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Background: The recent clinical success of immunotherapy represents a turning point

in cancer management. But the response rate of immunotherapy is still limited. The

inflamed tumor microenvironment has been reported to correlate with response in tumor

patients. However, due to the lack of appropriate experimental methods, the reason why

the immunotherapeutic resistance still existed on the inflamed tumor microenvironment

remains unclear.

Materials and Methods: Here, based on single-cell RNA sequencing, we classified

the tumor microenvironment into inflamed immunotherapeutic responsive and inflamed

non-responsive. Then, phenotype-specific genes were identified to show mechanistic

differences between distant microenvironment phenotypes. Finally, we screened for

some potential drugs that can convert an unfavorable microenvironment phenotype to a

favorable one to aid current immunotherapy.

Results: Multiple signaling pathways were phenotypes-specific dysregulated.

Compared to non-inflamed microenvironment, the expression of interleukin signaling

pathways-associated genes was upregulated in inflamed microenvironment. Compared

to inflamed responsive microenvironment, the PPAR signaling pathway-related genes

and multiple epigenetic pathways-related genes were, respectively, suppressed and

upregulated in the inflamed non-responsive microenvironment, suggesting a potential

mechanism of immunotherapeutic resistance. Interestingly, some of the identified

phenotype-specific gene signatures have shown their potential to enhance the efficacy

of current immunotherapy.

Conclusion: These results may contribute to the mechanistic understanding of

immunotherapeutic resistance and guide rational therapeutic combinations of distant

targeted chemotherapy agents with immunotherapy.
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INTRODUCTION

Although immunotherapy has revolutionized tumor
treatment, it still has some limitations (Larkin et al., 2015).
For example, the success of adoptive cell therapy (ACT)
on hematological malignancies cannot be reproduced on
solid tumors (Newick et al., 2017). The responsive rate
of immune checkpoint inhibitors (CPIs) varies by tumor
type, from 45% for melanoma (Daud et al., 2016; Ribas
et al., 2016) to only 12.2% for head neck squamous cancer
(HNSC) (Abril-Rodriguez and Ribas, 2017; Darvin et al.,
2018).

To better understand the reasons for these limitations, a
number of studies tried to investigate the effect of tumor
microenvironment (TME) phenotype on immunotherapy and
suggested that TME phenotype (broadly categorized as being
inflamed or non-inflamed) (Binnewies et al., 2018; Galon
and Bruni, 2019) was a critical factor responsible for these
limitations (Ji et al., 2012; Peng et al., 2015; Spranger
et al., 2015; Chen et al., 2016; Kortlever et al., 2017).
However, for the lack of appropriate experimental methods,
a systematic understanding of how inflamed TME forms and
why therapeutic resistance still exists on inflamed TME has
been constrained. Here, to better understand the role of TME
phenotypes to aid current immunotherapy, we systematically
analyzed pan-cancer molecular characteristics of inflamed
TME and further delved into the mechanistic differences
between inflamed responsive TME and inflamed non-responsive
TME. Importantly, part of our results has been supported
in recent reports (Chowdhury et al., 2018; Wang J. et al.,
2019).

Together, these results have profound prospects in
clinical application, including identifying multiple potential
immunotherapeutic targets, providing mechanistic insights
into immunotherapeutic resistance in inflamed TME, and
screening for some potential immunophenotypic regulation
drugs to guide rational combination of chemotherapy agents
with immunotherapy.

METHODS

Pan-Cancer Samples and Clinical Cohorts
Treated by Immunotherapy
RNA sequencing data across 19 The Cancer Genome Atlas
(TCGA) tumor types were downloaded from the Gene
Expression Omnibus (GEO) database with accession number
GSE62944 (Rahman et al., 2015). The updated clinical data
were downloaded from TCGAbiolinks (Colaprico et al.,
2016; Silva et al., 2016; Mounir et al., 2019). Published
RNA sequencing data (Riaz et al., 2017) of 101 clinical
tumor samples treated by anti-CTLA4 and anti-PD1
were downloaded from the GEO database with accession
number GSE91061. The raw count data of RNA sequencing
were normalized and quantitated by the edgeR package
(Robinson et al., 2010).

