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Natural myocontrol is the intuitive control of a prosthetic limb via the user’s voluntary

muscular activations. This type of control is usually implemented by means of pattern

recognition, which uses a set of training data to create a model that can decipher

these muscular activations. A consequence of this approach is that the reliability of a

myocontrol system depends on how representative this training data is for all types

of signal variability that may be encountered when the amputee puts the prosthesis

into real use. Myoelectric signals are indeed known to vary according to the position

and orientation of the limb, among other factors, which is why it has become common

practice to take this variability into account by acquiring training data in multiple body

postures. To shed further light on this problem, we compare two ways of collecting data:

while the subjects hold their limb statically in several positions one at a time, which is

the traditional way, or while they dynamically move their limb at a constant pace through

those same positions. Since our interest is to investigate any differences when controlling

an actual prosthetic device, we defined an evaluation protocol that consisted of a series of

complex, bimanual daily-living tasks. Fourteen intact participants performed these tasks

while wearing prosthetic hands mounted on splints, which were controlled via either a

statically or dynamically built myocontrol model. In both cases all subjects managed

to complete all tasks and participants without previous experience in myoelectric

control manifested a significant learning effect; moreover, there was no significant

difference in the task completion times achieved with either model. When evaluated in

a simulated scenario with traditional offline performance evaluation, on the other hand,

the dynamically-trained system showed significantly better accuracy. Regardless of the

setting, the dynamic data acquisition was faster, less tiresome, and better accepted by

the users. We conclude that dynamic data acquisition is advantageous and confirm the

limited relevance of offline analyses for online myocontrol performance.

Keywords: myoelectric control, prosthetic hand, dynamic data acquisition, limb position effect, performance

assessment

1. INTRODUCTION

Upper-limb prosthetics, as a branch of assistive robotics, poses a number of challenges both to
robotics and control experts (Vujaklija et al., 2016). A prosthesis is the paradigmatic wearable
device since it must be worn during most of the user’s daily life. A symbiotic use of such a
device, and eventually its embodiment, requires unobtrusive and seamless control (Beckerle et al.,
2018a,b; Castellini, 2020). Despite decades of research, such control has not yet been achieved
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and a widely clinically accepted upper-limb prosthesis has yet to
come (Castellini et al., 2014). De facto, the problem consists of
several sub-problems—the socket, the sensors, the mechatronics,
the appearance, etc.—each one of which must be solved at the
same time. Academic solutions, not tested on end-users or at
least in realistic conditions, will have little or no impact on
the life of disabled users. Upper-limb prosthetics is a deeply
holistic problem.

We hereby focus on the myocontrol problem, which is the
smooth, multi-DoF control of an upper-limb prosthesis by a
user through her voluntary muscle activity. Seamlessly providing
the right control commands to a dexterous prosthetic device is
an open problem: control based upon biological signals, such
as surface electromyography (sEMG) (Merletti et al., 2011), still
suffers from clumsiness and unreliability. Although seriously
criticized (Schweitzer et al., 2018), the academic solution of
choice nowadays is that of collecting labeled biological data from
a user engaged in a series of exemplary tasks. This data is then
utilized to build a model that maps signals to commands. By
the very nature of the approach, it entails that the initial data
acquisition phase (of necessarily short duration) must cover the
space of all possible muscle configurations that the user will enact
in the future (Castellini, 2016). Among other reasons, this is
complicated by the so-called limb position effect (Fougner et al.,
2011; Scheme et al., 2011; Peng et al., 2013), which refers to the
change in signals depending on the position and orientation of
the limb.

To alleviate this problem, incremental learning and tighter
user/prosthesis interaction are generally being studied to improve
and complete the initial dataset on demand, while users perform
their activities of daily living (ADLs). On the other hand,
whenever incremental learning is not used, the limb position
effect has been countered by extending the initial data acquisition
to include the same action (e.g., a power grasp) carried out in
several different postures (Fougner et al., 2011; Geng et al., 2012;
Peng et al., 2013; Betthauser et al., 2018). Although this strategy
can be effective, it comes at the cost of a considerably longer
and more tiresome data acquisition. There have been efforts
to limit this increase in acquisition time by replacing a static
posture in multiple positions with a single dynamic movement
that passes through these positions. For instance, Scheme et al.
(2011) have shown that a dynamic protocol not only sped up data
acquisition but also improved offline recognition rates during
simulated manipulation tasks (e.g., moving an object). An issue
with this evaluation is that offline performance is only weakly
related to online controllability (Lock et al., 2005; Jiang et al.,
2014; Ortiz-Catalan et al., 2015; Hahne et al., 2017; Krasoulis
et al., 2019). One of the reasons is that it fails to capture the
natural corrections that prosthetic users undertake in response
to myocontrol inaccuracies (Hahne et al., 2017).

Recent studies have shown increasing efforts into testing
the effects of the data acquisition on realtime myocontrol.
Batzianoulis et al. (2018) verified that dynamic training data
collected during the reach-to-grasp phase of the prehension
improved myocontrol stability during an online pick-and-place
task. Similarly, Yang et al. (2017a) and Woodward and Hargrove
(2019) acquired training sEMG data while moving the arm

and tested the resulting myocontrol models by engaging the
participants in online tests derived from, respectively, the target
achievement control and the box-and-blocks tests. Both studies
confirmed that the performance of myocontrol in online settings
improves when the training data is acquired while changing
the arm configuration rather than keeping the arm steady in
one position. However, none of the studies clarified whether
the improved performance was due to recording the dynamic
movement of the arm or merely due to the inclusion of more
arm poses. The latter study, moreover, also included multiple
levels of muscle contractions in the data acquisition, making it
impossible to determine the relative contribution of varying the
arm position and muscular contraction. More importantly, none
of the described performance assessment tests seems to reflect
the complexity of everyday actions, since the target achievement
control does not involve interactions with real objects, while the
box-and-blocks requires performing only one stable grasp in a
very limited portion of the user’s reachable space. Therefore,
it remains unclear if the claimed benefits materialize during
complex and realistic ADLs.

