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Concussion is a significant public health problem affecting 1.6–2.4 million Americans

annually. An alternative to reducing the burden of concussion is to reduce its incidence

with improved protective equipment and injury mitigation systems. Finite element (FE)

models of the brain response to blunt trauma are often used to estimate injury

potential and can lead to improved helmet designs. However, these models have yet

to incorporate how the patterns of brain connectivity disruption after impact affects

the relay of information in the injured brain. Furthermore, FE brain models typically

do not consider the differences in individual brain structural connectivities and their

purported role in concussion risk. Here, we use graph theory techniques to integrate

brain deformations predicted from FE modeling with measurements of network efficiency

to identify brain regions whose connectivity characteristics may influence concussion

risk. We computed maximum principal strain in 129 brain regions using head kinematics

measured from 53 professional football impact reconstructions that included concussive

and non-concussive cases. In parallel, using diffusion spectrum imaging data from

30 healthy subjects, we simulated structural lesioning of each of the same 129 brain

regions. We simulated lesioning by removing each region one at a time along with all its

connections. In turn, we computed the resultant change in global efficiency to identify

regions important for network communication.We found that brain regions that deformed

the most during an impact did not overlap with regions most important for network

communication (Pearson’s correlation, ρ = 0.07; p = 0.45). Despite this dissimilarity,

we found that predicting concussion incidence was equally accurate when considering

either areas of high strain or of high importance to global efficiency. Interestingly, accuracy

for concussion prediction varied considerably across the 30 healthy connectomes. These

results suggest that individual network structure is an important confounding variable in

concussion prediction and that further investigation of its role may improve concussion

prediction and lead to the development of more effective protective equipment.
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1. INTRODUCTION

Approximately 1.6–2.4 million people are diagnosed with
concussion, or mild traumatic brain injury (mTBI), in the
United States annually (Corrigan et al., 2010; Taylor et al., 2017).
The incidence of mild TBI is rising sharply, with the number
of patients diagnosed with concussion increasing by over 60%
from 2007 to 2014 (Zhang et al., 2016). Although most patients
recover within 3 months (Alexander, 1995; Ponsford et al., 2000;
Kashluba et al., 2004), up to an estimated third of patients have
post-concussive complaints persisting more than 6 months after
injury (Stulemeijer et al., 2008; Norrie et al., 2010; Hou et al.,
2012).

Advanced protective headgear remains a key technology for
protecting the brain and reducing the incidence and morbidity of
concussion. For example, past work shows that using a superior
football helmet model can reduce the risk of concussion by
46% (Rowson et al., 2014). Likewise, current bicycle helmets
reduce brain injury risk almost 10-fold (Cripton et al., 2014).
One key recent advance in helmet design is the number of
computational tools available to designers to understand how
the direction, magnitude, and timing of an impact lead to
damage in different brain regions (Mao, 2018). Most recently,
these tools expanded to include a framework to examine impact
attenuation properties of different helmets and optimizing
these properties prior to fabricating a helmet prototype
(Giudice et al., 2019).

Nearly all computational models used to estimate brain injury
risk consider the maximum deformation in the brain, regardless
of where it occurs, as the primary metric that correlates to injury
risk (Takhounts et al., 2013; Gabler et al., 2018, 2019). While
these global deformation metrics are suitable for assessing the
severity of head impact, they lack the relationships that link
local tissue deformation to pathological or functional deficits.
In comparison, investigators focused on deformation within
specific areas of the brain that are commonly injured in TBI
to better predict injury risk (Kleiven, 2007). In the past decade,
though, there has been growing interest in considering the
brain as a network (Bullmore and Sporns, 2009) and several
studies point to specific brain areas and network features that
are critically important in intellectual performance (Kim et al.,
2016), age-dependent cognitive decline (Shu et al., 2018; Hinault
et al., 2019), and working memory (Román et al., 2017). These
approaches are equally valuable for understanding changes in
the brain following concussion, as several groups have quantified
the difference in brain network features (e.g., global efficiency,
path length, clustering coefficient, degree) for concussion (Yuan
et al., 2015, 2017a; Dall’Acqua et al., 2017; van der Horn et al.,
2017) and moderate to severe TBI (Caeyenberghs et al., 2012,
2013, 2014; Kim et al., 2014; Fagerholm et al., 2015; Hellyer
et al., 2015; Königs et al., 2017; Solmaz et al., 2017; Yuan et al.,
2017b; Verhelst et al., 2018; Watson et al., 2019). Therefore,
instead of estimating concussion risk using a measure of the
peak mechanical response of the brain during an impact, this
recent work allows us to more directly connect the consequences
of a mechanical impact with the resulting changes in brain
network architecture.