Identifying Immune Cell Signature From
Integrated Single-Cell RNA Sequencing
Data
In order to analyze the TME of different tumor types and increase
the diversity of non-immune cell to obtain robust immune cell
markers, we applied the Seurat integration pipeline (Butler et al.,
2018) to integrate two single-cell RNA sequencing data sets,
respectively, from the Puram’s HNSC cohort (GEO accession
number: GSE103322) (Puram et al., 2017) and Tirosh’s melanoma
cohort (GSE72056) (Tirosh et al., 2016). A CCA algorithm
(Butler et al., 2018) derived from machine learning was used
to identify anchors of cells from different tumor types for the
purpose of unbiased single-cell data integration (Stuart et al.,
2019). Annotations of immune cells referred to the original
literature and cell marker database (Tirosh et al., 2016; Puram
et al., 2017; Zhang et al., 2019). Immune cell gene signatures
(GSs) were defined based on the following criteria: (1) the
proportion of signature expression in immune cells (CD8T cell,
CD4T cell, B cells, macrophage, mast cell, dendritic cell, NK cell)
should be >0.6; (2) the percent of GS expression in non-immune
cells (myocytes, tumor cells, endothelial, fibroblast) should be
<0.3; (3) adjusted P < 0.001; (4) log (fold change)>0 (compared
to non-immune cells and other immune cell clusters).

Unsupervised Clustering Algorithm to
Determine TME Subtypes of Tumor
Samples
Immune cell markers identified in single-cell RNA sequencing
analysis were used as an input for the gene set variation analysis
(GSVA) algorithm (Hänzelmann et al., 2013) to calculate the
immune score for each immune cell. Then, tumor samples
were classified into high-immune score (inflamed), intermediate
immune score, and low-immune score (non-inflamed) based
on the unsupervised clustering pattern. This method has been
proven as an efficient way to indirectly evaluate the phenotypes
of TME (Wang et al., 2018). By using optCluster (Sekula et al.,
2017) to evaluate the internal and stability indexes of the
seven clustering algorithms (clara, diana, hierarchical, kmeans,
model, pam, and sota), the optimal number and the algorithm
of clustering were determined. Finally, the Clara algorithm
and three groups were selected as the most robust clustering
parameters. To avoid the unfavorable bias of confounding
factors, we excluded intermediate immune score samples in
further analysis.

Identification of Altered Signaling
Pathways
Differentially expressed genes (DEGs) were identified by edgeR
package (Robinson et al., 2010) with a negative binomial
distribution algorithm; P < 0.05 and an absolute value of log2-
fold change >1.5 were considered as statistically significant.
Then, we annotated these DEGs with ClusterProfile (Yu et al.,
2012) and RectomePA (Yu and He, 2016) package according to
KEGG and Rectome pathway databases. Gene set enrichment
analysis (GSEA) was used to provide a systematic view into
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FIGURE 1 | Overall design of this study.

molecular pathway alternation (Subramanian et al., 2005).
ToPASeq package was used to provide topology-based pathway
analysis (Ihnatova and Budinska, 2015).

Screening for Potential Phenotype
Transformation Drugs
To discover potential drugs aiding current immunotherapy,
we calculated the connectivity score (Lamb et al., 2006) of
multiple drugs to evaluate whether it is promising to promote the
transformation of favorable TME phenotypes. This analysis was
carried on PharmacoGx packages (Smirnov et al., 2015).

Statistical Analysis
To assess the prognostic significance of TME subtypes, we used
a Cox test to calculate its hazard ratio. Then, Kaplan–Meier
curves and log-rank test were used to assess the differences in
the 5 years’ and all years’ overall survival times between inflamed
and non-inflamed subtypes. Pearson’s chi-square test and Fisher’s
exact test were used to calculate the P-value for the discrete
variable. A P < 0.05 was regarded as statistically significant.