In this work, we characterize the effects of the static and
dynamic acquisition of training data on online myocontrol. In
particular, we focus on the loss of controllability associated
with variations of the limb position in realistic daily-living
settings. We asked 14 able-bodied subjects to follow a static
and a dynamic data acquisition protocol, while being fitted
with two commercially available hand prostheses mounted on
splints. With this equipment, and using a myocontrol model
built with either statically or dynamically acquired data, they
were required to perform a set of bimanual ADLs in a domestic-
like laboratory setting. We intentionally employed a bilateral
prosthetic setup and chose bimanual tasks to avoid the pitfall
of subjects over-relying on their unaffected limb to execute the
activities (Chadwell et al., 2018). Furthermore, this also ensures
that our study applies equally to a teleoperation scenario.

This work extends the preliminary results we presented at
a conference (Gigli et al., 2019) by including the results of a
questionnaire, in which the participants evaluated the two data
acquisition routines in terms of physical effort and achieved
system controllability. Furthermore, we also characterize the
learning effect that took place across the participants during
the familiarization phase and contextualize the findings of our
online experiments with those of previous studies conducted
in offline settings. In the following, we thoroughly describe the
experimental setup and protocol in section 2. The results of our
experiment are presented in section 3. Further discussion and the
conclusions are drawn in section 4.

2. MATERIALS AND METHODS

This study emphasizes the importance of a realistic online
evaluation of myocontrol. For this reason, we have designed
an experiment that involved subjects performing ADLs in a
domestic environment, while using a pair of commercially
available prosthetic hands. To compare our methodology with
that of previous offline studies, we also reused the collected
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training data for a standard offline grasp recognition experiment.
In the remainder of this section, we detail the experimental setup
and protocol, the evaluation measures of the online experiment,
and the design of the offline analysis.

2.1. Participants
Fourteen able-bodied subjects (age 27.9 ± 5.8 years, 10 men and
4 women) were recruited to participate in the experiment. All
of them were in good health and none of them had a previous
history of disorders that might have influenced the experiment.
Four of the participants had prior experience in myocontrol,
gained during previous studies, while the others were completely
naive to myocontrol. Before the experiment, the subjects received
an oral and written description of the experiment and signed an
informed consent form. The study was conducted at the German
Aerospace Center (DLR) according to the WMA Declaration of
Helsinki and approved by DLR’s internal committee for personal
data protection.

2.2. Experimental Setup
Each subject wore a Myo armband1 by Thalmic Labs on
both forearms about 5 cm below the elbow. This bracelet
contains 8 uniformly spaced sensors, each of which records an
sEMG signal at a sampling rate of up to 200Hz. An orthotic
hand/wrist splint was used to hold an i-LIMBTM Revolution
prosthetic hand2 by Touch Bionics at the extremity of either
forearm. Figure 1A depicts the described hardware. The i-
LIMBRevolution comprises sixmotors under direct independent
current control, permitting flexion/extension of each of the
five fingers plus abduction/adduction of the thumb. All devices
communicated via a serial-port-over-Bluetooth with a laptop
that ran the intent detection system. Software on this laptop
also guided subjects during data collection, processed the data,
trained and ran the controller of each prosthesis. In this manner,
an unobtrusive, realistic bimanual prosthetic manipulation setup
was implemented, which could be used by unimpaired subjects.

The experiment was conducted in a domestic-like
environment, which included some common household
objects, two tables, a clothesline, and a system of three shelves.
The shelves were placed at a height of 40 cm, 100 cm, and 150 cm.
The dining table and the clothesline were placed on the two
sides of the shelves. The second table was 2m away from the
clothesline. Certain objects needed some minor modifications to
be grasped by the prosthetic hands. The handles of some cutlery,
a clothes hanger, and the extremities of small clothespins were
padded to grasp them more easily. The study was videotaped for
offline performance assessment. An overview of the setup and
the environment is shown in Figure 1B.

2.3. Data Processing and Training
A custom software suite written in the C# and Python languages
was used to acquire, process, and label the input data. The signal
from each sEMG channel was rectified, computing its absolute
value, and low-pass filtered with a second-order Butterworth

1https://support.getmyo.com/hc/en-us/articles/203398347-Getting-started-with-

your-Myo-armband
2https://www.ossur.com/en-us/prosthetics/arms/i-limb-ultra

filter with a cut-off frequency of 1Hz. These signals and labels
were passed to two instances of non-linear Ridge Regression,
one per arm, which were trained with the data of the respective
limb. The resulting models mapped sEMG signals onto torque
commands for the motors of the prosthetic hands. In its
canonical form, Ridge Regression (RR) predicts outputs via a
linear model

f (x) = wTx, (1)

where w is a vector of scalar weights obtained by minimizing

min
w

N
∑

i=1

(

yi − f (xi)
)2

+ λ ‖w‖2 (2)

