cost matrix C as input,
the following ResCNN consists of a series of different types of
fundamental blocks. The first block consists of a convolution
layer (Conv) and a rectified linear unit (ReLU) (Krizhevsky et al.,
2012) layer, where the convolution layer utilizes 8 filters of size
3 × 3 × 1 to generate 8 feature maps. Then, the 8 feature maps
are fed into three Conv+BN+ReLU-type blocks. For these three
blocks, 8 filters of size 3×3×64 are used, and batch normalization
(BN) (Ioffe and Szegedy, 2015) is added between convolution and
ReLU. Then, the noise V is computed by the last convolution
layer, and the probability distribution of the assignment matrix X
is subtracted from its input (cost matrix). Finally, the probability
distribution is clipped by the tanh activation function so that the
intensities of the output lie in the range [–1,1].

In summary, the main feature of our ResCNN is the adoption
of residual learning to learn R(C) rather than the probability
distribution directly. In addition, borrowing the idea of Zhang
et al. (2017), batch normalization is incorporated into the

ResCNN to speed up the training procedure and improve
the performance.

In the following, we will give some important details about our
network design and training.

3.3.2.1. Integration of Residual Learning and Batch

Normalization
Batch normalization is a standard technique that is widely used
in image classification CNN models. Training a deep neural
network model is often difficult not only because of the gradient
vanishing/exploding problem but also because the distribution
of data changes between layers, which is called the “internal
covariate shift" phenomenon. Batch normalization is a technique
that can relieve this phenomenon by introducing several simple
operations to the input data. The goal of the normalization step
for batch normalization is to transform the layer input t before
non-linearity as follows:

t′ = t − E[t]√
Var[t]

(5)

where E[t] and Var[t] are the expectation and variance computed
over all training data. It is usually impractical to exactly calculate
E[t] andVar[t] with stochastic optimization. Batch normalization
instead approximates E[t] and Var[t] via the mini-batch statistics
during training. It would be beneficial if the mini-batch statistics
agree well with the full training data statistics.

Batch normalization and residual learning are two important
algorithms for designing a neural network architecture. Residual
learning and batch normalization can benefit from each other
(Zhang et al., 2017). In this paper, we adopt this strategy
by integrating these two technologies. Specifically, such an
integration not only can significantly increase the training speed
but also tends to improve the performance.

3.3.2.2. Zero Padding to Avoid Boundary Artifacts
In the linear assignment problem, the input and output need to
be consistent. However, due to the characteristics of convolution,
the neural network is prone to producing boundary artifacts
without proper handling. There are two common ways to solve
this problem: symmetrical padding and zero padding. In our
work, we select zero padding to maintain a consistent matrix size.

3.3.2.3. Pointing Mechanism to Satisfy the Constraints
Unlike ordinary visual tasks, for the linear assignment problem,
one major characteristic is that one detected cell can only be
assigned to one predicted cell. The neural network output should
satisfy one-to-one constraints. Let X = C−V denote the outputs
of the neural networks. To avoid collisions whereby one task may
be assigned to multiple cells simultaneously, we use a mask to set
the probability of detected cell that have already been assigned to
a predicted cell to−∞, as shown in Equation (6)

uij =
{
Yij if j 6= πi′ ∀i′ < i
−∞ otherwise.

(6)

where uij is the probability that predicted cell i at time t − 1 is
assigned to detected cell j at time t. πi′ is the solution for cell i′.
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FIGURE 2 | The architecture of the proposed ResCNN network.

Next, a normalized softmax operation is applied to u to compute
the final output probability matrix.

3.3.3. Training With Policy Gradients
In this paper, we utilize the RL to train the neural network. The
input of the network can be denoted as C = cij. The output
of the network is the assignment solution π . In this work, we
use the sum of the selected costs AC(S|C) as the reward. More
specifically, the parameters of the neural network can be denoted
as θ , and the goal of training is the expected reward, which is
given by an input cost matrix C defined as follows:

J(θ |C) = Eπ∼p(π |C;θ)AC(π |C) (7)

In our work, p(π |C; θ) is the stochastic policy of a neural network
with parameters θ . We learn θ using the Adam optimizer based
on the REINFORCE algorithm (Williams, 1992). REINFORCE
can make weight adjustments in a direction that lies along the
gradient of expected reinforcement. Based on REINFORCE, in
each step of training, if the reward, baseline value and probability
distribution of prediction are obtained, then the parameters of
the neural network, θ , are incremented by an amount

∇θ J(θ |C) = Eπ∼pθ(·|C)

[
(AC(π |C)− b(C))∇θ log pθ (π |C)

