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Extracellular vesicles (EVs) are lipid membrane particles carrying proteins, lipids, DNA,
and various types of RNA that are involved in intercellular communication. EVs derived
from mesenchymal stem cells (MSCs) have been investigated extensively in many
different fields due to their crucial role as regeneration drivers, but research for their
use in degenerative diseases of the intervertebral disc (IVD) has only started recently.
MSC-derived EVs not only promote extracellular matrix synthesis and proliferation in
IVD cells, but also reduce apoptosis and inflammation, hence having multifunctional
beneficial effects that seem to be mediated by specific miRNAs (such as miR-233
and miR-21) within the EVs. Aside from MSC-derived EVs, IVD-derived EVs (e.g.,
stemming from notochordal cells) also have important functions in IVD health and
disease. This article will summarize the current knowledge on MSC-derived and IVD-
derived EVs and will highlight areas of future research, including the isolation and analysis
of EV subpopulations or exposure of MSCs to cues that may enhance the therapeutic
potential of released EVs.

Keywords: extracellular vesicle, microRNA, back pain, inflammation, regeneration, mesenchymal stem cell,
notochordal cell, nucleus pulposus

INTRODUCTION

Degenerative disc disease (DDD) is a major origin of low back pain, which is the leading cause of
activity limitation and work absence and results in a high economic burden (Pai and Sundaram,
2004). In the United States, the yearly costs related to back pain are around 100–200 billion USD
(Katz, 2006). DDD is defined as symptomatic intervertebral disc (IVD) degeneration, whereby
nociception is thought to be linked to increased levels of proinflammatory cytokines within the
tissue, including IL-1β, TNF-α, IL-6, IL-8, and IFN-γ (Wuertz and Haglund, 2013; Johnson et al.,
2015). While current treatment options for DDD, including oral analgesics and surgery, solely
aim to reduce the symptoms, researchers have made extensive efforts over the past decade to
develop novel therapeutic approaches that target the underlying pathophysiological mechanisms,
i.e., degeneration, inflammation, and enhanced apoptosis (Fernandez-Moure et al., 2018; Tendulkar
et al., 2019). A wide range of approaches has been tested which are described in detail elsewhere
(Krupkova et al., 2018; Smith et al., 2018; Clouet et al., 2019; Hodgkinson et al., 2019; Loibl et al.,
2019), ranging from autologous disc cell therapy, growth factors, biologics, gene transfection,
and biomaterials to CRISPR/Cas9 genome engineering, as well as the use of mesenchymal stem
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cells (MSCs). However, none of these concepts have been
successfully incorporated yet into daily clinical practice.

As in numerous other fields, great hopes were pinned on
MSCs for the treatment of DDD due to their regenerative and
anti-inflammatory potential that would allow simultaneously
targeting all primary pathological drivers (Vadala et al.,
2016; Loibl et al., 2019). Furthermore, MSCs have excellent
proliferation characteristics and good accessibility from either
bone marrow or fat tissue. However, numerous studies
demonstrated that the success of MSC-based treatments is
limited due to the harsh microenvironment of the degenerated
IVD that hampers their survival and functionality (Wuertz et al.,
2008; Huang et al., 2013). Although various techniques have
recently been developed that may promote MSC survival and
functionality in the IVD, such as priming and pre-differentiation
of MSCs, selection of specific MSC subpopulations, and rewiring
of the genetic circuits of MSCs by CRISPR (Krupkova et al.,
2018; Loibl et al., 2019), there has been an increasing shift toward
cell-free, yet MSC-related therapies to avoid the aforementioned
challenges. While early studies investigated the regenerative
and anti-inflammatory potential of MSC-conditioned media in
IVD cells (Lv et al., 2014; Teixeira et al., 2018), extracellular
vesicles (EVs) have increasingly moved into this area of research.
EVs are lipid membrane particles that carry proteins, lipids,
DNA, and various types of RNA, and function as nanocarriers
with relevance in intercellular communication. As recently
summarized by Keshtkar et al. (2018), EVs may be the primary or
possibly sole driver of MSC-driven regeneration and could thus
represent a potential alternative treatment for DDD. Although
very few studies thus far have compared the potential of
conditioned media in triggering cell responses to EVs isolated
from the same conditioned medium, first evidence suggests a
comparable (astrocytes on motor neurons; notochordal cells on
chondrocyte-like IVD cells) (Bach et al., 2017; Varcianna et al.,
2019) or enhanced beneficial effect (umbilical cord MSCs on
T cells) (Monguió-Tortajada et al., 2017) of EVs. However,
conclusions are challenging to draw as dose-effects are difficult
to control for in these experimental set-ups.