over a training set of labeled samples
{

(xi, yi)
}N

1
. The term ‖w‖2

penalizes the complexity of the model and its importance relative
to minimizing the squared residuals is controlled via the non-
negative hyperparameter λ. In the present work, we use a variant
of RR that achieves non-linearity by mapping the feature vectors
into a high-dimensional representation using so-called Random
Fourier Features (RFFs) (Rahimi and Recht, 2008). A detailed
treatment of RFF-RR and its use in myocontrol is given in
Gijsberts et al. (2014). The prediction function of RFF-RR is
written as

f (x) = wTφ(x), (3)

where φ is the finiteD-dimensional RFFmapping, which consists
of cosines weighted through randomly-sampled frequencies.
Without going into details, an appealing property of this
mapping is that it approximates a Gaussian kernel without
incurring the typical computational overhead of actually using
that kernel (Rahimi and Recht, 2008), provided that the
chosen mapping dimensionality D is sufficiently high. The
formulation of RFF-RR allows fast training of the model and
computation of new predictions, can be made incremental, and
is bounded in space (Gijsberts and Metta, 2011), which makes
it suitable for realtime myocontrol. Strazzulla et al. (2017), in
fact, already used an incremental version of RFF-RR for online
bimanual manipulation.

The regularization parameter λ of each regressor was set
to 1, while the bandwidth γ and the dimensionality D of the
RFF mapping to 0.5 and 300, respectively. This regression setup
allowed the simultaneous and proportional control of the degrees
of freedom (DoFs) of each prosthesis.

2.4. Experimental Protocol
The participants donned the prosthetic system, i.e., the sEMG
armbands and the prosthetic hands, at the beginning of the
experiment, and no doffing or adjustment of the sensors was
permitted afterward. This was necessary to isolate the effect of
limb position variations from those of other confounding factors,
such as the electrode shift.

All subjects in the study tested both the static and dynamic
data acquisition protocols. After each data acquisition, the system
was trained and the participants were asked to perform a
sequence of bimanual activities. This sequence was repeated
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FIGURE 1 | Experimental setup. (A) The bimanual prosthetic system consisted of two Myo armbands for sEMG measurement and two Touch Bionics i-Limb Ultra

prosthetic hands mounted on orthotic splints. (B) The experiment took place in a domestic-like laboratory setting. Tableware, clothes, and other common objects

were laid on two tables, three shelves, or on the floor. A clothesline and a vertical support for clothespins were placed next to the shelves.

TABLE 1 | Experiment organization.

Phase# Description

1 Collect training data using the first acquisition procedure

2 Familiarize on bimanual ADLs

Measure performance on bimanual ADLs

3 Collect training data using the other acquisition procedure

4 Familiarize on bimanual ADLs

Measure performance on bimanual ADLs

twice: the first time to let them familiarize themselves with
the prosthetic control, the second time to measure their
performance. These four segments of the experiment are reported
in Table 1. To counterbalance any learning effects, we inverted
the order of the acquisition types for half of the subjects: seven
randomly selected subjects started with the static acquisition
protocol, while the remaining subjects started with the dynamic
acquisition protocol.

2.4.1. Data Acquisition
In each data acquisition routine, the participants performed
some predefined combinations of grasps and arm postures. After
receiving a detailed description of the routines, the participants
tried them under the supervision of the experimenter. Then, the
experimenter guided them throughout the acquisition procedure,
supported by acoustic signals from the acquisition software.
This helped to ensure that all subjects performed the same
arm configurations and movements. We opted for such direct
guidance because the participants did not manage to precisely
follow a videotaped execution of the acquisition protocol in
preliminary trials. The desired grasp types were chosen based
on their relevance in ADLs according to the literature (Wang
et al., 2018) and proved to be sufficient to execute our evaluation
protocol during preliminary tests. We selected a resting posture,

a power grasp, and a pointing posture with the index finger.
Since our myocontrol approach was based on proportional
control and thus regression, the model was not trained to
distinguish these three grasp classes from one another, but rather
to predict the corresponding hand configurations in terms of
the degree of flexion of each finger. While the participants
were performing the grasps during the acquisition phase, the
laptop collected the related sEMG samples and labeled them
based on whether or not a given DoF was activated in those
configurations. In the case of index pointing, the system would
record a 0 for the index finger (i.e., no flexion) and 1 for all
other DoFs (i.e., flexion). The resting posture consisted of all 0
(all fingers extended), whereas the configuration for the power
grasp contained all 1 (all fingers flexed).We intentionally avoided
capturing intermediate activation values to avoid the inevitable
delay introduced by the subjects’ reaction time and to keep the
procedure as straightforward as possible for the subjects, which
is particularly relevant when considering a possible application
with amputees (Sierra González and Castellini, 2013). Moreover,
it has been shown that training on binary activation values yields
usable proportional control (Gijsberts et al., 2014; Meattini et al.,
2019).

We chose a set of limb positions that evenly covered the
subject’s reachable space, that is, the space they could reach with
their hands while standing straight. Since it is uncommon for
both hands to be crossed in bimanual activities, we excluded the
intersection of the reachable spaces of the left and right hands.
To speed up data acquisition, every grasp had to be done with
both hands simultaneously, with the arms always symmetric to
the sagittal plane. Without loss of generality, we describe the data
acquisition routine for one arm only.

