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Detecting gene sets that serve as biomarkers for differentiating patient survival groups

may help diagnose diseases robustly and develop multi-gene targeted therapies.

However, due to the exponential growth of search space imposed by gene combinations,

the performance of existing methods is still far from satisfactory. In this study, we

developed a new method called BISG (BIclustering based Survival-related Gene sets

detection) based on a rectified factor network (RFN) model, which allows efficiently

biclustering gene subsets. By correlating genes in each significant bicluster with

patient survival outcomes using a log-rank test and multi-sampling strategy, multiple

survival-related gene sets can be detected. We applied BISG on three different cancer

types, and the resulting gene sets were tested as biomarkers for survival analyses.

Secondly, we systematically analyzed 12 different cancer datasets. Our analysis shows

that the genes in all the survival-related gene sets are mainly from five gene families:

microRNA protein coding host genes, zinc fingers C2H2-type, solute carriers, CD (cluster

of differentiation) molecules, and ankyrin repeat domain containing genes. Moreover,

we found that they are mainly enriched in heme metabolism, apoptosis, hypoxia and

inflammatory response-related pathways. We compared BISG with two other methods,

GSAS and IPSOV. Results show that BISG can better differentiate patient survival groups

in different datasets. The identified biomarkers suggested by our study provide useful

hypotheses for further investigation. BISG is publicly available with open source at https://

github.com/LingtaoSu/BISG.
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INTRODUCTION

Identifying biomarker genes for survival risk prediction allows earlier detection of mortality risk
and design of individualized therapy (Wang and Liu, 2018). Due to the exponential growth of
search space imposed by the combination explosion of genes, most proposed survival prediction
models mainly focus on a single gene. However, the genes perform their functions as groups rather
than individually. Identifying robust gene sets that can consistently predict a patient’s survival
outcome has become a main challenge in the field.
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In gene expression experiments, functionally related genes
often exhibit a similar pattern in only a subset of samples or
under specific experimental conditions (Padilha and Campello,
2017). This problem can be solved by biclustering, which can
be used to detect latent row and column groups of different
response patterns (Zhang et al., 2017; Saelens et al., 2018). By
combining patient survival information, whether the resulting
subset of genes are related to patient survival can be tested.
Sparse coding has demonstrated its advantage in biclustering
gene expression data (Hochreiter et al., 2010). Using sparse
representations, the biclustering model tends to have a smaller
number of row and column groups since a large amount of
variation is already explained by these observed covariates (Blei
et al., 2017). In fact, sparse coding has been well-developed
in deep learning obtained by rectified linear units (ReLU) (Xu
et al., 2016) and dropout (Srivastava et al., 2014). Recently,
the rectified factor network (RFN) model (Clevert et al., 2015)
was introduced, which aims at finding a sparse, non-negative
representation of the input, and extracting the covariance
structure of the data. The RFN model uses the posterior
regularization method (Ganchev et al., 2010), which separates
model characteristics from data dependent characteristics and
restricts the posterior means to be non-negative. As computing
posterior is very time consuming, variational inference is utilized
in RFNmodel, which approximates probability densities through
optimization. Furthermore, by utilizing the projected Newton
and projected gradient update strategies during optimization,
RFN can efficiently carry out biclustering with high accuracy.

In this study, we adapted RFN for biclustering analysis of
integrated mutation and gene expression datasets from the same
sets of samples, and developed a new method called BISG
(BIclustering based Survival-related Gene sets detection). As in
Hochreiter et al. (2010), a bicluster is defined as a pair of a row
(gene) set and a column (sample) set for which the rows are
similar to each other on the selected columns and vice versa. The
motivation for developing BISG is to predict such biclusters using
gene expression data and associate these biclusters with diseases
and disease subtypes. BISG is a rectified factor analysis model,
which extracts the covariance structure of the input data and
enforces the posterior has to be non-negative and normalized.
Non-negative constraints lead to sparse and non-linear codes,
while normalization constraints scale the signal part of each
hidden unit. For computing the posterior, a family of variational
distribution Q of allowed posterior distributions is introduced.
In this way, we transform the biclustering problem into an
optimization problem, which is optimized by a generalized
alternating minimization algorithm (Gunawardana and Byrne,
2005). To speed up computation in the generalized expectation
maximization algorithm, we perform a gradient step in both E-
step and M-step with fast GPU implementations. We correlate
genes in each significant bicluster with patient survival outcomes
using a log-rank test and multi-sampling strategy, and only
keep the gene sets that can differentiate sample groups by their
significantly different survival curves in training and validation
datasets. The identified biomarkers suggested by our study can be
used as hypotheses for further investigation in improving cancer
patient survival.