This mini-review will briefly summarize both established and
more advanced techniques for the collection and size-sorting
of EVs before presenting evidence on the content and function
of MSC-derived EVs on cells from the inner region of the
IVD, the nucleus pulposus (NP). Furthermore, knowledge on
the characterization of EVs released from IVD cells are briefly
summarized and future areas of research are highlighted.

EV TERMINOLOGY

With a rapid increase in EV-related research over the past
years, one of the major limitations is the use of heterogeneous,
often field-specific, nomenclature. In IVD research, the term
exosome is commonly used, whereas the terms microvesicles,
apoptotic bodies, and microparticles are less common.
Importantly, the rather historical classification of these particles
according to size is outdated as recent studies have shown
significant overlap in particle subtype sizes (Kowal et al.,

2016; Tkach et al., 2017). Knowledge of particle biogenesis
is necessary to accurately identify specific subtypes (Gould
and Raposo, 2013; Kowal et al., 2014). Ongoing research
may be able to provide specific markers for the various
particle subtypes and thus allow accurate classification in
the future. Hence, according to the recommendation of the
International Society of Extracellular Vesicles (ISEV) and the
Minimal Information for Studies of Extracellular Vesicles, 2018
(MISEV2018) (Thery et al., 2018), we will use the name EVs
in this mini-review as the generic term for particles naturally
released from cells that are delimited by a lipid bilayer and
cannot replicate.

COLLECTION AND PURIFICATION OF
EVs

In order to study the biological roles and potential applications
of EVs, the first step is to reliably and efficiently isolate them
from biological fluids and conditioned media. Ideal isolation
methods purify intact EVs with preserved biological function and
without contamination by proteins or non-EV particles. Over the
past years, many techniques have been developed to isolate EVs
based on properties such as size, density, and surface proteins,
including ultracentrifugation, ultrafiltration, precipitation, and
affinity-based techniques.

The most commonly employed technique was first
described by Thery et al. (2006) and is known as differential
ultracentrifugation, which refers to a stepwise increase of
centrifugal forces that results in sequential pelleting of different
size of particles. However, differential ultracentrifugation
is a time consuming, expensive process with co-isolation
of contaminants and low yields. To increase the purity of
the EV sample, differential centrifugation is often coupled
with other techniques such as ultrafiltration through 0.2, 0.4,
and 0.8 um filters, yet with negative impact on the overall
EV yield and the potential for deformation and damage of
EVs (Yakimchuk, 2015). Due to aforementioned limitations
and complications, a number of research efforts have aimed
to develop more reproducible, reliable, and standardized
methods that avoid contamination and damage to EVs,
including size exclusion chromatography (de Menezes-
Neto et al., 2015; Lobb et al., 2015; Gamez-Valero et al.,
2016), filtration (Heinemann et al., 2014; Woo et al., 2017;
Dehghani et al., 2019), immuno-affinity based approaches (Kabe
et al., 2019), and microfluidic techniques (Lee et al., 2015;
Zhang P. et al., 2016).

In the IVD field, the majority of studies have used differential
centrifugation protocols. Some modified these protocols by
adding a filtration step between the centrifugation steps, while
others replaced the ultracentrifugation step by the use of
commercially available precipitation-based kits (e.g., “Total
Exosome Isolation Reagent”). Precipitation-based techniques
have a high yield but tend to suffer from low purity. Two
IVD studies showed fractionation of conditioned media by
ultrafiltration through membranes with different molecular
weight cut-offs (MWCO), yielding spherical species with a
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size range of 50–100 nm. Overall, techniques currently used
in IVD research for collection and purification of EVs are
widespread and common, but could be replaced by recent
technical advancements. By incorporating newer approaches and
more sophisticated techniques such as tangential flow filtration
(TFF) and size exclusion chromatography (Corso et al., 2017; Mol
et al., 2017; Dehghani et al., 2019), reliability and reproducibility
of IVD studies could likely be further improved.