2.4.2. Static Protocol
During static data acquisition, each grasp was repeated once for a
finite set of arm configurations. Previous studies indicated that
the robustness of pattern recognition based myocontrol to the
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FIGURE 2 | Static and dynamic acquisition of training data. The positions occupied by the right and left hand during data acquisition are represented, respectively, by

solid and transparent cubes. (A) Static data acquisition was performed repeating and holding the grasp in each position, first with the hand palm facing up, then

facing down, for a total of 18 repetitions for each hand. (B) During dynamic data acquisition, the grasp was maintained while moving the hands in a trajectory that

interpolated the static positions with uniform speed. The trajectory consisted of two halves, from the circle to the square and back; it was followed with the palms

down in the first half, and up in the second half. Both data acquisition routines were performed while wearing the bimanual prosthetic system.

limb position effect relates to how well the training data cover
the user’s workspace in terms of reachable positions (Fougner
et al., 2011; Radmand et al., 2014) and possible forearm rotations
(Khushaba et al., 2016; Yang et al., 2017b). For this work, we
selected 18 arm configurations that seemed to represent a good
trade-off between a homogeneous sampling of the workspace and
the duration of the resulting data acquisition. They corresponded
to reaching nine positions with the hand, first with the palm
facing down and then with the palm facing up (see Figure 2A).
We defined these positions based on three height levels (waist,
chest, head) and three relative distances from the trunk (close
in front, far in front, far lateral). We believe that this definition
favors the repeatability of the arm configuration across different
subjects since it relates to one’s own body rather than to external
references. Each grasp was held in every position for 3 s, which
was the lowest duration found in similar studies (Fougner et al.,
2011; Radmand et al., 2014; Khushaba et al., 2016), and 4 s were
allowed to move the arm from one configuration to the next. The
acquisition of each grasp type took 126 s in total, 54 s to record
data, and 72 s to reach the different arm configurations. In the
case of fatigue, the participants were allowed to pause the routine
and rest.

2.4.3. Dynamic Protocol
In the dynamic data acquisition, the subject performed the
desired grasp type with both hands while moving the arms
in a trajectory that interpolated the nine positions of static
acquisition, as shown in Figure 2B. The movement started from
the waist level with the palm down and proceeded upward,
passing through all nine positions. Then the subject flipped the
hand palm up and continued the movement backward until she
returned to the starting position. This movement was repeated

once for each grasp type, while the corresponding data was
recorded. Its duration was chosen to be 27 s, exactly half the
recording time of the static acquisition, and 4 s were allotted to
prepare the following grasp. Even in this case, the participants
could suspend the procedure to rest.

2.4.4. Activities of Daily Living
After processing the data and training the prosthesis controllers,
we evaluated the system by having the subjects perform the
bimanual ADLs that are described in Table 2. These activities
were inspired by those found in assessment protocols for
prosthetic users, such as ACMC (Hermansson et al., 2005)
and SHAP (Kyberd et al., 2009), and for patients with
motor impairments of the upper limbs, like CAHAI (Schuster
et al., 2010) and the Clothespin relocation test (Hussaini and
Kyberd, 2017). We preferred tasks that involved coordinated
movements of the arms or walking and bending, as these
were more susceptible to the limb position effect. The
experimenter explained the tasks to the participants before the
familiarization phase. Unless otherwise specified, participants
could autonomously choose which grasp to use to carry out a
certain task. For example, they could open the bottle cap by
grabbing it or pushing its edge with the tip of their index finger.
No constraint was imposed on task laterality, that is, which hand
was to be used to perform a particular action. During pick and
place tasks, the subjects could decide to move one or two objects
at the same time depending on the amount of trust they had in
the prostheses. The tasks proceeded without time limits and it
was the subjects’ responsibility to recover from errors, such as
an accidental drop of an object. An exception was made for the
last task where the experimenter replaced the clothespins anytime
they were dropped on the floor.
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TABLE 2 | Detailed description of the bimanual tasks in the performance

evaluation phase.

Task Name Description

Napkin A napkin is placed on the middle shelf,

unfolded. Take it, bring it to the dining table,

and fold it twice.

Table A plate and a glass are laid out next to each

other on the top shelf. Bring them to the

dining table, put the plate on the folded

napkin and the glass next to it. A fork and a

knife are on the middle shelf. Bring them to

the dining table and place them on the two

sides of the plate. Move two objects at the

same time if the prostheses seem reliable.

Water A bottle containing some fine gravel is on the

dinner table. Pick it up with one hand,

unscrew the cap with the other hand, pour

the gravel into the glass, put the bottle back

on the table with the cap next to it.

Food A spoon and two small balls with diameters

of 3 and 6.5 cm are contained in a bowl that

is placed on the dining table. Take the plate

with one hand and the spoon with the other,

then use the spoon to bring the balls from the

bowl to the plate.

Phone A cordless phone is connected to its base

station on the middle shelf. Take it with one

hand, dial 9-1-1 with the index finger of the

other hand, and then put the phone back in

place.

Sweep A hand broom and a dustpan are positioned

on the lower shelf, while some clothespins lie

on the floor next to a trash bin. Take the

broom with one hand and the dustpan with

the other, walk to the clothespins, bend, and

sweep the clothespins off the floor. Then

empty the dustpan into the trash bin and

bring the broom and dustpan back to their

original location.

Shirt A dress shirt and a hanger are placed on the

table. Use both hands to put the shirt on the

hanger, then hang the hanger on the

clothesline.

(Continued)

TABLE 2 | Continued

Task Name Description

T-shirt A t-shirt is positioned on a table and two

clothespins are pinned to a vertical rod in

front of the clothesline. Pick the t-shirt up

with two hands, bring it to the clothesline, put

it on the wire, and pin it with the clothespins.