RESULTS

Integration of Single-Cell RNA Sequencing
Data Sets
The overall design of this study was shown in Figure 1. As
mentioned above, the responsive rate of immunotherapy varies
by tumor type. To understand the factors that contribute to the
differences in susceptibility to immunotherapy, we integrated
two single-cell RNA sequencing datasets, respectively, from head
and neck squamous carcinoma (HNSC) and melanoma, which
were characterized by different immunotherapeutic sensitivity
(∼45% response rate for melanoma Daud et al., 2016; Ribas
et al., 2016, significantly higher than the 12.2% of HNSC
Wang B. C. et al., 2019).

The integration result is shown in Figures 2A–C; tumor cells
from HNSC and melanoma exhibited significant heterogeneity.
Nevertheless, immune cells from different tumor types were
integrated into corresponding immune cell clusters. These results

suggested that immune cells from distant tumor types might
have a relatively similar transcriptomic pattern, which may
explain the reason why immunotherapy was always accompanied
by a pan-cancer therapeutic effect. The heterogeneity of
immunotherapeutic efficacy across distant tumor types may
be mainly derived from different tumor cells and their tumor
immune microenvironment characteristics, such as immune
cell composition.

For instance, B cells are increasingly valued for their
important role in immunotherapeutic resistance (Petitprez et al.,
2020). As shown in Figure 2D, the proportion of B cells in
melanomawas significantly higher than that of HNSC (P< 0.001,
Supplementary Table 1).

Pan-Cancer Prognostic Significance of
TME Subtypes
To classify TME phenotypes across distant tumor types, immune
cell GSs were identified in the above single-cell data. Then,
we classified TCGA pan-cancer samples into three TME
subtypes based on the unsupervised clustering pattern of GS,
each assigned as high-immune score (inflamed), intermediate
immune score, or low-immune score (non-inflamed; Figure 3A).
As shown in Figure 3B, the proportions of TME subtypes
varied greatly among the different types of tumors. Next, we
examined the association of this classification with the overall
survival time of tumor patients. Consistent with previous reports
from immunohistochemistry (Dubsky et al., 2019), favorable
prognostic roles of inflamed TME were observed in most tumor
types (such as SKCM, UCEC, etc.). Unexpectedly, as reported in
a number of previous reports, an unfavorable prognostic role of
inflamed TME was also observed in some tumor types, such as
LGG (Zhang et al., 2017) (Figures 3C–F).

Molecular Characteristics of Inflamed or
Non-inflamed TME Across Multiple Tumor
Types
To further investigate mechanistic differences between inflamed
and non-inflamed TME, we compared gene expression profiles
between inflamed and non-inflamed TME. As shown in
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FIGURE 2 | Integrated single-cell RNA sequencing analysis revealed the microenvironment heterogeneity of distant tumor types. (A) The t-SNE plot displays

immunological and non-immunological cells in the tumor microenvironment. Each dot represents a cell and color represents different types of cells. (B) The color was

coded according to tumor types. (C) The expression of cell markers across different cell clusters. (D) The composition of cells in HNSC and melanoma.

Figure 4A, non-inflamed TME-specific genes (upregulated
genes in non-inflamed TME) were related to the GPCR
signaling pathway, neuronal system, and keratinization.

Inflamed TME-specific genes (upregulated genes in inflamed
TME) were related to interferon (IFN), multiple interleukin-
related pathways including interleukin-4, interleukin-13,

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 May 2020 | Volume 8 | Article 348

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Wang et al. Uncovering Immunotherapeutic Resistance

FIGURE 3 | Pan-cancer prognostic role of identified TME subtypes. (A) The global infiltration characteristics of distant TME subtypes. (B) The proportion of TME

subtypes in different cancer types. (C,D) Forest plot for the association between identified TME subtypes and overall survival time of patients. (E,F) All years or 5 years

overall survival time of inflamed (High) and non-inflamed (Low) TME. Tumor types were represented by TCGA. Standard abbreviations: LAML, acute myeloid leukemia;

BLCA, bladder urothelial carcinoma; LGG, brain lower grade glioma; BRCA, breast invasive carcinoma; COAD, colon adenocarcinoma; KICH, kidney chromophobe;

KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung

squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SKCM, skin cutaneous

melanoma; STAD, stomach adenocarcinoma; THCA, thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma.
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FIGURE 4 | Pan-cancer gene functional annotation of TME phenotype associated genes. (A) Gene function of upregulated genes in non-inflamed TME. (B) The

function of inflamed TME associated genes. The number under abbreviation represents the number of differently expressed genes (DEGs).