PRODUCTION, STABILITY AND
STORAGE OF EVs

The lipid bilayer membrane of EVs plays an important role
in their stability by protecting their bioactive cargo against
degradation (Jin et al., 2016). In order to fully utilize EVs
for clinical applications, a better understanding of the effect
of pH, temperature and storage conditions on their stability is
required. Different storage techniques such as cryopreservation
(Best, 2015), lyophilization (Kumar et al., 2014), and spray drying
have been reported (Kusuma et al., 2018). Storage at −80◦C
has been recognized as the most promising method for long-
term preservation of EV properties and functions. However, it
is important to note that studying their stability of EVs can
be affected by their cells of origin, purification technique and
characterization method (Jeyaram and Jay, 2017). Interestingly,
slightly acidic conditions like those of the IVD have been
shown to both increase the release as well as uptake of EVs,
especially in cancer cells (Parolini et al., 2009; Qi et al., 2016;
Cheng et al., 2019).

CHARACTERIZATION OF EVs

The presence of EVs in a purified sample should be confirmed
by multiple methods. Western blot (WB) has been employed to
characterize the isolated samples by evaluating the presence of
EV-enriched markers and the absence of negative markers. Alix,
TSG101 and surface associated markers such as Tetraspanins
(CD9, CD63, and CD81) have been used as positive markers
for EVs (Moen et al., 2017; Cheng et al., 2018), while proteins
associated with cell compartments other than endosome or
plasma membrane such as Calnexin (endoplasmic reticulum)
and GM130 (Golgi) have been used as negative markers (Lu
et al., 2017; Vonk et al., 2018; Wei et al., 2019). In addition to
protein composition, Transmission electron microscopy (TEM)
and Nanoparticle Tracking analysis (NTA) are the two most
commonly used technique for studying the morphology (cup-
shaped with double layer membrane structures), size and
concentration of EVs (Cheng et al., 2018; Liao et al., 2019). In the
future, isolation of different subpopulations of EVs based on their
biogenesis (exosomes, microvesicles and apoptotic bodies) and
size (small, medium and large) are crucial for identifying their
therapeutic potential. Moreover, high-resolution flow cytometry
can be applied for single EV analysis which provides valuable
information regarding size, concentration and identifying the
phenotype subsets of EVs.

DELIVERY OF EVs

Although systemic delivery of EVs is generally considered the
easiest approach, biodistribution patterns indicate accumulation
in the liver, spleen, and lungs (Di Rocco et al., 2016). Especially
when taking the avascular nature of the IVD into account, local
delivery has to be regarded as the prime route of administration
for future clinical applications. Whether or not EVs should be
embedded into biomaterial-based carriers will, however, require
further investigation, as does the optimal dose of EVs.

While defining optimal doses has been a crucial aspect in
MSC-based IVD therapies due to the limited nutritional supply
within the tissue (Loibl et al., 2019), EV dosing will likely be
less critical. However, difficulties to obtain large amounts of
EVs, combined with the associated high costs, will nonetheless
require determining the minimal EV concentration that provides
adequate therapeutic effects.

Extracellular vesicles have been shown to bind to ECM-
proteins such as fibronectin and collagen type I (Narayanan
et al., 2016), which may be sufficient to ensure their captivity
within the IVD tissue, despite daily mechanical loading and
consequential fluid flow out of the tissue. Should in vivo tracking
studies of EVs (labeled e.g., by superparamagnetic iron oxide
nanoparticles, radioisotopes or fluorescent dyes) (Di Rocco et al.,
2016), however, demonstrate high loss of EVs from the IVD,
biomaterial-based delivery approaches, similar to those used for
MSCs themselves (Bowles and Setton, 2017), may become useful.
In fact, a previous study on wound healing has demonstrated that
the use of a chitosan/silk hydrogel provided sustained release of
EVs while preserving their function (Shi et al., 2017).