]
(8)

where b(C) denotes the baseline value of the assignment cost
and is used to reduce the variance of the gradients. If we
randomly obtain M i.i.d. samples, then the above gradients can
be approximated by

∇θ J(θ |C) ≈
1

M

M∑

i=1

[(
AC (πi|Ci) − b (Ci)

)
∇θ log pθ (πi|Ci)

]

(9)
For a cost matrix, the baseline value b(Ci) is initialized by
calculating the sum of the cost of the assignment solution that is
generated by the neural network. In each step, the baseline value
is updated as follows:

b′ (Ci) = b (Ci) + α
(
AC (πi|Ci) − b (Ci)

)
(10)

Algorithm 1 gives the pseudo-code of the training procedure of
the neural network.

Algorithm 1: Training Procedure

1: Training set {Ci}Mi=1, number of training steps T, batch size B.
2: Initialize the neural net params θ .
3: Initialize baseline value.
4: for t = 1 to T do

5: Select a batch of samples Ci for i ∈ {1, · · · ,B}.
6: Sample solution πi based on pθ (·|Ci) for i ∈ {1, · · · ,B}.
7: Let gθ=

1
B

∑B
i=1[(AC(πi|Ci)− b(Ci))∇θ logpθ (πi|Ci)].

8: Update θ = ADAM(θ , gθ ).
9: Update baseline b(Ci) = b(Ci)+ α(AC(πi|Ci)− b(Ci)) for

i ∈ {1, · · · ,B}.
10: end for

11: return neural net parameters θ .

4. EXPERIMENTS

To evaluate the performance of our proposed method, we
consider two applications of the linear assignment problem:
maximum weight matching (MWM) and data association for
multi-target tracking. We first compare our method with the
state-of-the-art DRL method for maximum weight matching.
Then, we test our method on a multi-target tracking scenario.
Finally, we evaluate our proposed method on three cell
microscopy datasets, Fluo-N2DH-GOWT1, PhC-C2DH-U373,
and Fluo-N2DH-SIM+ from the ISBI 2015 Cell Tracking
Challenge (Maška et al., 2014). Each datasets contains 2 training
sequences and 2 challenge sequences. Since it’s hard to get the
ground truth of segmentation and trajectories in the challenge
datasets, we performed tracking experiments on testing datasets.

In all experiments, we used 500, 000 training samples for the
data association. To produce the training samples, we randomly
sample M + N points in the euclidean space to simulate the
data association between two frames. We use the same hyper-
parameters to train our model. The initial learning rate for the
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TABLE 1 | Median optimality ratios on the MWM test set.

N = 15 N = 20 N = 25

AC+Matching 0.935 0.897 0.725

SPG+Matching 0.904 0.895 0.889

Ours 0.977 0.968 0.965

Adam optimizer is 10−3 and decays every 5,000 steps by a factor
of 0.96.

4.1. Maximum Weight Matching
Define a weighted bipartite graph G = (V = {V1,V2},E), where
V is the vertex set containing two disjoint vertex sets V1 and
V2, with |V1| = N and |V2| = N, and E is the set of all edges
between every node v1 ∈ V1 and v2 ∈ V2. Let wij, i ≤ i ≤
N, 1 ≤ j ≤ N denote the associated weight for the edges in
the graph. Then, a matching in a graph G is a subset of E such
that no two edges share a common vertex. A maximum weight
matching is a matching such that the sum of the weights of the
edges in the matching is maximal (Emami and Ranka, 2018). In
our simulation, each vertex of the graph is represented by a point
(xi, yi), and Wij is the Euclidean distance between vertex i and j.

We select the optimality ratio as predicted matching weight
optimal matching weight ∈ [0, 1] to

measure the performance of our proposed method. The optimal
matching weight is computed by the Hungarian algorithm, and
the predicted matching weight is obtained by our method.

We trained our method on MWM with N = {15, 20, 25}.
The results are comparedwith SPG+Matching andAC+Matching
(Emami and Ranka, 2018), two DRL method solvers for the
MWM problem. The results in Table 1 are the median optimality
ratios on the test set. As a baseline, the performances of
SPG+Matching and AC+Matching also are presented in Table 1.
We observe drastic drops in median optimality ration for the
AC+Matching methods with an increasing number of nodes. By
contrast, the performances of SPG+Matching and our method
show less drastic drops. The results clearly show that our model
is competitive with AC+Matching and SPG+Matching methods.