2.5. Online Performance Evaluation
The effectiveness of the two data acquisition routines was
evaluated quantitatively by measuring the completion time of the
individual tasks during the performance test phase. Since we did
not impose any time limits, the completion rate of the tasks was
by definition 100%. At the end of the experiment, the participants
were requested to fill in a questionnaire with two questions
to qualitatively investigate potential differences between both
acquisition types. The subjects were first asked to report how
easy they found it to control the system on a visual analog
scale ranging from “very difficult” to “very easy.” Secondly, they
had to quantify how comfortable it was to complete either data
acquisition, on a similar visual analog scale from “very tiring”
to “very comfortable.” The effort made during data acquisition
was also quantified indirectly by measuring the amount of time a
subject requested to rest during data acquisition.

We expected to find differences in the task completion times
and the perceived levels of fatigue associated with the two data
acquisition routines. We used a two-tailedWilcoxon signed-rank
test to identify statistically significant differences between the
average task completion times and the perceived fatigue of the
two procedures. The choice of this test was based on the limited
number of participants and the within-subject study design. The
significance threshold was set to α = 0.05.

2.6. Offline Grasp Prediction
To compare our methodology with related literature, we also
conducted an offline analysis that reflects the study by Scheme
et al. (2011). For every combination of subject, arm, and
acquisition method, we partitioned the data of the acquisition
phase in training and test sets. In the static case, we assigned
the data of the odd-numbered of the 18 arm positions to the
training set and the even-numbered ones to the test set. For the
static case, which consisted of a continuous motion rather than a
set of discrete positions, we approximated the same split by first
dividing the entire data sequence into 18 parts of equal length.
This particular split was chosen to minimize leakage from the test
set to the training set due to temporal dependencies, while at the
same time limiting the distribution shift between both sets.

Distinct RFF-RR models were trained for all four datasets
(static and dynamic, left and right arm) of thirteen subjects,
where we note that one subject was excluded from the offline
analysis because the data had not been stored correctly.
These models were trained in the same manner and with
the same hyperparameters as for the online experiment. Their
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FIGURE 3 | Physical effort required by static and dynamic data acquisition. (A) Self-reported level of fatigue experienced during data acquisition. (B) Proportion of the

data acquisition duration that was spent resting. The dynamic acquisition proved to be less tiring since it required significantly less break time (∗∗∗p < 0.001). The

outcome of the questionnaire seemed to confirm this result, but it was not supported by sufficient statistical evidence. The reduction of break time also allowed to

collect dynamic data much faster than static data. In all the boxplots of this study, the rectangle indicates the range between the first and third quartiles, and the

whiskers extend to the most extreme samples within the first and the third quartile ∓ 1.5 IQR. Samples outside this range are marked as outliers.

performance was then evaluated on the test set of the same type
(e.g., static to static) as well as across acquisition types (e.g.,
static to dynamic). How well a model performed was quantified
by averaging the unadjusted coefficient of determination R2

obtained for the predicted activation levels of each DoF. The
coefficient R2 for one DoF is defined as

R2(y, ŷ) = 1−

∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ȳ)2

(4)

where ŷ is a vector of N predictions, y is the corresponding
ground truth, and ȳ is the average value of the ground truth.

3. EXPERIMENTAL RESULTS

We compared the two data acquisition procedures based on the
physical effort of the participants, the time needed to complete
the manipulation tasks using the resulting myocontrol models,
and the perceived controllability of the prosthetic system. We
then evaluated the effects of our methodology in offline settings
to compare it with previous works in the field.

Figure 3 quantifies the physical effort needed to complete
the data acquisition. The perceived level of fatigue was derived
from how comfortable static and dynamic acquisition were
evaluated in the questionnaire, by converting the answers into
a percentage from 0% (“very comfortable”) to 100% (“very
tiring”). Additionally, since the subjects could suspend the data
acquisition in case of weariness, a complementary metric of
fatigue was obtained by measuring the proportion of acquisition
time spent while resting. The subjects showed no agreement
on which strategy required the least physical effort. Although
the reported fatigue was lower for dynamic training, this result
was not statistically significant (average level of fatigue of

58.9% vs. 41.1%, p = 0.078, V = 81). It must be noted,
however, that dynamic training required significantly shorter
break times (43.3% vs. 17.6% of the overall data acquisition
duration on average, p < 0.001, V = 105). Taken together,
these results indicate that dynamic training was indeed less
tiring. Furthermore, they suggest that the discomfort during
static acquisition was compensated by taking longer breaks,
which would also justify the mixed opinions found in the
questionnaires. Remarkably, the shorter break times made
dynamic acquisition significantly faster than static acquisition,
especially considering that it was already shorter by design.

The real-time performance of the prosthetic system was
assessed based on the time it took subjects to complete the tasks
in the performance evaluation session that followed the data
acquisition. Figure 4 reports the performance of all the subjects
after static and dynamic training. The duration of the evaluation
session was comparable after either acquisition procedure (mean
task sequence duration of 333.8 s vs. 325.1 s, p = 0.855, V =

49). Particularly, also the completion times of the individual
tasks were comparable (no statistically significant difference),
regardless of their different requirements in terms of dexterity
and movement coordination.