and interleukin-10 signaling, CD28 costimulatory molecule
family including PD-1, and CTLA-4-associated signaling
pathways (Figure 4B). The topology-based pathway analysis

demonstrated that interleukin-related pathways, interferon-
related pathways, the NLRP3 inflammasome, Toll-like
receptor, mitochondria, CD28 costimulation, and B cell
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FIGURE 5 | Identification of phenotype-specific genes. (A) Heatmap of distant TME subtypes determined by unsupervised clustering algorithm. (B,C) TME subtypes

correlated with the response to immunotherapy. (D) The volcano plot of differently expressed genes based on an RNA sequencing analysis of inflamed responders vs.

inflamed non-responders. Red and green dots, respectively, represented upregulated genes and downregulated genes in inflamed responders. (E) The network plot

showing common genes shared by top functional terms of upregulated genes in inflamed non-responders.

activation-related pathways were also activated in inflamed TME
(Supplementary Table 5).

TME Phenotypes Correlated With the
Immunotherapeutic Sensitivity
To better understand the association between TME phenotypes
and the response to immunotherapy, we reproduced our
TME classification in a published clinical melanoma cohort
treated by immune CPIs (Riaz et al., 2017) (Figure 5A). This
reproduction was performed based on immune GSs identified

in the above single-cell RNA sequencing analysis with the same
clustering parameter.

As expected, inflamed tumors were the most sensitive to
CPI (CR+PR rate: 32.6% in inflamed vs. 3.2% in non-inflamed,
P = 0.015, Supplementary Table 2) (Figure 5B), but only a
percentage (CR rate: 8.7%, CR+ PR rate: 32.6%) of these patients
were responsive to CPI (Figure 5C).

To further offer mechanistic insights into CPI resistance in
inflamed TME, we identified several DEGs in inflamed non-
responders vs. inflamed responders (Figure 5D). These GSs of
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TME phenotype may serve as potential targets for improving
current immunotherapy.

For instance, CLDN18 was the signature of inflamed
responsive TME. Therapy that directly targets on CLDN18 has
shown its potential to improve the efficacy of ACT in treating
solid tumors (Micke et al., 2014). On the other side, inhibiting
the signature of inflamed non-responsive TME may be another
promising way. Here, SIGLEC5 was significantly overexpressed
in inflamed non-responders, and its family member SIGLEC15
has been proven as an efficient target to enhance antitumor
immunity (Wang J. et al., 2019).

We also analyzed the correlation between TME status and
known ICB response biomarkers. The inflamed TME was
characterized by higher expression of PDCD1, CTLA4, CD28,
(PD-L1) CD274, PD-L2, and lower tumor mutation burden than
non-inflamed TME (Supplementary Figures 3, 4).

Mechanistic Differences Between Inflamed
Responsive TME and Inflamed
Non-responsive TME
Then, gene functional annotation analysis was used to
understand the role of TME phenotype-specific genes. As
shown in Figure 6A, genes upregulated in inflamed and
responsive tumors enriched on complement cascade and bile
metabolism. GSEA also confirmed that multiple metabolism
associated pathways except for oxidative stress induced
senescence were upregulated in this type of TME, including
bile salt and bile acid metabolism, glucose metabolism, ethanol
oxidation, glyoxylate metabolism, and glycine degradation
(Figure 6E).

In terms of inflamed non-responsive tumors, signaling
pathways, such as IL-13, IL-4, IL-10, and IL-1 cytokines-
related signaling pathways and oxygen exchange pathway
were upregulated, which are also downregulated in
inflamed responders (Figures 5E, 6B). Interestingly, the
expression of CTLA-4 pathway-related genes did not differ
between inflamed responders and inflamed non-responders
(Supplementary Table 4).

The topology-based pathway analysis demonstrated that the B
cell activation pathway, non-canonical NF-kB pathway, NOTCH
signaling pathways, PD-1 signaling, bile acid, and bile salt
metabolism-related pathways were inhibited in inflamed non-
responders (Supplementary Table 6).