In particular, global efficiency (GE), which represents how
efficiently information is exchanged in the network, has been
widely reported to decrease following TBI across injury severities,
temporal scales post-injury, and subject ages (Caeyenberghs et al.,
2014; Yuan et al., 2015, 2017b; Dall’Acqua et al., 2017) and is
associated with cognitive deficits following TBI (Caeyenberghs
et al., 2014; Kim et al., 2014; Solmaz et al., 2017). For these
reasons, linking the strains that occur throughout the brain with
the expected changes on the global efficiency of a network could
represent a more specific prediction of concussion incidence.
Efforts to merge the brain’s mechanical response with the
resulting alterations in the network architecture do exist in past
studies (Kraft et al., 2012), but these studies used idealized
sinusoidal impact pulses and did not have reconstructions of real-
life impact loading that could be used to estimate concussion
risk. As a result, the link between regions affected by mechanical
loading and the regions important for network functioning has
not been established.

Here, we examine the utility of estimating injury risk after
head impact by considering how an impact can affect the
structure and, in turn, the global efficiency of a brain network.
We hypothesize that relating an impact to the changes in global
efficiency of a brain network will improve the accuracy of
concussion prediction relative to methods that rely only on the
maximum deformation that occurs anywhere in the brain during
impact. We use reconstructed kinematic loading conditions
from head impacts experienced by professional football players
(Sanchez et al., 2019) to determine regions of high strain. We
then simulate lesions to the structural connectivity of healthy
subjects to evaluate which regions were critical for maintaining
global efficiency. We compare the spatial distribution of high
strain regions with regions important for maintaining global
efficiency. We develop and compare exposure risk curves based
on peak deformation of the brain and based on changes to
global efficiency. We also examine how intersubject differences
in brain architecture and their effect on global efficiency affect
the injury risk curve. Together, this work points to the potential
for relating an impact more explicitly to the consequences
of brain network function, with the possibility of improving
concussion prediction and determining architectures that are
more vulnerable to impact.

2. MATERIALS AND METHODS

A complete overview of Methods can be found in Figure 1.

2.1. Finite Element Modeling
We utilized a three-dimensional finite element (FE) model
developed and validated in a previous study (Wu et al., 2019b)
to estimate the brain deformation that occurred in response
to a defined head impact. Details on the model development
and validation can be found in the literature (Wu et al.,
2019b). In this study, we do not include axonal fiber strain as
has been done by other groups (e.g., Giordano and Kleiven,
2014), and instead focused on the MPS in the gray matter.
The prescribed six degree-of-freedom head kinematics were
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FIGURE 1 | Overview of methods. (A) Sanchez et al. estimated the 6 degree-of-freedom kinematics of 53 NFL impact reconstructions and then used them as inputs

into a three-dimensional finite element (FE) model developed by Wu et al. (2019b) to estimate the regional maximum principal strain (rMPS) in each of 129 brain

regions (Sanchez et al., 2019). Image taken from Sanchez et al. (2019) with permission. (B) Betzel et al. parcellated diffusion spectrum imaging from 30 healthy

subjects to construct an adjacency matrix representing the structural connectivity between 129 brain regions (Betzel et al., 2016). We performed nodal deletions and

then calculated the resultant change in global efficiency (GE). Panel (C) is a schematic depicting the equations used for calculating GE itself, the network effects of a

simulated single node deletion, and the equation used to calculate the resultant change in GE. (D) We ranked the brain regions based on their rMPS and 1GE. Note

that 1GE is an average of all 30 healthy subject’s unique 1GEs. We reordered the regional rMPSs to match the high rMPS and high 1GE rankings. Note again that

each subject has its own reordered rMPS ranking based on differential 1GE. We then considered n = 1 to 4 regions’ rMPS in our multivariate logistic regression,

adding rMPSs in order based on the High rMPS Ranking or High 1GE ranking.

originally reconstructed from helmet-to-helmet impact events
occurring in professional football (Newman et al., 1999, 2000,
2005; Pellman et al., 2003), and recently corrected by Sanchez
et al. (2019). More information regarding the prescribed head
kinematics can be found in Figure S1.

The mesh of the Wu et al. brain model was morphed to
the anatomy of the Lausanne brain atlas with 129 regions
(Hagmann et al., 2008) using a morphing technique described
in Park et al. (2017), in which all elements were morphed using
transformations defined by mapping and matching the external
geometry of the brains (Wu et al., 2019a,b). For each brain region,
the regional maximum principal strain (rMPS) was computed
for the elements located within the region. From these, the 95th

percentile value was recorded, resulting in a single metric of
brain deformation for each of the 129 parcellated brain regions
in a given impact case. The global 95th percentile MPS (MPS95)
was also calculated, considering all elements in the brain, as is
commonly done in FE brain injury analysis to avoid potential
numerical instabilities (Panzer et al., 2012; Beckwith et al., 2018;
Gabler et al., 2019; Miller et al., 2019; Sanchez et al., 2019; Wu
et al., 2019a).