MATERIALS AND METHODS

Methods Overview
The overall design of BISG is shown in Figure 1. BISG mainly
comprises of four parts: (1) data preprocessing, (2) bicluster
detection, (3) survival analysis, and (4) result analysis. BISG takes
RNAseq data, single nucleotide polymorphisms (SNP) data and
sample survival data as input. In the data preprocessing, only
genes having at least one SNPmutation and samples with survival
information are kept. The expression data are normalized to
a range between 0 and 1. Each time 90% of the samples are
iteratively used as a training set to detect significant biclusters,
and the remaining 10% are then used as a validation set. For
bicluster detection, a multi-sampling strategy is applied. Each
time we randomly select expression data of 100 different samples
from the training set to detect significant biclusters using the
RFN model, bicluster extraction, quality control and significance
test methods. Biclusters passing all these tests are then used for
survival analysis. Based on the genes in each bicluster, BISG
separates samples (patients) in the training set into two groups
G1 (with over 80% bicluster genes significantly up-regulated)
and G2 (with all bicluster genes express normally). The survival
curves of the two groups are statistically tested by a log-rank
test. A multi-sampling strategy is also used in this test, i.e.,
each time we randomly select the same number of samples
from G2 as in G1 (or from G1 as in G2, depending on which
one has more samples). If a bicluster gene set can differentiate
sample groups by their significantly different survival curves in
80% samplings in the training set, we then validate whether
the bicluster genes can separate patients in the validation set
into two different survival groups. We random sample 1,000,
5,000, and 10,000 times respectively, and after all iterations only
commonly occurred significant bicluster gene sets that can well
separate patients in the validation set into different survival
groups are selected as biomarkers. In the result analysis, we
conduct an independent test of biomarkers with new datasets
from GEO (Gene Expression Omnibus) database, and do KEGG
and hallmark gene sets enrichment analysis, and also identify
common gene families of all the biomarker genes.

Data Preprocessing
Table 1 summarizes the data of the 12 cancer types used in
training and validation of BISG. We downloaded their RNAseq
median Z-score datasets, SNP mutation datasets and clinical
datasets from the cBioPortal database (Cerami et al., 2012; Gao
et al., 2013). Based on the median Z-score value we normalized
each gene expression values to a range between 0 and 1 (0 means
no change, 1 means highly up-regulated).

After the biomarkers were predicted, we utilized three
microarray datasets GSE16011 (Gravendeel et al., 2009),
GSE3494 (Palazon et al., 2017), and GSE11969 (Takeuchi
et al., 2006), as well as their corresponding sample survival
information from the GEO as independent test datasets to
confirm these biomarkers detected in gliomas, breast cancer
and lung adenocarcinoma, respectively. Two datasets, GSE1456
(Pawitan et al., 2005), which was used by GSAS (Varn et al.,
2015) but not BISG, and GSE32062 (Yoshihara et al., 2012),
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FIGURE 1 | Overview of BISG.

which was used by IPSOV (Shen et al., 2019) but not BISG,
were used to compared the classification performance of gene
sets detected by BISG, GSAS, and IPSOV. Another dataset
GSE3494 (new data for BISG and GSAS) was used to test
whether the core gene set detected by GSAS and the top-ranked
gene set identified by BISG with breast cancer datasets from
cBioPortal database can differentiate samples in GSE3494 into
different survival groups. These datasets were normalized the
same as in the cBioPortal database, and the datasets were shown
in Table 2.

Bicluster Detection
Given a normalized gene expression matrix, V = (X,Y), with a
set of rows X = {x1, . . . , xN}, a set of columns Y =

{

y1, . . . yM
}

,
and the element vij ∈ V represents the expression value of gene i
in sample j. A bicluster B = (I, J) is a n×m submatrix ofV, where
I = (i1, ...in) ⊂ X is a subset of genes and J = (j1, . . . jm) ⊂ Y
is a subset of samples. The biclustering aims to identify a set of
biclusters B = {B1, . . .Bs} such that each bicluster Bk = (Ik, Jk)
satisfies specific homogeneity criteria. The RFN model is a single
or stacked factor analysis model as in Equation (1), which extracts

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 April 2020 | Volume 8 | Article 349

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Su et al. Cancer Survival-Related Gene Markers

TABLE 1 | Cancer data used for training and validating biomarkers.