Figure 5A reports the average duration of the familiarization
and the performance evaluation sessions that followed either data
acquisition. The order for the static and dynamic training was
randomized among subjects to counterbalance possible learning
effects between the two strategies. The subjects demonstrated a
strong learning effect, as they completed the evaluation session
significantly faster than the familiarization session, both after
static (average session duration of 438 s vs. 334 s, p = 0.0012,V =

100) and dynamic training (average session duration of 418 s vs.
325 s, p = 0.007, V = 94). The evaluation session also showed
reduced variability in duration across the subjects compared to
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FIGURE 4 | Duration of the tasks during the performance evaluation session. Duration of (A) the task sequence and (B) of the individual tasks during the performance

evaluation session, after static and dynamic training. No significant difference was found between the average duration of the performance evaluation session in the

two conditions.

the familiarization session, both in the static (session duration
range of 503 s vs. 284 s) and in the dynamic case (session duration
range of 501 s vs. 280 s). Nonetheless, the two data collection
procedures showed comparable task completion times during the
respective familiarization and evaluation sessions (no statistically
significant difference). In other terms, the subjects’ performance
improved rapidly over time due to practice, but this improvement
occurred independently of the data acquisition procedure.

The analysis of the learning effect continued by separating
the performance of naive and experienced subjects, and then
by dividing the naive subjects based on who tested the static
acquisition followed by the dynamic acquisition, defined as
naive SD subjects, or vice versa, defined as naive DS subjects.
Three of the four experienced subjects belonged to the SD
group. Of the remaining ten naive subjects, six were SD and
four DS. Naive participants, Figure 5B, confirmed the learning
trend described before, showing comparable performance across
training conditions while improving over time (average duration
of the familiarization and the evaluation session after static
training 505 s vs. 363 s, p = 0.002, V = 45, and after
dynamic training 451 s vs. 337 s, p = 0.0098, V = 52).
Experienced participants, instead, performed equivalently well
regardless of the training condition and did not show a significant
learning effect (average duration of the familiarization and the
evaluation session after static training 269 s vs. 260 s, and after
dynamic training 337 s vs. 296 s). The performance of naive
subjects was characterized by a higher initial variance, but it
seemed to converge rapidly to that of experienced participants

over the course of the experiment. Figures 5D,E display the
evolution over time of the performance of naive SD and naive
DS participants. In both groups, the familiarization of the second
tested condition was faster than that of the first condition
(average familiarization time for naive SD subjects 570 s vs. 394 s,
p = 0.031, V = 21; average familiarization time for naive DS
subjects 537 s vs. 407 s, p = 0.12, V = 10). The lack of statistical
evidence in the second case was probably due to the limited
number of DS subjects. This result showed that learning did not
just happen within the same training condition, but rather that
the subjects transferred some of the skills acquired for the first
training strategy to the second. This transfer effect could explain
part of the variability of the counterbalanced results, especially
during the familiarization phase.

Figure 6A describes how easy the subjects perceived the
two prosthetic control variants during the online tasks. This
information was reported in the questionnaire at the end of
the experiment and converted in a percentage from 0% (“very
difficult”) to 100% (“very easy”). The subjects’ opinions were
mixed, which overall resulted in a comparable perceived system
controllability after either acquisition strategy. Nonetheless, the
perceived controllability of the system was higher after static
training, but this was not supported by the statistical evidence
(average controllability of 70.8% vs. 57.0%, p = 0.059, V = 72.5).
Furthermore, this trend seemed to characterize only a portion
of the subjects. Those who tried the static training after the
dynamic one, Figure 6B, consistently reported improvements in
the usability of the system for the last tested condition (average
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FIGURE 5 | Duration of the tasks sequence during the familiarization and the performance evaluation sessions, after static and dynamic data acquisition. (A)

Performance of all the participants. Although the task completion time decreased significantly after the initial familiarization (∗∗p < 0.01), the performance of static and

dynamic data acquisition remained comparable both during the familiarization and the following evaluation session. This trend characterized the performance of (B)

naive participants but not those of (C) experienced participants, for whom the average session duration did not change significantly across acquisition strategies and

familiarization levels. The performance of the naive participants rapidly converged to those of the experienced ones, despite retaining a higher variance. (D,E)

Chronological evolution of the performance of the naive subjects, divided between those who first tested the static and then the dynamic condition, and vice versa.

The improvement of all the naive subjects was consistent, not only within the same training strategy but also across different strategies (∗p < 0.05). For groups with

fewer than five samples, we show the individual data points rather than a boxplot.

controllability of 75.4% vs. 51.4%, p = 0.063, V = 20).
Instead, the subjects that started with static training, Figure 6C,
found that controlling the system was equally easy under
both conditions (average controllability of 66.1% vs. 62.5%,
p = 0.61, V = 17.5). In any case, none of the observed
effects was statistically significant, perhaps because the opinions
regarding the first tested condition were always characterized by
greater variance.

Figure 7 summarizes the outcomes of the offline grasp
recognition task performed on the training data collected
during the online experiments. The prediction of desired hand
configurations in the dynamic test set was significantly better
after dynamic training as compared to static training (R2 of
0.53 vs. 0.80, p < 0.001, z = −4.46, see Figure 7A). In
addition, the dynamic training provided better performance
also when the training and the test data were acquired with
different protocols, i.e., static training followed by dynamic
testing, or dynamic training followed by static testing. Figure 7B
shows that the estimation of the intended hand posture
obtained by training on dynamic data and testing on static
data was better than the estimation obtained by training on
static and testing on dynamic data (R2 of 0.53 vs. 0.62,
p = 0.004, z = −2.86).