2.2. DSI Data Acquisition
Betzel et al. (2016) performed diffusion spectrum imaging
(DSI) for a total of 30 subjects along with T1-weighted
anatomical scans. Briefly, the DSI data were reconstructed in DSI
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Studio (http://dsi-studio.labsolver.org) using deterministic fiber
tracking until 1,000,000 streamlines had been constructed for
each subject. Anatomical scans were segmented using FreeSurfer
(Dale et al., 1999) and parcellated using the connectomemapping
toolkit (Cammoun et al., 2012). N= 129 regions were registered
to the B0 volume from each subject’s DSI data. From these
data, a weighted structural connectivity matrixCwas constructed
wherein the element Ci,j represented the number of streamlines
connecting regions i and j, divided by the sum of the volumes for
regions i and j (Figure S2). The complete list of regions can be
found in Table S1.

2.3. Network Importance: Lesion
Simulation and Global Efficiency
Calculation
TBI is frequently characterized as a disconnection syndrome
(Guye et al., 2010; Caeyenberghs et al., 2013). However, the
widespread damage associated with TBI makes it difficult to
pinpoint the specific brain regions most responsible for efficiency
of the brain network. As a means to measure the importance of
each brain region for network communication more precisely,
we systematically lesioned small portions of the network and
measured the corresponding effect on global efficiency. The
simplest strategy was to delete one node and all its connections,
measure the corresponding change in global efficiency, and
repeat this single nodal deletion on each of the 129 nodes. Our
next, more complex, approach was to randomly delete pairs
of nodes and all their connections throughout the brain, again
measuring the change in global efficiency for each of these 8256
deletion approaches. Finally, we examined deleting three nodes
with their connections simultaneously, and computed global
efficiency changes for each of these 349504 deletion strategies.
We note that these lesioning approaches were not dependent on
strain andwere independent from the 53 impact cases. Across our
single, pair and triplet node-deletions, the importance of network
communication was codified as the normalized change in global
efficiency (1GE).

Global efficiency is defined as the average inverse shortest
path length between two nodes in a network and is calculated
as follows using the Brain Connectivity Toolbox (Latora and
Marchiori, 2001; Rubinov and Sporns, 2010):

E(G) =
1

n(n− 1)

∑

i6=j∈G

1

d(i, j)
;

GE(G) =
E(G)

E(Gideal)
,

where GE is the global efficiency, the ratio of the average
efficiency (E(G)) to the global efficiency when all possible edges
are present (E(Gideal)). The number of nodes in the network is
n and d(i, j) represents the length of the shortest path between
nodes i and j in the network G.

Global efficiency is a measure of integration, and low global
efficiency indicates a greater cost associated with reaching a node
from any other node.We selected global efficiency (Bullmore and
Sporns, 2009) to evaluate the networks because of its established

relevance to clinical TBI data (Caeyenberghs et al., 2014; Yuan
et al., 2015, 2017b; Dall’Acqua et al., 2017; Solmaz et al., 2017;
van der Horn et al., 2017). To rank the network-efficiency-
important regions, we averaged 1GE across all 30 subjects
following each regional deletion. For single-node deletion, we
rank-ordered the brain areas based on how much the deletion
affected the change in global efficiency. For double and triple
node deletions, we first rank-ordered each deletion combination
by change in global efficiency, and then weighted by the node’s
ranking and normalized by the number of times the node
appeared in the full list of combinations: 128 for two-node
deletions and 8128 for three-node deletions.

2.4. Logistic Regression and Cross
Validation
Given the binary outcomes of our impacts (concussion or
no concussion), we selected logistic regression to evaluate
concussion likelihood. To evaluate the efficacy of our method,
we used leave-one-out cross-validation (LOOCV) to estimate the
accuracy of our prediction of concussion likelihood. LOOCV
was selected to maximize our training set for validation given
our small dataset size (n = 53) and for the low bias that
LOOCV exhibits (Beleites et al., 2005). Other studies have
employed LOOCV for the reconstructed football impacts and
supplemented with out-of-bootstrap cross-validation to address
LOOCV’s sometimes high variance, but it did not qualitatively
alter their findings (Beleites et al., 2005; Cai et al., 2018). We
also reported sensitivity and specificity of the cross-validated
predictions. Finally, we reported the area under curve (AUC)
for the cross-validation testing set using their probability scores
and the AUC for the training set. We used no more than
4 predictor variables in our logistic regressions because the 5
events per predictor variable (EPV) rule requires that for the 20
concussion events in our dataset, a maximum of 4 predictors can
be used without resulting in biased prediction (Vittinghoff and
McCulloch, 2006).