4.2. Simulated Multiple Target Tracking
One major application of linear assignment is data association
for multi-target tracking. Therefore, we set up a simulated multi-
target tracking scenario to evaluate the performance of the
proposed method similar to Milan et al. (2017). Five targets cross
each other at a certain time. The track state x is represented
by a vector

[
x y ẋ ẏ

]
, which contains the position (x, y) and

velocity (ẋ, ẏ) information. Figure 3A shows the ground truth of
the five targets. The measurements provide noisy positions for
the targets, i.e., zt = Hxt+ vt , whereH =

[
1 0

]
⊗ I2×2 and vt ∼

N {0,R}. Figure 3B gives the measurements for R = 0.05I2×2.
We replace the data association part of JPDA with our

method and call it JPDA-RL. The input matrix C ∈ R
N×N

is the Mahalanobis distance between the estimated target
states and the measurements. We compare JPDA-RL with the
traditional joint probabilistic data association (JPDA) filter
(Fortmann et al., 1980), an approximation of the JPDA filter

TABLE 2 | Average OSPA-T distance and IDSW for different methods over 100

random runs.

Method
R = 0.01I2 R = 0.05I2 R = 0.1I2

OSPA-T IDSW OSPA-T IDSW OSPA-T IDSW

JPDA 0.19(0.05) 0.90(0.88) 0.34(0.11) 0.70(0.82) 0.41(0.12) 0.40(0.70)

JPDA10 0.23(0.10) 0.70(0.67) 0.37(0.11) 0.90(0.88) 0.43(0.09) 1.10(0.99)

JPDA-HA 0.28(0.06) 0.60(0.84) 0.37(0.10) 0.70(0.95) 0.46(0.14) 1.30(0.82)

JPDA-RL 0.28(0.06) 0.60(0.84) 0.36(0.08) 0.60(0.70) 0.45(0.13) 1.10(0.99)

LSTM 0.11(0.01) 1.07(0.84) 0.21(0.01) 1.00(0.74) 0.37(0.11) 0.60(0.89)

The standard deviations are given in parentheses.

with the 10 best association hypotheses (Hamid Rezatofighi
et al., 2015), an approximation of the JPDA filter with the
Hungarian algorithm used to solve the association probabilities
and the supervised LSTM used to solve the association problem
in Milan et al. (2017).

Figure 3 shows the tracking results from the traditional JPDA
filter and our proposed method with the JPDA filter of a single
run. The traditional JPDA filter cannot handle the coalescence
phenomenon. Our method can correctly distinguish the targets
after they have crossed each other.

We employ two metrics to evaluate the tracking results: the
Optimal Sub-pattern Assignment metric for track (OSPA-T) and
Number of Identity Switch (IDSW). The OSPA-T distance (Ristic
et al., 2011) is a metric used to evaluate differences between the
real tracks Tt =

{
X1
t , . . . ,X

m
t

}
and the estimated tracks T̂t ={

X̂1
t , . . . , X̂

n
t

}
by computing the quantity

d
(c)
p

(
Tt , T̂t

)
=
(
1

n

(
min
π∈5n

m∑

i=1

d(c)
(
Xi
t , X̂

π(i)
t

)p

+cp(n−m)

))1/p

ifm ≤ n

d
(c)
p

(
Tt , T̂t

)
=d

(c)
p

(
T̂t ,Tt

)
elsewhere

(11)

where d(·, ·) is the L2-norm, 5n is the permutations in {1, . . . , n}
and d(c)

(
Xi
t , X̂

j
t

)
is the distance between Xi

t and X̂
j
t such that

d(c)
(
Xi
t , X̂

j
t

)
= min

(
c, d

(
Xi
t , X̂

j
t

))
(12)

To compute the OSPA-T distance for the estimated tracks and
true tracks, two parameters, the cardinality penalty c and outlier
sensitivity p, need to be set. In our simulations, we set c = 1
and p = 1.

In Table 2, we present a comprehensive comparison of the
average OSPA-T distance and IDSW for different algorithms for
different measurement noise levels. Interestingly, the IDSW of
our method is lower for other algorithms at low measurement
noise levels.
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FIGURE 3 | Comparison of the track maintenance performance of different algorithms: (A) Ground-truth trajectories of the five targets, (B) the measurements of the

five targets, (C) the JPDA filter, (D) our proposed method. Each color corresponds to a particular target. Note that our method correctly resolves this crossing case,

whereas the JPDA filter switches the two trajectories after the targets cross.

TABLE 3 | TRA, SEG and OPT performance for our method, CPN, KTH

(Magnusson and Jaldén, 2012), BLOB (Akram et al., 2016), U-Net (Ronneberger

et al., 2015), U-Net-S (Gupta et al., 2019), and GC-ME (Bensch and

Ronneberger, 2015).