ID Cancer type Gene

number

SNP

number

Sample

number

1 Brain lower grade glioma 2,511 3,141 282

2 Colorectal adenocarcinoma 10,680 23,982 222

3 Glioblastoma 4,148 5,974 130

4 Head and neck squamous

cell carcinoma

11,767 27,742 500

5 Kidney renal clear cell

carcinoma

6,572 9,923 435

6 Lung adenocarcinoma 8,180 16,625 221

7 Ovarian serous

cystadenocarcinoma

3,641 4,573 183

8 Pancreatic adenocarcinoma 6,101 9,415 150

9 Papillary thyroid carcinoma 1,320 1,437 313

10 Prostate adenocarcinoma 7,673 12,658 496

11 Thyroid carcinoma 1,656 1,835 395

12 Breast Invasive Carcinoma 7,079 11,089 448

TABLE 2 | Independent test datasets used for confirming predicted biomarkers

and for comparison.

ID Cancer name Gene

number

Sample

number

GSE3494 Breast cancer 4,883 236

GSE11969 Lung Adenocarcinoma 5,273 149

GSE16011 Gliomas 2,061 264

GSE1456 Breast cancer 14,204 159

GSE32062 Ovarian cancer 19,592 260

the covariance structure of the data.

V = Wh+ ε (1)

where V = {V1, . . .VN) is the input data (visible units), h ∼

N(0, I) is the hidden unit (where N is a normal distribution), W
is the weight matrix, ε ∼ N(0,ϒ) is the noise error vector, and ϒ

is the noise covariance matrix. The parameters of the model are
W and ϒ . If h is given, then only the noise ε is a random variable
and we have V|h ∼ N(Wh,ϒ).

Let E denote the expectation of the data including the prior
distribution of the factors and the noise distribution. We can
get E(VVT) = WWT + ϒ . The marginal distribution for V is
V ∼ N(0,WWT + ϒ). The log-likelihood of the input data is
given in Equation (2).

log
∏n

i=1 p(Vi) = − nm
2 log(2π)− n

2 log |WWT + ϒ |

− 1
2

∑n
i=1 V

T
i (WWT + ϒ)

−1
Vi

(2)

For the mean-centered input vector V , the posterior p(hi|Vi) is
Gaussian with the mean vector (up)i and covariance matrix Kpp

FIGURE 2 | Significant bicluster extraction process. W[i] and h[i] are the gene

and sample membership vectors. max (W[i]) and max(h[i]) are maximum values

of W[i] and h[i], respectively. t_w, t_h, thr_w, and thr_h are threshold values

used to filter bicluster membership genes and samples. B represents bicluster.

P-value (B) is p-value of a bicluster B. Nonzero_ratio (B) is used for bicluster

quality control, which is calculated as the ratio of non-zero elements in a

bicluster.

as in Equation (3):

(up)i = (I +WTϒ−1W)
−1

WTϒ−1Vi,Kpp

= (I +WTϒ−1W)
−1

(3)

To maximize the likelihood, we introduce a variational
distribution Q, and the objective function F of our model is
shown in Equation (4):

F =
1

n

n
∑

i=1

log p(Vi)−
1

n

n
∑

i=1

DKL(Q(hi|Vi)||p(hi|Vi))

=
1

n

n
∑

i=1

∫

Q(hi|Vi) log p(Vi|hi)dhi −
1

n

n
∑

i=1

DKL(Q(hi|Vi)||p(hi)) (4)

where Q is a variational distribution for the approximate
of the posterior p(hi|Vi). We constrain Q to the family of
rectified and normalized Gaussian distributions. DKL > 0
is the KL distance. F is the objective of the EM algorithm.
The E-step maximizes F with respect to Q; therefore, the E-
step minimizes DKL(Q(hi|Vi)||p(hi|Vi)). The M-step maximizes
F respect to the parameters (W,ϒ); therefore, the M-step
maximizes

∫

Q(hi|Vi) log p(Vi|hi)dhi. Considering the quadratic
problem of the posterior regularization method, to speed up the
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computation using fast GPU implementations, we perform a
gradient step in both E- and M-steps. In the E-step, we use the
projected Newton method as in Equation (5).

min
µi

1

n

n
∑

i=1

(µi − (µp)i)
T(µi − (µp)i), s.t. µi ≥ 0,

1

n

n
∑

i=1

µ2
ij = 1 (5)

In Equation (5), with 1
n

∑n
i=1 µ2

ij = 1,µi ≥ 0 we constrain

the variational distributions to the family of normal distributions
with non-negative mean components, and can avoid the
explaining away problem as shown in Clevert et al. (2015).