2.5. Statistical Analysis
For all comparisons, we used a Wilcoxon Rank-Sum Test at
a significance level of 0.05 to compare two conditions, with a
Bonferroni correction for n = 129 regions where applicable. All
plots are shown as mean± standard deviation.

3. RESULTS

Our first step was to test the effectiveness of well-acceptedmetrics
in separating impacts that caused concussion vs. impacts that
did not lead to concussion. We observed that the peak resultant
kinematics were significantly different between concussion and
no concussion cases (p = 3.65e-05 for peak linear velocity, p =

2.54e-05 for peak angular velocity, p = 0.16e-05 for peak linear
acceleration, and p = 1.01e-06 for peak angular acceleration;
Wilcoxon Rank-Sum Test) (Figure 2).

We next investigated the robustness of using these kinematic
variables to separate concussion and no concussion cases. For
each predictor, we performed logistic regression with leave-
one-out cross-validation (LOOCV). We selected LOOCV to
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FIGURE 2 | Peak kinematics delineate concussion outcomes. (A) Impact velocity is different for concussive vs. non-concussive impacts for peak linear velocity and

peak angular velocity. The AUC-testing of the ROC curve for the logistic regression for peak linear velocity was 0.80 and for peak angular velocity was 0.82. (B) Impact

acceleration is different for concussive vs. non-concussive impacts for peak linear acceleration and peak angular acceleration. The AUC of the ROC curve for the

logistic regression for peak linear acceleration was 0.83 and for peak angular acceleration was 0.88. *Indicates significance at the α = 0.05 level; Wilcoxon Rank-Sum

Test. Dashed line indicates 95% confidence interval.

TABLE 1 | Peak angular acceleration is the best performing predictor variable.

Predictor Accuracy Sensitivity Specificity AUC-testing AUC-training average

Peak linear velocity 0.81 0.70 0.88 0.80 0.84

Peak angular velocity 0.79 0.70 0.85 0.82 0.85

Peak linear acceleration 0.75 0.65 0.82 0.83 0.86

Peak angular acceleration 0.85 0.80 0.88 0.88 0.90

MPS95 0.79 0.70 0.85 0.85 0.87

Performance of logistic regression classifier using different predictors and leave-one-out cross-validation. Accuracy, sensitivity, specificity and AUC-testing were reported based on the

injury prediction of the left out impact case from cross-validation. AUC-training is reported as the average from the training sets.

validate our model because of its low bias and its suitability for
small sample sizes (Beleites et al., 2005). For each predictor, we
compared the validation accuracy, sensitivity, specificity, AUC
for the testing set, and average AUC for the training sets. For peak
resultant velocity and acceleration, univariate logistic regression
with LOOCV showed that peak angular acceleration had the
highest accuracy (0.85), sensitivity (0.80), specificity (0.88; along
with peak linear velocity), testing, and average training AUC
(0.88 and 0.90, respectively) (Table 1).

As an alternative to using loading kinematics for predicting
injury risk, we next examined if global 95th percentile maximum
principal strain (MPS95) predicted by the FE brain model during
impact improved the prediction of concussion likelihood. To
evaluate how effectively MPS95 separated concussion and no
concussion outcomes, we extracted the peak 95th percentile
MPS that occurred at any location in the brain for each of the

reconstructed impact loading conditions. As two separate groups,
we found a significant difference between concussive and non-
concussive impacts’ MPS95 (p = 7.24e-06; Wilcoxon Rank-Sum
Test) (Figure 3A). Univariate logistic regression (Figure 3B)
showed that MPS95 had a validation accuracy of 0.79. The
logistic regression produced an AUC of 0.87, Figure 3C),
sensitivity of 0.70, specificity of 0.85, testing AUC of 0.85, and
average training AUC of 0.87, never outperforming peak angular
acceleration (Table 1).

After considering MPS95 as a predictor for concussion, we
increased the complexity of our analysis and considered the
regional MPS (rMPS) within each of 129 separate brain regions.
First, we identified which regions experienced significantly
different strain values in concussive vs. non-concussive impacts.
For 102 out of 129 regions, there was a significant (α =

0.05, Bonferroni correction for n = 129; Wilcoxon Rank-Sum
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FIGURE 3 | Global 95th Percentile MPS (MPS95) delineates concussion

outcomes. (A) MPS95 is significantly different for concussion vs. no

concussion cases (p = 7.24e-06; Wilcoxon Rank-Sum Test). (B,C) Univariate

logistic regression using MPS95 produces an AUC-testing of 0.85. *Indicates

significance at the α = 0.05 level; Wilcoxon Rank-Sum Test.