EVs FROM IVD CELLS: FUNCTION AND
CONTENT

Only few studies have thus far been conducted on IVD-derived
EVs, although they most certainly play a crucial role during
IVD health and disease. In fact, researchers in other fields
have become increasingly interested in the analysis of EVs
from resident cells, with the hope to identify specific disease
biomarkers (Chen et al., 2018). With the current interest in
biomarkers for DDD (Khan et al., 2017; Boisson et al., 2019),
research in this context will certainly arise in the short- to mid-
term future. Nonetheless, past research has been limited to the
function and content of IVD-derived EVs (Figure 1), with a
focus on miRNAs as these small non-coding RNA molecules
are being extensively investigated for their therapeutic potential
in other fields. Park et al. (2019) provide a comprehensive
overview of EV-miRNAs with biological relevance in a broad
range of application areas, including miR-let-7b, miR-let-7c,
miR-17-92, miR-21, miR-23b, miR-125a, miR-133b, miR-146a,
miR-221, miR-223, and miR-1587.

Moen et al. (2017) demonstrated that NP cells in a rodent
herniation model produce EVs containing miR-223. Importantly,
miR-223 was furthermore found to decrease the C-fiber response
in the dorsal horn neurons and to inhibit the nociceptive
spinal signaling compared to PBS controls, hence indicating
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FIGURE 1 | Current knowledge on the function and content of (1) NP-derived EVs and of (2) MSC-derived EVs for the treatment of NP cells. No data exists yet on
annulus fibrosus (AF) cells, the more fibroblast-like cells from the outer area of the IVD.

its protective role during IVD herniation and chronic lumbar
radicular pain. Interestingly, EV-derived miR-223 has also been
shown to downregulate inflammation following cardiac surgery
with cardiopulmonary bypass (Poon et al., 2017) and this anti-
inflammatory function of miR-223 (through modulation of the
NF-kB pathway) was already confirmed in NP cells (Wang et al.,
2018). However, Wang et al. analyzed the anti-inflammatory role
of miR-233 in the IVD in miR-233-overexpressing NP cells (and
did not investigate miR-233 in released EVs).

Concerning function of IVD-derived EVs, data on
notochordal NP cells and chondrocyte-like NP cells have
been published. Notochordal cells are a developmental cell type
in the NP that, at least in humans and some other species,

gets increasingly replaced by chondrocyte-like IVD cells over
the course of life; the reduction in notochordal cell number is
believed to be associated with the onset of IVD degeneration
(Rodrigues-Pinto et al., 2014). Notochordal cell-derived EVs
increased DNA and glycosaminoglycan content in human NP
cell micro-aggregates compared to untreated control medium,
although the underlying mechanism or the associated EV content
was not analyzed in this study by the Tryfonidou Lab (Bach
et al., 2017). EVs harvested from human NP cells derived from
patients with lumbar degenerative disease were able to promote
MSC migration and differentiation into an NP-like phenotype
(Lu et al., 2017) through the Notch1 pathway (Lan et al., 2019),
although the EV content responsible for this action (e.g., specific
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miRNAs) remains unknown at this time. However, a delicate
interplay between different miRNAs and components of Notch
signaling pathway has been identified in cancer, pointing toward
miR-146a, miR-19, miR-100, miR-21, miR-181a-1/b-1, miR-375,
and miR-483-5p as potentially interesting candidates for further
investigation in the IVD field (Majidinia et al., 2018).

EVs FROM MSCs: EFFECTS ON IVD
CELLS AND CONTENT

Ample evidence exists from a variety of fields that MSC-
derived EVs have therapeutic effects (Park et al., 2019),
including musculoskeletal applications (Alcaraz et al., 2019).
To ensure reproducibility of results and facilitate the exchange
of data among investigators, it is essential that researchers
characterize their MSCs according to the guidelines of the
International Society for Cellular Therapy (plastic-adherence;
lineage differentiation potential; expression of CD105, CD73
and CD90; lack expression of CD45, CD34, CD14 or CD11b,
CD79alpha or CD19, and HLA-DR) (Dominici et al., 2006).