These results suggested that tumor hypermetabolism might
confer resistance to immunotherapy.

Finally, for a more systematic understanding of the
resistant mechanism, we applied GSEA to investigate the
alternation of molecular pathways across four dimensions
(epigenetic modification, immune or other associated signaling
pathway, metabolism).

As shown in Figure 6C, multiple epigenetic signaling
pathways were upregulated in inflamed non-responders, which
suggested a mechanism of immunotherapeutic resistance as
observed by others (Mondello et al., 2020; Olino et al., 2020).

In terms of inflamed responders, multiple carcinogenesis
signaling pathways, except for the PPAR pathway, were

downregulated (Figures 6D,F), which suggested a mechanism of
therapeutic resistance and potential target for therapy. In line
with this hypothesis, recent studies illustrated that PPAR agonists
appeared to improve the therapeutic sensitivity of ACT and CPI
therapy (Chowdhury et al., 2018; Saibil et al., 2019).

A deeper analysis of differentiating the patient population
between different ICB treatments demonstrated that 135/980
(13.78%) pathways enriched on the CTLA-4 cohort were
also enriched on the PDCD1 cohort (135/673, 20.06%)
(Supplementary Figure 1). The shared pathways enriched on
two cohorts were associated with glucuronidation, interleukin-10
signaling, O2/CO2 exchange in erythrocytes, post-translational
phosphorylation, and metabolism of bile acids and bile salts
(Supplementary Figure 2A). Genes dysregulated in the CTLA-4
cohort tended to be associated with epigenetic modification
including epigenetic regulation of gene expression, HATs
acetylate histones, HDAC deacetylates histones, transcriptional
regulation by small RNAs, and gene silencing by RNA
(Supplementary Figure 2B). Genes dysregulated in the
PDCD1 cohort tended to be associated with PPAR active
gene expression, glucose metabolism, extracellular matrix
organization, GPCR ligand binding, and signaling by retinoic
acid (Supplementary Figure 2C).

Screening for Potential Favorable TME
Phenotype Transformation Drugs
Immunotherapy combined with chemotherapy is receiving
increasing interest as a promising strategy to improve the
deficiencies of current immunotherapy (Wargo et al., 2015).
However, it is not completely clear how best to incorporate
chemotherapy with immunotherapy. Here, we calculated the
genomic connectivity score of 1,288 kinds of drugs to identify
potential phenotype transformation drugs that could induce
systemic favorable transcriptomic alternation, including from
non-inflamed TME to inflamed TME, or from inflamed non-
responsive TME to inflamed responsive TME. The drug-genomic
perturbation database records genomic changes following
multiple drug treatments. Analysis combining these drug-
induced genomic changes with identified phenotypic genomic
differences can help us find potential drugs that could convert
unfavorable TME to favorable TME.

Mercaptopurine (6-MP) was identified as the most promising
drug that might promote the transformation of inflamed
responsive TME phenotype (Table 1). Interestingly, although
some reports have shown that 6-MP can enhance the vaccine-
dependent antitumor immunit y (Kataoka et al., 1984; Kataoka
and Oh-hashi, 1985), it seems to be forgotten after that. But
there are increasing interests trying to use 6-MP as a drug of
immune disorders, such as autoimmune hepatitis (Hübener et al.,
2016), inflammatory bowel disease (Present et al., 1989), etc.
This may be because 6-mercaptopurine is widely recognized
as an immunosuppressive agent, but our findings implicated
that immunomodulatory may be a more accurate definition of
such drugs. Our results indicated that further clinical studies
are needed to assess the value of the combination of 6-MP with
current immunotherapy.
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FIGURE 6 | Biological processes correlated with identified DEGs in inflamed responders. (A) Detailed function annotation of upregulated genes in inflamed

responders (compared to inflamed non-responders). (B) Functional annotation of downregulated genes in inflamed responders (compared to inflamed

non-responders). (C–F) GSEA shows four dimensions of the molecular function of DEGs across inflamed responders. Running enrichment score >0 means this

pathway is upregulated in inflamed responders; running enrichment score <0 means this pathway is downregulated in inflamed responders.