FIGURE 4 | Regional MPS (rMPS) is significantly different for no concussion

vs. concussion cases. rMPS is significantly different in concussion vs. no

concussion impact cases in 102 regions (*p <0.05, Wilcoxon Rank-Sum Test

with Bonferroni Correction for n = 129 comparisons). Error bars represent

standard deviation across 20 concussion cases and 33 no concussion cases.

Test) difference in rMPS for concussive vs. non-concussive
impacts (Figure 4). Based on historical evidence linking the brain
deformation to injury risk (McAllister et al., 2012; Patton et al.,
2013), we identified the ten regions that experienced the highest
rMPS in impacts causing a concussion (Table 2). These regions
were primarily located in the lateral cortex.

Although this analysis tells us which brain regions are
more likely to experience damage during injury, it does not
provide any inference on how deformation throughout the
brain affects network function. To address this shortcoming, we
first created synthetic injuries to the network and computed

TABLE 2 | High rMPS regions concentrate in lateral cortex.

Ranking High rMPS regions

1 LH postcentral 3

2 LH precentral 4

3 LH pars opercularis 1

4 LH superior temporal 1

5 RH postcentral 1

6 RH precentral 1

7 LH superior temporal 2

8 RH superior temporal 1

9 LH supramarginal 1

10 RH supramarginal 2

Top 10 regions that experience high strain. RH, right hemisphere; LH, left hemisphere.

the impact of lesioning an individual region on the overall
network performance. As expected, the relative change in global
efficiency of the network after deleting each of the 129 nodes
(Figure 5A) varied between 0.01 and 0.08. We also considered
a more complex injury pattern by deleting pairs and triads
of nodes (Figures 5B,C) within the network and found the
brain regions that caused the most significant change in global
efficiency were nearly identical across these three types of lesion
deletion approaches. The top 10 regions for a single node
deletion can be found in Table 3. Interestingly, we observed no
correlation between the brain regions that showed the largest
deformations (Table 2) and the brain areas that were most
important for network function (Table 3; p = 0.45; ρ = 0.07,
Pearson Correlation).

We then took the two different rankings of important brain
regions reported in Tables 2, 3 and developed multivariate
logistic regressions for predicting concussion outcome.
Beginning with the region that showed the largest rMPS
in impacts producing concussion, we incrementally added
additional areas to the multivariate logistic regression and
computed the validation accuracy in each grouping of regions
using LOOCV (Figure 6A). We performed the same regression
using a progressively larger set of brain regions that were ranked
according to their importance in maintaining global efficiency
(Figure 6A). In both approaches, we terminated our multivariate
regression after 4 regions to avoid overfitting. The regressions
produced by adding high 1GE regions were comparable to those
produced by adding high rMPS regions, ranging from 0.75 to
0.83 (Figure 6B, Table 4).

Finally, given that our high 1GE ranking was based on
the average 1GE across 30 subjects, we wanted to know if
the validation accuracy varied across individual subjects’ brain
architectures. We selected the regions specific to each subject
that produced the greatest change in global efficiency. We used
the rMPS in those regions to construct a logistic regression
to predict concussion incidence across all impacts. We found
considerable variability in the validation accuracy across brain
architecture, ranging from 0.75 to 0.87 (Figure 6C, Table S2).
This variability was also reflected in other measures of predictive
power—sensitivity ranged from 0.60 to 0.80, specificity ranged
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FIGURE 5 | Change in global efficiency after regional deletion is consistent

across number of regions deleted. Average change in global efficiency after

deletion of one (A), two (B), and three (C) brain regions at a time.

from 0.81 to 0.94, testing AUC ranged from 0.82 to 0.88, and
average training AUC ranged from 0.85 to 0.95 (Table S2). The
upper bound of this range meets or exceeds that of peak angular
acceleration (Table 1), indicating that brain architecture may
influence concussion risk.

4. DISCUSSION

In this study, we were interested in investigating the role
that brain network features play in predicting concussion risk
from a head impact. We found that using regional maximum
principal strains (rMPSs) in brain regions that are important
for network function showed the same prediction accuracy as
the approach that used peak strains anywhere throughout the
brain (MPS95). Both approaches outperformed peak angular
acceleration on the prediction specificity. Finally, our work

TABLE 3 | Regions that produce a high change in global efficiency are

concentrated in subcortex.

Ranking High 1GE regions

1 RH caudate

2 LH caudate

3 RH putamen

4 LH putamen

5 LH insula 1

6 RH insula 1

7 LH posterior cingulate 1

8 RH hippocampus

9 LH hippocampus

10 LH pericalcarine 1

Top 10 regions that experience the greatest change in global efficiency when removed

from the network. RH, right hemisphere; LH, left hemisphere.

shows that the accuracy in predicting concussion risk could
change as the brain network architecture varies. Although these
findings suggest that, on average, the consideration of brain
architecture in predicting concussion does not substantially
improve the prediction accuracy over many past methods, our
results show that individual brain architecturemay strongly affect
the likelihood of concussion to a given impact.