4. DISCUSSION AND CONCLUSIONS

4.1. General Remarks
The limb position effect requires training data to be collected

in several different body postures for each desired action to
be learned; this is because body postures alter the muscle

configuration of the forearm, thereby changing the sEMG

patterns. The traditional solution to this problem, already
appearing multiple times in literature (Fougner et al., 2011;

Peng et al., 2013; Betthauser et al., 2018), consists of simply

asking users to hold their arm statically in multiple postures

and then collecting data one posture at a time. This makes the
data collection procedure longer and potentially more tiring

than usual, especially since this procedure must be repeated

for each grasp type. A method to make it lighter and faster is
highly desirable.

The aim of this work was that of assessing if a dynamic data-
collection procedure would be better than a static one and, if so, in
which respect and why. We wanted to test the models obtained
using either data collection procedure in realistic conditions,
i.e., using prosthetic hardware to perform real-time bimanual
manipulation tasks inspired by daily living. Fourteen able-bodied
subjects were engaged in a set of realistic bimanual activities
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FIGURE 6 | Perceived controllability of the system. (A) Controllability of the system, self-assessed in the questionnaire at the end of the experiment. Subjects reported

mixed opinions about the controllability of the prosthetic system. No statistical evidence supported the modest improvement of the perceived controllability provided

by the static training. (B) The subjects who started the experiment with dynamic training and continued with static training (D-S) reported improved system

controllability for the second condition tested. (C) Those who tried the static training first (S-D) experienced equivalent controllability in both conditions.

FIGURE 7 | Offline prediction of the hand configuration using RFF-RR after static or dynamic training. (A) Dynamic training allowed better grasp prediction from

dynamically acquired data samples (∗∗∗p < 0.001). Besides, (B) the performance observed by training on dynamic and testing on static data were better than those

obtained by training on static and testing on dynamic data (∗∗p < 0.01).

(laying a table, serving food, hanging clothes, etc.), after having
performed both a static and a dynamic data collection procedure
to build appropriate myocontrol models.

The first result to be noted is that all users were able to
complete all tasks, in both training modalities. Given the realism

of the tasks they were requested to perform, this seems to indicate
that the approach of using RR with RFFs is worth pursuing.
Notice that in this specific work we intentionally refrained
from using the incremental characteristics of RFF-RR, making it
impossible to update and correct the models online; the observed
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performance, therefore, only depends on the data collected at the
beginning of the experiment. Secondly, it is worth remarking that
the time needed to acquire the training data is relatively short in
either modality. Taking into account the breaks requested by the
subjects, the average acquisition time is about 9 min for the static
acquisition and just 2 min for the dynamic one. Also allowing
for the adaptation that users naturally put in place while doing
the tasks, this indicates that both approaches rapidly yield data
with a quality sufficient to cover most of the actions required in
the experiment.

4.2. Dynamic and Static Data Collection
Provide Comparable Real-Time
Performance
The experimental results show that, quite surprisingly, there
is no difference in real-time performance (time required to
complete each task) between the static and the dynamic data
collection procedure. No statistically significant difference in
the task execution times could be found, either considering the
overall times, or the duration of the individual tasks (Figure 4).

Notice as well (Figure 5) that subjects without prior
experience in myocontrol manifest a quite strong learning
effect as they perform the tasks over and over again. However,
the uniformity between the static and dynamic conditions
persists, since there is no significant difference in performance
between the familiarization phases, as well as between the
evaluation phases. The results for the experienced participants
suggest that long-term learning of myocontrol leads subjects to
reach a consistent level of performance that is irrespective of
the acquisition protocol. This reduction in variability among
experienced subjects is in line with the findings of previous
studies on the implications of long-term user training on
myocontrol (Hargrove et al., 2017).

The equivalence between the myocontrol performance
provided by static and dynamic training somehow contradicts the
outcome of previous studies (Fougner et al., 2011; Scheme et al.,
2011), which reported improved myocontrol in offline settings
by using dynamic training data. To the best of our knowledge,
however, this is the first time in which the comparison between
the effects of static and dynamic training is carried out online,
performing realistic and complex ADLs. In line with the results
by Scheme et al. (2011), we observe that in the cross-comparison
in Figure 7B the model trained on dynamic data has higher
offline accuracy on static data than vice versa. All in all, this
result suggests once more that non- or quasi-realistic testing of
myocontrol systems is hardly a good indicator for the efficacy
or reliability of the system once put to practice in real life (Jiang
et al., 2014; Ortiz-Catalan et al., 2015). This might be due tomany
contingent reasons, such as wrong measures of performance or
wrong tasks administered to the users, but eventually it probably
has to do most of all with the excellent ability of human users to
compensate for control inaccuracies by adapting their muscular
signals. This is even more so for proportional control since users
receive immediate visual feedback of the control response of the
prosthesis (Hahne et al., 2017; Shehata et al., 2017, 2018).

Considering the capability of users to smoothen control
inaccuracies, one may wonder if this also means that we

can shorten the data acquisition even further, for instance by
reducing the number of positions. A recent study on real-
time myocontrol did not find a reduction in the online grasp
recognition rate in different positions even when training data
was acquired in just one position (Hwang et al., 2017). This
study did not involve realistic tasks and considered only one
wrist orientation and three positions; regardless, in future
work, it would be interesting to continue along these lines
and to investigate what is the minimal amount of position
variability that still yields consistent online controllability during
practical tasks.