In M-step, we decrease the expected reconstruction error, as
in Equation (6).

ε =
1

2

(

m log (2π)
)

+ log |ϒ | + Tr
(

ϒ−1C
)

− 2Tr
(

ϒ−1WT
)

+ Tr
(

WTϒ−1WZ
)

(6)

Where P = 1
n

∑n
i=1 Viµ

T
i , Z = 1

n

∑n
i=1 Viµ

T
i + Kpp and C =

1
n

∑n
i=1 ViV

T
i . In combination, we get the updates for E-step:

EQ(hi) = µi,EQ(hih
T
i ) = µiµ

T
i + Kpp and M-step: Wnew =

PZ−1,ϒnew = C − PWT −WPT + WZWT .
To get the sparse, non-negative and non-linear of the input

representations, and also to model the covariance structure of the
input, we choose the maximum likelihood factor analysis as the
model and apply the posterior regularization method (Ganchev
et al., 2010). To enforce sparse codes, a Laplace prior on the
weight matrix and dropout strategy are used. To further enforce
sparseness of the sample and gene membership vectors, we
propose a new bicluster extraction strategy as shown in Figure 2.
For each gene and sample membership vectors, firstly, we get
their maximum values, and then for each non-zero element, we
get the ratio between the maximum value and the element. If the
ratio fulfills the threshold value and at least two genes and two
samples are included, then the bicluster is filtered for quality and
significance test. For each bicluster passing the quality measure, a
p-value (Equation 7) is calculated and the Bonferroni correction
is used to control the overall type I error.

Pr(B(m, n, q) ≥ k) ≥ Pr(B
(

m, n, q
)

≥ mnq

(

1+
k

mnq
− 1

)

)(7)

According to Koyuturk et al. (2004), if there is no association in
a data matrix, each element can be assumed to an outcome of an
independent Bernoulli trial with success probability q. Given a
normalized gene expression matrix V with M rows, N columns
and K none zero elements, we look for a subset of rows and
columns such that a bicluster induced by these rows and columns
is dense enough to be considered statistically significant. Assume
that Pr(V(i, j) 6= 0) = q, where q can be estimated by the density
of the matrix, i.e., q = K/MN. For an arbitrary bicluster, with
m rows and n columns, we assume that the number of non-
zero elements is k. Then kfollows a binormal distribution. The
p-value of statistical significance test for anm×n bicluster is given

in Equation (7). By using Chernoff’s bound (Theodosopoulos,
2007), we get:

Pr(k ≥ mnp (1+δ) ) ≤ e−mnpδ2/3 (8)

where δ > 0. Assume that the probability of observing k non-
zero elements in the bicluster is less than P∗, then by Equation
(8), the bicluster is significant if k ≥ mnp(1 + δ), and δ ≥
√

3(− ln P∗)/mnp. In summary, according to Koyuturk et al.
(2004) the bicluster is statistically significant if:

C(m, n, k) = k−mnp−
√

3(− ln P∗)/mnp ≥ 0 (9)

For each bicluster identified, the Bonferroni correction is used to
control the overall type I error. The level of significance is set at
0.05
b
, where b is the number of biclusters identified. Besides, we

use the none zero ratio in a bicluster to do quality control of the
biclustering results. As defined above, the higher the k value, the
better the quality of the identified bicluster.

Survival Analysis
Weuse Kaplan-Meier plots (Goel et al., 2010) to visualize survival
curves and with a log-rank test (Singh andMukhopadhyay, 2011)
to compare the survival curves of patients with and without
changed expression of the bicluster gene sets. The survival
probability, also known as the survivor function S(t), is the
probability that an individual survives from the time origin (e.g.,
diagnosis of cancer) to a specified future time t. The survival
probability at time ti, S(ti) is calculated as below:

S(ti) = S(ti−1)(1− di/ni) (10)

where S(ti−1) is the probability of being alive at ti−1. ni is the
number of patients alive just before ti. di is the number of events
at ti. t0 = 0 and S(0) = 1.