Our work is one of few to integrate both impact biomechanics
and brain network properties to understand how rapid head
motions can lead to underlying structural changes to the brain.
The first paper, Kraft et al. (2012), simulated a single injury to
a representative structural network and examined how global
and local efficiency decreased with time after injury. Finding
that local efficiency was more affected than global efficiency, this
group concluded that the modular nature of the brain helped to
prevent loss of efficiency on the global scale from damage at the
local scale. In contrast, in our work, we focused on how strain
in regions important for global efficiency affected concussion
prediction rather than the time course of injury. We found that
average local efficiency values significantly correlated with global
efficiency, and that 3 out of the top 4 regions for local efficiency
matched those for the average change in global efficiency. As a
result, we focused our analysis on global efficiency. Furthermore,
we expanded on the number of cases, considering the effect of
53 impacts in regions important for 30 subjects rather than one
impact and one brain architecture.

In our simulated lesions, we qualitatively reproduced changes
observed in concussed structural networks. The regions that
produced a large change in global efficiency when removed
from the network align well with regions commonly affected
in concussion and TBI: hippocampus, posterior cingulate,
thalamus, caudate nucleus, insula, temporal cortex (Sharp et al.,
2011; Hulkower et al., 2013; Kim et al., 2014; Dall’Acqua et al.,
2016). Additionally, regions producing a large change in global
efficiency have high betweenness centrality (participate in a large
number of shortest paths) and can be considered hub regions,
which are commonly implicated in brain disorders (Crossley
et al., 2014). These qualitative findings emphasize the importance
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FIGURE 6 | High rMPS and high average 1GE rMPS are similarly accurate, but there are large differences when considering individual brain architectures. (A) The

rMPSes corresponding to the High rMPS Regions and the High 1GE Regions were used for Multivariate Logistic Regression using either 1, 2, 3, or 4 regions at a

time. (B) When considering the rMPS in multiple regions for logistic regression, adding regions based on 1GE ranking produced qualitatively similar results compared

to adding regions based on High rMPS ranking. (C) When considering the individual 1GE rankings for the 30 healthy subjects, there was considerable variability – up

to a 0.12 difference in validation accuracy depending on how many regions’ rMPS were considered.

TABLE 4 | High rMPS and high average 1GE rMPS are equivalent predictors.

Predictor Accuracy Sensitivity Specificity AUC-testing AUC-training average

High rMPS 1 0.81 0.75 0.85 0.85 0.88

High rMPS 2 0.81 0.70 0.88 0.86 0.89

High rMPS 3 0.83 0.70 0.91 0.84 0.89

High rMPS 4 0.79 0.65 0.88 0.84 0.91

High 1GE 1 0.83 0.70 0.91 0.85 0.88

High 1GE 2 0.83 0.75 0.88 0.86 0.90

High 1GE 3 0.81 0.65 0.91 0.86 0.91

High 1GE 4 0.75 0.65 0.82 0.83 0.90

Performance of logistic regression classifier using different predictors and leave-one-out cross-validation. Accuracy, sensitivity, specificity and AUC-testing were reported based on the

injury prediction of the left out impact case from cross-validation. AUC-training is reported as the average from the training sets.

of networks’ (and global efficiency’s) role in concussion
and TBI.

Furthermore, our findings also reflect what is found in
the head impact biomechanics literature. Concussion is widely
understood to be an injury caused by rotational motion,
with high angular acceleration often cited as the primary
biomechanical basis of diffuse brain injury (Ommaya and
Gennarelli, 1974; Gennarelli et al., 1982; Meaney et al., 1995;
Namjoshi et al., 2014). Considering that MPS95 is highly
correlated with angular acceleration in our dataset (ρ = 0.83,
Pearson Correlation), it is unsurprising that they had similar
prediction accuracy. Kleiven (2007) found using the KTH
isotropic finite element (FE) model and the original NFL
impact reconstructions that rotational kinematics were the most

important factor for intracranial deformations. Furthermore,
Beckwith and colleagues found that using MPS across the whole
brain, cerebrum, cerebellum, brainstem and corpus callosum
were no better than angular acceleration in predicting concussion
likelihood for football impacts (Beckwith et al., 2018). In light of
their finding and our simple impact events, it is unsurprising that
we found that angular acceleration generally outperformed any
other predictor, MPS or kinematic parameter.