4.3. Dynamic Data Collection Is Faster and
Less Tiresome
As is clear from the objective and self-assessed indices of
performance, acquiring data dynamically is faster, uses fewer
sEMG data, and is less tiring. Net of the possible break times
requested by the participants, the dynamic procedure only takes
27 s per grasp type instead of the 126 s needed by the static
one; this is advantageous in terms of the stress and frustration
imposed on the subjects. Moreover, from a computational point
of view, dynamic training employs roughly half the sEMG
samples needed by the static one. This could be important when
miniaturization of the whole system is planned, for instance
on a microcontroller to be embedded in the prosthetic socket.
Interestingly, while providing fewer data samples, dynamic
acquisition still results in equivalent real-time controllability to
the static one. We argue that this depends on the information
captured during the motion that joins one limb posture to the
following one, which is ignored by performing static acquisition
in multiple postures.

The subjective assessment of fatigue during either procedure
represents one of the main results of this study. Although not
statistically significant, the results in Figure 3A hint that the
dynamic acquisition was perceived as less tiring. This observation
is supported by the amount of rest the subjects requested
during either type of acquisition, shown in Figure 3B, which
was significantly less for the dynamic procedure. This indicates
that dynamic training is easier and more acceptable than the
static one. Taken together, the two results indicate that dynamic
training should be preferred over static training.

4.4. Further Remarks
According to the visual inspection of the recordings of the
experiments, and also according to the main experimenter’s
experience, the myocontrol system was not free from instabilities
and failures. For example, the prosthetic hands would sometimes
execute unwanted actions or open unexpectedly during grasps.
Mainly, these problems arose when trying to grasp while in
muscle-stressing body postures, probably akin but not exactly
matching those during data collection. Since we did not allow
subjects the possibility to update the models online, this indicates
that there still is some incompleteness of the dataset collected at
the beginning of the experiments. In other words, it cannot be
assumed that an initial calibration will suffice (Castellini, 2016).

The solution we propose to address this issue is, once again,
the exploitation of the incremental characteristics of RFF-RR
(Strazzulla et al., 2017), leading to interactive learning (Nowak
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et al., 2018). Notice that there is no conflict in mixing up
interactive learning as described in the literature and dynamic
data collection. These two strategies are orthogonal and one can
imagine updating the model online already during the dynamic
data acquisition. This would provide the user with immediate
feedback on the control response of the prosthesis; going even
one step further, the user could then guide the acquisition and
interactively acquire data exactly in those postural and dynamical
conditions where the behavior is unsatisfactory.

A complementary avenue to attenuate the limb position effect
consists of enriching the training set with sensory modalities that
directly relate to the position of the arm. Fougner et al. (2011)
showed that offline myocontrol accuracy can be improved by
integrating sEMG and accelerometry data collected in multiple
arm positions. Radmand et al. (2014) later found that the
use of inertial measurements in combination with static data
acquisition only improves myoelectric control if the training
data is acquired across many arm positions, whilst it is likely to
undermine the grasp recognition performance if a suboptimal
set of training positions is selected. When the training data
is acquired dynamically, instead, inertial measurements prove
beneficial for myocontrol quality even if the user’s workspace is
not thoroughly sampled. Finally, more recent studies confirmed
that the dynamic acquisition of myographic and inertial training
data improves the myocontrol performance also in online
settings (Krasoulis et al., 2017).

This experiment was conducted with able-bodied subjects
only, although we put them in conditions that closely mimic
the everyday life of prosthetic users. How much do our results
apply to subjects with an amputation? Although the answer can
only be found by testing our methodology on amputated users,
it seems reasonable to argue that our main result, that dynamic
acquisition is quicker and more comfortable than a static one,
can directly transfer to amputees—less muscular stress is always
good, as long as it does not hinder performance. The range of
muscle movement after an amputation is generally limited, and
the distribution of the weight of the limb across the muscular
structure can be dramatically different between amputees and
intact users; this is a further hurdle toward the translation of
our results to amputees. Nevertheless, both acquisition strategies
presented in this paper could as well be tailored to each
individual, also for transhumeral or even lower-limb amputees.
In principle, the advantage of dynamic over static training should
hold also when a tailored training protocol is designed. Lastly,
sensor-shift during limbmotion can be problematic for amputees
andmay have beenmitigated in our setup. In fact, while biosignal
sensors are normally integrated into the prosthetic socket and
may be slightly affected by its movement, we used a tight sEMG
armband that is independent of the prosthetic splint. In our
experience, however, sensor-shift can be reduced effectively with
a well-designed, bespoke socket that would still make the two
strategies equivalent.

Last but not least, the approach shown in this work can,
and probably should, be applied in realms other than upper-
limb prosthetics; for instance, to control rehabilitation devices
for patients of musculoskeletal degenerative conditions. Stroke
survivors, for instance, might benefit from a faster data collection

procedure, when engaged in rehabilitation procedures involving
complex robotic devices. Rehabilitation based upon Virtual
Reality is also a target to this procedure (Nissler et al.,
2019). Robotic control based upon muscle activity can be also
transferred to teleoperated scenarios (Porges et al., 2019) and,
probably, in space. In all these scenarios it is worth investigating
the usefulness and feasibility of the procedure described in
this paper.

4.5. Conclusions
To summarize, to try and solve the limb position effect in
myocontrol we have investigated an alternative to the classic
multi-body-posture data collection. Namely, we have compared
it with a dynamic data acquisition procedure, which consists in
collecting data while the user was moving the arm smoothly
through all the postures. To test the true controllability
resulting from either procedure, we have designed a realistic
evaluation protocol that required the subjects to perform a set
of bimanual activities of daily living. Our results show that the
two procedures yield similar performance, but that dynamic
training is faster and less tiresome. This seems to indicate that
the dynamic acquisition procedure should be preferred over the
static one.
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