Considering genes in each significant bicluster, both samples
in the training set and validation set can be divided into two
groups G1 (with over 80% bicluster genes significantly changed)
and G2 (with bicluster genes express normally). To test the
survival difference of samples in G1 and G2, a multi-sampling
strategy is utilized, each time the same number of samples are
selected. The survival curves of the two selected sample groups
can be compared statistically by testing the null hypothesis i.e.,
there is no difference regarding survival among two groups. This
null hypothesis is statistically tested by a log-rank test. In the log-
rank test, we calculate the expected number of events in each
group, i.e., E1 and E2, while O1 and O2 are the total number of
observed events in each group, respectively. The test statistic is:

Log − rank test = (O1 − E1)
2/E1 + (O2 − E2)

2/E2 (11)

The test statistic and the significance can be drawn by
comparing the calculated value with the critical value (using the
chi-square table). To guarantee that the bicluster genes are more
likely survival-related, for each significant bicluster, considering
samples in the training set, we repeat the log-rank test 100
times. If the genes in the bicluster can separate patient groups
in more than 80% sampling times, then we use the validation

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 April 2020 | Volume 8 | Article 349

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Su et al. Cancer Survival-Related Gene Markers

datasets to test whether they can also separate them into two
different survival groups. Only bicluster gene sets passing all
these significance tests are filtered out as the final biomarkers.
We also confirm some biomarkers with independent datasets
from the GEO database. In this study, the log-rank test and
survival analysis are conducted based on functions in the lifelines
python package.

RESULTS

Biomarker Gene Sets in Brain Lower Grade
Glioma, Lung Adenocarcinoma, and Breast
Invasive Carcinoma
We applied BISG on the datasets of brain lower grade glioma,
lung adenocarcinoma and breast invasive carcinoma from
the cBioPortal database (Table 1). Under the default and the
same parameter setting as in Su et al. (2019), we identified
24, 7, and 6 significant cancer survival-related biomarker gene
sets for lower grade glioma, lung adenocarcinoma and breast
invasive carcinoma, respectively (as shown in Figure 3, and
Supplementary Figures S1, S2 and Supplementary Table S4).
The identified gene sets include 109, 82, and 58 genes,
respectively. Multiple cancer survival-related genes were
found in these genes, including CDH17 (Qiu et al., 2019),
PTPRJ (D’Agostino et al., 2018), SLC16A14 (Elsnerova et al.,
2017), TMTC2 (He et al., 2018), and NOTCH4 (Wang
et al., 2018). Moreover, the results of gene set enrichment
analysis and pathway analysis showed that most of the genes
have known involvement in cancers. The survival curves
of patients with (over 80% bicluster genes significantly
upregulated) and without (others) top-ranked four most
significant biclusters for each of the three cancer types are shown
in Supplementary Figure S3, where the bicluster gene sets
identified by our methods can well separate patients into two
different survival groups.

System Analysis Survival-Related
Biomarker Gene Sets in 12 Different
Cancer Types
We systematically detected significant survival-related biomarker
genes sets in 12 different cancer types with datasets in Table 1.
The number of significant biomarker gene sets and their
corresponding gene IDs for each cancer are shown in
Supplementary Table S2. To find their relationships and
functions of these significant biomarker gene sets, firstly,
we conducted a function enrichment analysis with the
GSEA hallmark gene sets from MSigDB (Liberzon et al.,
2015). As shown in Figure 4, the function enrichment
is mostly in heme metabolism, apoptosis, hypoxia, and
inflammatory response. These are consistent with current
findings. For example, according to Kalainayakan et al.
(2019), cyclopamine tartrate suppresses tumor growth in
the lung by inhibiting heme metabolism and OXPHOS
(oxidative phosphorylation). A hallmark of cancer is the
ability of malignant cells to evade apoptosis (Hanahan and
Weinberg, 2011). Avoiding apoptosis is integral to tumor

FIGURE 3 | Twenty four significant survival-related gene sets detected in brain

lower grade glioma with datasets from the cBioPortal database (Table 1). The

corresponding genes of each gene set are shown in

Supplementary Tables S1, S4.

development and resistance to therapy. According to Muz
et al. (2015), hypoxia stimulates a complex cell signaling
network in cancer cells, including the HIF, PI3K, MAPK,
and NFγB pathways. According to Nishijima et al. (2019),
inflammatory markers are predictive of poorer survival,
independent of traditional prognostic factors in older adults
with cancer.