Our work is not the first to analyze this professional football
dataset. King et al. (2003) used the dataset to make the
case for using the product of strain and strain rate in the
midbrain to predict concussion likelihood. Similarly, Kimpara
and Iwamoto (2012) used the dataset to develop criteria for
TBI based on angular acceleration, and validated their criteria
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using the cumulative strain damage measure (CSDM) based
on a strain threshold of 15%. Meanwhile, Kleiven (2007) used
the KTH isotropic FE model to examine the strain in different
brain regions, including the midbrain, brainstem, and thalamus,
and the relationships between different injury predictors. Later,
Giordano et al. (2017) used the KTH anisotropic FE model to
compare the performance of regional maximum axonal strain
(rMAS) against rMPS in different brain regions. Zhao et al. (2017)
extended Giordano and Kleiven’s work using rMAS and sampled
across all deep white matter regions of interest and neural tracts
to determine regional vulnerabilities. We used an alternative
approach that focused on the nodes in the brain, rather than the
white matter connectivity (edges) in the network, because this
approach would provide a more global measure of the predicted
effect on the brain network performance. More recently, Sanchez
et al. (2019) updated and corrected the reconstructions of the
original NFL dataset (Newman et al., 1999, 2000, 2005; Pellman
et al., 2003), which has since been employed in this work and
in Wu S. et al. (2019), which utilized yet another approach:
developing a neural network to rapidly determine rMPS for
injury risk.

However, it has been long known that similar impacts often
produce heterogeneous outcomes, and angular acceleration may
not be a universal metric for predicting concussion incidence
(Bohnen et al., 1992; Beckwith et al., 2013). In more complex,
less separable cases than those available to us here, more
information about the subject might aid in prediction. Several
studies report that neither head kinematics nor impact location
were associated with symptom severity and suggest that there
could be individualized injury tolerances that govern injury
response (Broglio et al., 2011; Rowson et al., 2018). One possible
reason for these individual injury tolerances could be due
to differences in white matter connectivity and the pattern
of injury. There is considerable variability across structural
connectivities, with coefficients of variation ranging from 0 to 1.7
for each edge (Cheng et al., 2012). Given our findings suggesting
that individual brain architectures will affect the accuracy of
predicting concussion, this well-characterized variability could
play a key role in individual concussion risk. It would not be
the first neurological disorder to tie risk with brain architecture—
e.g., in schizophrenia, a 12.7% reduction in rich club connectivity
distinguishes unaffected siblings from schizophrenic siblings
(Collin et al., 2013). Given this precedent, we expect subject-
specific changes to network connectivity may explain at least a
portion of heterogeneous concussion outcomes.

Our work also complements clinical studies on changes
in the brain networks of concussed patients. On average, a
reduction in global efficiency in TBI patients is associated with
worse performance in executive functioning, verbal learning, and
processing speed (Kim et al., 2014; Solmaz et al., 2017) and
worse switching task performance (Caeyenberghs et al., 2014).
An increase in global efficiency following aerobic training was
associated with an improvement in post-concussion symptom
inventory scores (van der Horn et al., 2017; Yuan et al.,
2017b) found that global efficiency was significantly different
for concussion patients with post-traumatic complaints relative
to concussion patients without complaints. Interestingly, van

der Horn et al. found that neither subgroup was significantly
different from uninjured controls, but that finding could be
due to the small sample size or use of binarized connectivity
rather than weighted connectivity. In other neurologic diseases,
it has already been shown that network features are predictive
of outcomes. For subjects with mild cognitive impairment,
network features were predictive of volumetric atrophy in 6
months and conversion to Alzheimer’s Disease (Nir et al., 2015;
Sun et al., 2019). Furthermore, progressive deterioration of the
rich club organization dynamically reflects the progression of
Alzheimer’s Disease (Yan et al., 2018). Because of the association
between networks and outcomes, even if network-informed
strain predictors are no better than peak angular acceleration for
concussion prediction, they could prove useful for predicting 3-
or 6-month outcomes.

How changes in structural connectivity give rise to functional
deficits is a topic that is still under active investigation. Although
after TBI there is a decrease in structural connectivity owing
to the physical disconnection of white matter tracts, there are
heterogeneous changes to regional brain activation in functional
connectivity (Sharp et al., 2014), and it is unclear how structural
deficits produce those functional changes. Hellyer and colleagues
have attempted to bridge this gap by using phase-coupled
oscillators to estimate functional connectivity from the structural
connectivity of TBI patients (Hellyer et al., 2015). They found that
the altered structural networks produced functional networks
that had reduced metastability, a measure of cognitive flexibility
(Hellyer et al., 2015). Their work builds on that of other groups
employing Kuramoto oscillator models to study how targeted
lesion to structural networks affect functional connectivity
(Honey and Sporns, 2008; Alstott et al., 2009; Váša et al., 2015).
They find that hub nodes, much like the regions important for
network communication identified in this work, have a greater
impact on network dynamics when removed from the network
(Honey and Sporns, 2008; Alstott et al., 2009; Váša et al., 2015).
Understanding how biomechanical trauma affects the structural
network could provide valuable insights into functional deficits
after TBI.