As the success of MSC cell therapies for IVD diseases has been
hampered due to the restricted survival and functionality of the
cells in the harsh IVD microenvironment (Wuertz et al., 2008;
Huang et al., 2013), the use of cell-free therapeutic applications
may circumvent many of the past translation obstacles, especially
if they could halt or reverse the hallmarks of DDD (Figure 1).
However, it has to be noted that no studies have thus far
directly investigated whether the harsh microenvironment of
the IVD might affect EV functionality. Cheng et al. (2019)
investigated the stability of EVs derived from HEK 293T cells
at pH 4 and pH 7 and found a concentration loss at pH 4,
which, however, is too acidic even for the degenerated IVD.
On the other hand, acidic microenvironments may actually
increase the uptake of EVs (Parolini et al., 2009; Qi et al., 2016;
Cheng et al., 2019).

Preventing Apoptosis and Promoting
Proliferation
Cellular loss, predominantly through apoptosis, is an evident
hallmark and is thought to play a crucial role in the degenerative
processes of the IVD. Therefore, minimizing cell death has
been discussed as an auspicious therapeutic strategy for IVD
degeneration (Ding et al., 2013). MSC-derived EVs have proven
to be effective modulators of NP cell survival and apoptosis,
whereby the effect seems to be mediated through activation of
the pro-survival PI3K-Akt pathway and ERK pathway, possibly
through miR-21 (Cheng et al., 2018; Liao et al., 2019). The
apoptosis-reducing effect of EVs via PI3K-Akt and ERK has
been confirmed in chondrocytes (Zhang et al., 2018), while
the role of miR-21 was confirmed by miR-21 enriched EVs in
cardiomyocytes in vitro and during myocardial infarction in vivo
(Song et al., 2019). In the IVD, the inhibition of cell apoptosis
through EVs, potentially in combination with other unidentified
mechanisms, decelerated progression of IVD degeneration in a
rat tail degeneration model based on the injection of advanced
glycation end products (Liao et al., 2019).

Aside from attenuating apoptosis, MSC-derived EVs also have
the potential to promote proliferation of NP cells (Lu et al., 2017).
The mechanisms thereof are thus far unidentified, although AKT
and ERK signaling may likely be involved (Pratsinis et al., 2012).

Inducing ECM Synthesis
A loss of proteoglycans and collagen-II in the NP is one of the
most prominent features of IVD degeneration and DDD, clearly
visible through MR-based imaging as a black disc. Therefore,
regenerative IVD therapies typically focus on promoting the
synthesis of IVD-typical extracellular matrix (ECM) proteins by
various means, including MSCs and MSC-derived EVs. In fact,
Lu et al. (2017) provided compelling evidence that MSC-derived
EVs can induce a healthier ECM production in NP cells, as
indicated by enhanced gene expression and synthesis of aggrecan,
SOX-9 and collagen-II. The efficacy of MSC-derived EVs has also
been demonstrated in numerous cartilage repair/regeneration
studies (Zhu et al., 2017; Boere et al., 2018; Mao et al., 2018;
Tofino-Vian et al., 2018), whereby these effects may be mediated
through miR-92a-3p and WNT5A (Mao et al., 2018). Evidently,
more studies will be needed to confirm the capacity of EVs to
promote IVD health and homeostasis, but also to identify the EV
content responsible for the beneficial effects.

Modulating Inflammation
As chronic inflammation in the IVD arising from resident
cells (and in the case of structural failure of the tissue also
from invading immune cells) is associated with back pain
development (Wuertz and Haglund, 2013; Johnson et al., 2015),
many researchers consider the modulation of inflammation
as therapeutically more relevant and achievable than inducing
full regeneration. Following this strategy, Xia et al. (2019)
tested whether MSC-derived EVs can reduce H2O2-induced
inflammation in NP cells. Results of this study provide
compelling evidence for anti-inflammatory properties of EVs
via modulation of the NLRP3 inflammasome and through
restoration of damaged mitochondria (Xia et al., 2019). Although
not yet investigated in the IVD, NLRP3 inflammasome activity is
known to be controlled by miR-223 (Bauernfeind et al., 2012).
Importantly, the positive effects of EVs were not restricted to
in vitro conditions but could also be replicated in a rabbit IVD
degeneration model (Xia et al., 2019). Whether MSC-derived EVs
may also affect the phenotype of invaded macrophages in the
IVD and thus cause a shift from an inflammatory M1 toward a
regenerative M2 phenotype is currently unclear, albeit initial data
in that respect could be collected in skin (He et al., 2019).