We also analyzed the enriched KEGG pathways of all the
bicluster gene sets. As shown in Supplementary Figure S4, focal
adhesion, neuroactive ligand receptor interaction, endocytosis
and pathways in cancer are the most commonly enriched
pathways by these gene sets. Finally, we systematically analyzed
gene family information of all the biomarker gene sets of each
cancer type. Results were shown in Supplementary Table S3.
According to our analysis, genes in all the survival-related gene
sets mainly from five gene families: microRNA protein-coding
host genes, zinc fingers C2H2-type, solute carriers, CDmolecules
and ankyrin repeat domain-containing genes. Many of these
genes are known survival-related (detailed information and the
corresponding literature are shown in Supplemental Material).
Furthermore, we found that many cancer survival-related genes
identified so far are also from these gene families. For example,
LEMD1 and EPHB2 are microRNA protein coding host genes,
and SLC2A3 from solute carriers (Martinez-Romero et al.,
2018). Other two survival-related genes RAD21 and CKS2
are microRNA protein coding host genes (van’t Veer et al.,
2002). In addition, CDH1 is from CD molecule (Gao et al.,
2019). Of the 68 cancer survival-related gene sets in Varn
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FIGURE 4 | Enriched GSEA hallmark gene sets of all the biomarker gene sets of all the 12 cancer types. Names on the right Y-axis are the hallmark gene sets. Names

on the bottom X-axis are the names of the 12 cancer types. Count means the number of cancers whose significant gene sets enriched in corresponding hallmark

gene sets. Values in this figure are 0 or 1. Zero means the biomarker gene sets of the corresponding cancer are not enriched in the hallmark gene sets.

et al. (2015), HMMR from CD molecules, MCM7 and CKS2
are microRNA protein coding host genes. Of the 129 ovarian
cancer survival-related genes in Shen et al. (2019), 17 are
from CD molecules gene family, 7 from microRNA protein-
coding host genes, 1 from ankyrin repeat domain-containing
gene family.

Results Independent Tests
To test whether biomarker gene sets detected by BISG with
datasets from cBioPortal database can differentiate patients
into different survival groups with new independent datasets,
we collected three microarray datasets GSE16011, GSE3494,
and GSE11969, as well as their corresponding sample survival

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 April 2020 | Volume 8 | Article 349

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Su et al. Cancer Survival-Related Gene Markers

FIGURE 5 | Kaplan-Meier plots of the survival analysis of the samples from brain lower grade glioma (GSE16011), lung adenocarcinoma (GSE11969), and breast

invasive carcinoma (GSE3494) patients. 1, 3 means the first and the third top-ranked biomarker gene sets detected by BISG with corresponding cBioPortal datasets.

The patients were separated into two groups according to the expression profiles of biomarker genes in the selected biomarker gene set. These genes provided the

best split between patients of high and low risk based on their expression levels. In the case of genes in biomarker gene sets (labeled in brown) the over-expression is

correlated with poor survival (only up-regulated genes were considered); and in the case of patients without biomarker genes (labeled in blue) the over-expression is

correlated with good survival. In all cases the adjusted p-values of the analyses are highly significant, indicating that the two populations represented by the two

curves have a very clear difference in their overall survival.

information (Table 2) from GEO as independent test datasets to
confirm the biomarkers detected in gliomas, breast cancer and
lung adenocarcinoma, respectively. For comparison, we selected
the top-ranked first and third biomarker gene sets (as shown

in Figure 3, and Supplementary Figures S2, S3) for each of the
three cancer types. For any selected biomarker gene set, patients
can be separated into two groups, one group with biomarker
genes significantly changed, and the other with bicluster genes

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 April 2020 | Volume 8 | Article 349

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Su et al. Cancer Survival-Related Gene Markers

FIGURE 6 | Comparison of gene set based patient survival group classification. “With gene set” means patients with over 80% expression of genes in the gene set

significantly changed. “Without the gene set” means patients with the expression of genes in gene set are normal. (A) The survival curve of core gene set identified by

the GSAS algorithm applied on the GSE1456 dataset. (B) The survival curve of the top-ranked gene set identified by our method applied on the GSE1456 dataset.

(C) The survival curve of core gene set identified by the GSAS algorithm applied on the GSE3494 dataset. (D) The survival curve of the top-ranked gene set identified

by our method applied on the GSE3494 dataset.

express normally. For survival analysis, we randomly selected the
same number of patients from the two groups and test whether
their survival curves are significantly different. As shown in
Figure 5, the biomarker genes can well separate patients into
different survival groups.