TRA SEG OPT

Fluo-N2DH-GOWT1-01

CPN 0.9864 0.8506 0.9185

BLOB 0.9733 0.7415 0.8574

KTH 0.9462 0.6849 0.8155

Ours 0.9875 0.8585 0.9230

Fluo-N2DH-GOWT1-02

CPN 0.9719 0.8725 0.9222

BLOB 0.9628 0.9046 0.9337

KTH 0.9452 0.8942 0.9197

Ours 0.9575 0.9181 0.9378

PhC-C2DH-U373-01

CPN 0.9594 0.7336 0.8456

U-Net 0.9869 0.9375 0.9622

GC-ME 0.9779 0.8748 0.9264

Ours 0.9919 0.8527 0.9223

PhC-C2DH-U373-02

CPN 0.9346 0.7376 0.8361

U-Net 0.9547 0.8303 0.8925

GC-ME 0.9040 0.7567 0.8304

Ours 0.9318 0.7735 0.8527

Fluo-N2DH-SIM+-01
U-Net-S 0.9862 0.8866 0.9364

Ours 0.9841 0.8854 0.9348

Fluo-N2DH-SIM+-02
U-Net-S 0.9597 0.7381 0.8489

Ours 0.9618 0.7616 0.8617

The best TRA and SEG values for each sequence are highlighted.

4.3. Cell Tracking
The segmentation task by U-Net and data association by
DRL are conducted on AMD Ryzen 9 3900X 12 core

processors with a GeForce GTX 2060 graphics card. For
comparison, segmentation (SEG), tracking (TRA) accuracy
measures and overall performance (OP) are adopted to
evaluate the tracking performance. For TRA, Acyclic Oriented
Graph Matching (AOGM) is used to count the changes
needed to transform the cell tracking family tree into the
ground-truth graph. OP is defined as the mean of TRA
and SEG.

The results of this work are compared against the best
performing available methods for each dataset. For the Fluo-
N2DH-GOWT1-01 dataset, we compare our method with the
two tracking-by-detection [CPN (Akram et al., 2017) KTH
(Magnusson and Jaldén, 2012)] and one joint cell detection
and tracking [BLOB (Akram et al., 2016)] methods as the
baselines. For the PhC-C2DH-U373 dataset, we use the best
performing U-Net (Ronneberger et al., 2015) and a graph cuts
and model evolution-based tracking method (GC-ME) (Bensch
and Ronneberger, 2015) as the baselines. For the Fluo-N2DH-
SIM+ dataset, we use a Siamese matching-based tracker based on
the U-Net segmentation results (U-Net-S) (Gupta et al., 2019) as
the baseline.

Table 3 lists the TRA, SEG and OPT scores for all methods
over three datasets. It can be observed that our method yields
the best TRA, SEG and OPT over the Fluo-N2DH-GOWT1-01
sequence. However, our method has a lower TRA score over the
Fluo-N2DH-GOWT1-02 sequence. One reason for the lower TRA
score of our method is that the Fluo-N2DH-GOWT1-02 sequence
has multiple cell events, including mitosis, apoptosis and cell
fusion. Our method does not consider the complex process of
cell differentiation.

For the PhC-C2DH-U373 sequences, the U-Net tracking

method uses the cell segmentation model trained from two

sequences. Therefore, the SEG score of U-Net is the best

among all algorithms over the PhC-C2DH-U373 sequences.

However, even with that advantage, our method still obtains
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a higher TRA score on the PhC-C2DH-U373-01 sequence. U-
Net produces very accurate cell segmentation masks on PhC-
C2DH-U373 sequences, but for the data association step, it
often fails to associate correctly. The reason is that U-Net
utilizes the greedy search method to link the cell segmentation
between frames.

For Fluo-N2DH-SIM+ sequences, our method has similar
performance withU-Net-S. Once the cells have been detected, our
method for cell tracking is able to achieve high overall accuracy
in linking the cells between frames.

5. CONCLUSION

In this paper, we presented a solution to the problem of
data association in cell tracking using the deep reinforcement
learning. We formulated the data association problem into
a linear assignment problem and then proposed a deep
reinforcement learning framework which utilizes a residual CNN
neural network. In simulation results, we compare the proposed
method with other state-of-the-art approaches on various cell
tracking datasets, and the results show that the proposed method
achieves better comprehensive performance. Thus, our method
likely has applications in the field of biomedical engineering.
There are also some limitations of our tracking method that
leave room for improvement. In future research, we plan to

improve the data association method to deal with one-to-many
and many-to-one association problems.
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