To further improve the outcome of EV therapy, MSCs can
be modified to produce EVs with enhanced or reduced content
of certain components with biological activity, such as specific
miRNAs. With an increasing understanding of the role of certain
miRNAs in IVD health and disease (Zhou et al., 2017), EV
therapy may thus be optimized in a tissue- and disease-specific
manner. In cartilage for example, miRNA-140 has been identified
to regulate tissue homeostasis. Transduction of MSCs with
lentiviral miR-140-5p resulted in EVs that increased chondrocyte
proliferation and promoted cartilage regeneration compared to
the control (= negative control oligonucleotides/vector group)
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(Wang et al., 2019). Clearly, EVs from modified MSCs have
a significant potential as future therapeutic strategies. Similar
approaches can be envisioned in the IVD field, targeting
for example miR-210, which was shown to inhibit NP cell
apoptosis (Zhang D. Y. et al., 2016), or potentially also miR-
483, which is downregulated during intervertebral disc disease
(Sherafatian et al., 2019).

Despite the promise that initial studies on MSC-derived EVs
have sparked, one of the remaining challenges may be the limited
distribution of EVs within the IVD due to the densely packed
collagen and proteoglycan-rich ECM. However, this dense ECM
may also help to retain EVs within the IVD following intradiscal
injections. Mathematical models should be employed in the
future to further investigate this question and to determine
whether specific EV sizes or EV membrane compositions would
be best suited for IVD applications. However, these parameters
will not only affect tissue retention and distribution, but also
biological activity, and both aspects will need to be considered
(Margolis and Sadovsky, 2019).

DISCUSSION AND OUTLOOK

First research results on MSC-derived EVs for the treatment
of DDD clearly demonstrate their therapeutic potential
by promoting regeneration and proliferation and reducing
inflammation and apoptosis in the IVD, although the exact
mechanisms of action are not yet fully elucidated.

Ample studies in the past have investigated MSC-based
therapies for the IVD, leading to increasing knowledge on the
bidirectional crosstalk between MSCs and IVD cells. However,
MSC cell therapy for the IVD is hampered by the harsh
tissue microenvironment; furthermore, cell therapies face safety
concerns and thus approval challenges. Although few studies
have investigated the effect of e.g., acidic pH on EV stability,
it is conceivable that the negative effects that the harsh IVD
microenvironment has on MSCs themselves is not relevant
for EV-based therapies. In fact, first studies demonstrated a
possible increase of cellular uptake of EVs under IVD like
pH conditions. Investigating the effect of the harsh IVD

microenvironment on EVs is thus an important topic for
future investigation.

Despite these advantages of EVs compared to MSC cell
therapy, a major limitation lies in their low yields. However,
technical advancements related to fast expansion of MSCs
as well as enhanced release of EVs that can be induced by
commercially available media and additives in combination with
new purification strategies will likely help to overcome this
restraining factor.

It has become increasingly evident that exposure of MSCs
to biophysical and/or biochemical cues may help to further
improve the clinical outcome. Therefore, future investigations
should aim to identify which signals can enhance the regenerative
and/or the anti-inflammatory capacity of EVs, specifically on IVD
cells. Alternatively, studies may identify certain subpopulations of
EVs that have increased therapeutic properties and/or enhanced
tissue retention, based on size characteristics or membrane
composition, for example. The use of a biomaterial-based carrier
for the in vivo delivery of EVs may further enhance the
therapeutic benefits through improved captivity within the IVD
tissue, sustained release and/or preservation of function.

With the development of novel techniques for the production,
collection and delivery of EVs or EV subpopulations, ample
possibilities for optimization of EV therapies may arise. However,
a better understanding and subsequent optimization of the effects
that temperature and storage conditions have on EV stability
will be required to promote successful translation into the
clinical setting.
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