Comparison With GSAS and IPSOV
To further validate our method, firstly, we compared our
methods with GSAS. GSAS quantitatively assesses a gene set’s
activity score with the BASE algorithm (Cheng et al., 2007), along
with patient time-to-event data, to perform survival analyses to
identify the gene sets that are significantly correlated with patient
survival. Different from our method, they got gene sets directly
from MSigDB. By applying on seven independent datasets, one
core gene set with 68 genes were filtered out as most related
to breast cancer survival. For comparison, we test whether the
core gene set detected by GSAS and the top-ranked gene set
identified by BISG with breast cancer datasets from cBioPortal
database can different samples in GSE1456 (used by GSAS but

not BISG) andGSE3494 (new to both twomethods) into different
survival groups. We run each method many times, and each
time we randomly selected the same number of genes from their
respective gene sets. The best performing results of each method
are shown in Figure 6, where the gene set identified by BISG
can better separate patients into different survival groups. In
Figures 6A,C, patients with and without the biomarker genes
based on GSAS have similar survival rates, while as shown in (B)
and (D), the patients with biomarker genes identified by BISG
have different survival rates from the rest. In this comparison, all
the datasets are new and independent data that were not used
in training BISG. Results indicate that the gene sets identified by
BISG can better separate patients into different survival groups.

Furthermore, we also compared BISG with IPSOV. We tested
whether the ovarian cancer survival-related gene sets detected
by IPSOV (with data from GSE32062) and the top-ranked gene
set identified by BISG with ovarian cancer datasets from the
cBioPortal database can differentiate samples in GSE32062 (used
by GSAS but not BISG) into different survival groups. Detailed
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results are shown in Supplementary Figure S5. Results showed
that the biomarker gene set identified by BISG can better separate
patients into different survival groups. Again, all the samples for
comparison with GSASwere not used by BISG for the selection of
biomarker gene sets, which means the biomarker genes identified
by BISG are more likely cancer survival related genes.

Based on the fast GPU implementation of the RFN model,
BISG can do biclustering analysis of large input datasets in a fast
and accurate way, which enables BISG using a multi-sampling
strategy to iteratively detect survival-related biomarker gene sets.
In contrast to the standard clustering, the samples of a bicluster
are only similar to each other on a subset of genes. As a result,
genes in each significant bicluster can better differentiate samples
into different survival groups. Compared with GSAS and IPSOV,
the biomarker gene sets of our method are directly detected from
biclustering analysis of the expression datasets, which can well
capture the dynamic change of gene sets, and can reflect the real
relationships of these genes.

CONCLUSION

In this paper, we proposed BISG for identifying cancer
survival-related biomarker gene sets. BISG can efficiently
conduct biclustering for high-dimensional gene expression
matrix, and along with patient time-to-event data perform
survival analyses. To speed up computation, BISG performs
a generalized alternating minimization algorithm with GPU
implementations. In this way, BISG can efficiently construct
very sparse, non-linear, high-dimensional representations of the
input via their posterior means. To identify robust biomarker
gene sets, multiple iterations and a random sampling strategy
were utilized, and each time only bicluster genes that can
significantly differentiate patient survival groups were kept. To
detect patterns in survival-related gene sets, we systematically
analyzed 12 different cancer types, and identified their enriched
pathways and their gene families. The results indicated that the
identified gene families and genes are biologically meaningful
and consistent with the existing scientific findings. With several
independent test datasets, identified biomarkers were confirmed.
We also compared BISG with two related methods, and BISG
outperformed them. The predicted biomarker gene sets can
be further investigated for improving cancer patient survival.

BISG is now based on a simple factor analysis model, which
can be further extended into multi-layers with a deep learning
network structure.

Our method has the potential to be extended for single-cell
RNA-seq analysis, which has been widely applied in studying
cell heterogeneity such as cells of different cancer types or
subtypes. A pertinent question in such analyses is to identify
cell subpopulations. Our methods can conduct biclustering
effectively and efficiently especially for big expression matrices.
Ongoing consortium efforts have generated extensive atlases
of single-cell datasets covering diverse biological contexts with
thousands of samples (Xie et al., 2019), and our methods may be
suitable for analyzing them. We will explore applications of our
method on single-cell RNA-seq analyses as our future work.
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