DISCUSSION

Molecular stratification of TME phenotypes is paving the

way for a better understanding of immunotherapeutic

heterogeneity. Here, based on immune GSs developed
from integrated single-cell RNA sequencing analysis, we
systematically analyzed the molecular characteristics of
inflamed TME across multiple cancer types and provided
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TABLE 1 | Screening for potential favorable TME phenotype transformation drugs.

Potential drugs that convert “non-inflamed” TME to “inflamed” TME Potential drugs that convert “inflamed nonresponsive” TME to “inflamed

responsive” TME

Drugs Connectivity P-Value Drugs Connectivity P-Value

Clofibrate 0.803 0.021 Mercaptopurine 0.817 0.028

Metronidazole 0.637 0.002 Valdecoxib 0.309 0.040

Zalcitabine 0.605 0.028 5253409 0.292 0.006

Gabexate 0.585 0.012 Astemizole 0.290 0.039

S-propranolol 0.581 0.007 Isoconazole 0.283 0.003

Ifenprodil 0.580 0.044 Pizotifen 0.279 0.011

Sulfapyridine 0.578 0.027 Econazole 0.278 0.003

Succinylsulfathiazole 0.570 0.042 Orciprenaline 0.267 0.006

mechanistic insights into immunotherapeutic resistance in
inflamed TME.

Some of the identified mechanistic differences have been
supported by recent reports. Examples highlighted by these data
include the upregulation of epigenetic signaling pathways and
the downregulation of PPAR-signaling pathways in inflamed
non-responsive tumors. These dysregulated pathways may be
potential targets for improving the sensitivity to immunotherapy.
Importantly, these results are in line with prior publications,
which have provided some evidence that inhibition of epigenetic
modification (Mondello et al., 2020) or activation of PPAR
signaling pathways (Chowdhury et al., 2018; Saibil et al., 2019)
might be a promising way to overcome therapeutic resistance to
immune checkpoint blockade or ACT.

Our results also revealed the molecular characteristics of
inflamed TME shared by different tumor types. These results
demonstrated that inflamed TME was related to enhanced
cytokine expression (interferon and IL-4,−13, and−10).
Interestingly, these cytokines, except for interferon, were also
upregulated in inflamed non-responders, which suggested a dual
role of these interleukins. These results are in line with prior
published reports (Mannino et al., 2015; Wang et al., 2016). For
example, IL-10 is widely recognized as an immunosuppressive
cytokine, but there is increasing evidence that it has a dual role
in antitumor immunity. Blocking or activation of IL-10 has been
proven as an efficient way to enhance antitumor immunity in
different aspects (Ni et al., 2015; Naing et al., 2018). According
to our results, we believe that TME phenotypes should be
considered as a key factor in further study design to illuminate
the remaining mysteries of IL-10.

In addition, our results have far-reaching clinical implications
including the identification of multiple potential molecular
targets for developing novel immunotherapy and combination
therapeutic strategies. For instance, the success of ACT cannot
be reproduced on solid tumors due to the obstacle of its
microenvironment. Therefore, rather than directly targeting
on whole solid tumors, selectively targeting the inflamed and
responsive TME might be another easier therapeutic way. As
expected, this hypothesis is supported by a recent report.
CLDN18, a signature of inflamed and responsive TME, has been
proven as an efficient target for improving the efficacy of current
ACT on solid tumors (Micke et al., 2014).

Except for targeting on inflamed and responsive TME,
examples highlighted by our data also included inhibiting the
signature of inflamed non-responsive TME to reverse therapeutic
resistance. For example, SIGLEC15, a signature of inflamed and
non-responsive TME, has shown its power in blocking immune
escape. Interestingly, its antitumor immunity enhancement
effect is independent of the PD-1/PD-L1 axis, suggesting that
it may be an ideal target to aid current anti-PD-1 therapy
(Wang J. et al., 2019).

Finally, based on a drug-genomic perturbation database,
we identified some drugs that were promising for promoting
the transformation from an unfavorable TME phenotype to a
favorable one.

In conclusion, our result provided an important view for
understanding how inflamed TME and inflamed resistant TME
form. This evidence has important clinical implications and may
help guide rational combination immunotherapy.
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