A second area receiving increasing attention in the literature
is the rebuilding of physical connections in the brain over
time after TBI. For example, Zhu et al. (2015) found that the
structural connectivity of the network was unchanged between 24
h and 30 days after concussion. However, on a longer timescale,
Wang et al. (2019) found a deterioration in interhemispheric
connectivity between 14 days and 1 year after concussion. Our
approach used a simple binary deletion scheme – the node
and its connections were completely deleted. A more gradual
disconnection scheme to mimic how strain might partially break
white matter connections would lead to a more gradual change
in global efficiency across impact severity and could be combined
with systems level models of brain plasticity to estimate the
recovery of connectivity following a given impact. Working
within this framework of using strain to inform white matter
degradation, one could also use an approach developed by Kraft
et al. (2012) to incorporate measured changes in cell death within
an organotypic slice culture as a model for connectivity over
72 h post impact. Interestingly, this approach showed the same
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network effects as applying a simple strain-based threshold to
decide whether to delete an edge, suggesting we would conclude
the same regions as being important for network communication
if we considered the effect of time.

A challenge faced by this study is that we lack subject-
specific features other than head kinematics. First, the physical
properties of the players are not explicitly accounted for, and
these properties among players may affect concussion risk. Head
and brain morphology, neck strength, and concussion history
play a known role in concussion likelihood, influencing how
strains develop in the brain during impact (Guskiewicz et al.,
2003; Danelson et al., 2008; Collins et al., 2014). It was not
possible to acquire such information based on our historical
dataset. However, others have found that when examining how
different brains respond to the same loading conditions, the
MPS experienced by the brain had a coefficient of variation of
2.33% (Giordano et al., 2017). In our model, we minimized the
error introduced by uncertainty in head kinematics by using
the most current kinematic loading conditions (Sanchez et al.,
2019). Finally, and most importantly, we do not have brain
imaging data for the subjects who suffered the impacts. As a
result of this limitation, we cannot directly link subject-specific
regions important for network communication with their head
kinematics. Rather, we can only infer how connectivity could play
a role in concussion risk.

Regarding the validity of finite element models, this work
relies on the biofidelity of computational models to predict
region-specific brain deformation. Unfortunately, experimental
data for validating regional brain deformation in the FE models
are not sufficient. The brain FE model used in this study was
evaluated with experimental brain deformation data, including
a subset of the data from recent in situ studies (Alshareef et al.,
2018). The fidelity of the FE models will be improved with
the recent advances in in situ experimental studies (Alshareef
et al., 2020; Zhou et al., 2020), but the markers used to measure
brain deformation in those experiments are still sparse and rarely
located in the cortical and subcortical gray matter regions, which
are the regions of interest in this study.

Furthermore, an important challenge for concussion research
in general is recruiting sufficient subjects to collect data on
concussion events. In this particular dataset, the cases have
been selected such that the concussion and no concussion cases
have little overlap in impact kinematics (namely peak angular
acceleration), which means that prediction concussion outcome
is uncomplicated. It is possible that for more complicated
cases, a more nuanced predictor may outperform angular
acceleration. It has been shown that for impacts that have a
high level of compliance, which results in long duration impacts,
MPS may be a more relevant predictor of concussion than
kinematics (Rousseau, 2014). Regardless, because concussion is
widely believed to have a predominantly mechanical etiology,

kinematics will always play a role as a potential grouping variable.
Additionally, because we had a limited number of cases, we
were not able to leverage a large number of potential concussion
predictors at once and were limited to up to four at a time
(Vittinghoff and McCulloch, 2006). It is likely that with more
predictors in the model and proper sample size for validation, we
could generate an even better concussion predictor and home in
on what characteristics are most associated with concussion.

From a larger perspective, our work showing that individual
brain architecture influences concussion prediction accuracy
implies that each person’s connectome affects individual
concussion risk after head impact. Equipped with information
on each person’s unique brain architecture, one could simulate
a variety of head impact scenarios and assign an overall risk
for each person. For athletes in contact sports, this process
would provide a useful screening tool for risk assessment prior
to play. Moreover, this analysis may even inform protective
equipment designed for individuals, rather than the current
universal design approach.

This work constitutes one of few studies to considering
the interplay between the network properties of structural
connectomes and injury biomechanics. In our work, we
found a potential role that individual connectomes might
play in governing concussion risk. In the long term, this
work highlights the potential importance of investigating the
structural connectivities of athletes before and after concussion,
in conjunction with recording of head impact exposure, as
part of a larger research agenda for mitigating concussions in
contact sports.
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