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Although skeletal muscle can regenerate after injury, in chronic damages or in traumatic
injuries its endogenous self-regeneration is impaired. Consequently, tissue engineering
approaches are promising tools for improving skeletal muscle cells proliferation and
engraftment. In the last decade, graphene and its derivates are being explored as
novel biomaterials for scaffolds production for skeletal muscle repair. This review
describes 3D graphene-based materials that are currently used to generate complex
structures able not only to guide cell alignment and fusion but also to stimulate
muscle contraction thanks to their electrical conductivity. Graphene is an allotrope of
carbon that has indeed unique mechanical, electrical and surface properties and has
been functionalized to interact with a wide range of synthetic and natural polymers
resembling native musculoskeletal tissue. More importantly, graphene can stimulate
stem cell differentiation and has been studied for cardiac, neuronal, bone, skin, adipose,
and cartilage tissue regeneration. Here we recapitulate recent findings on 3D scaffolds
for skeletal muscle repairing and give some hints for future research in multifunctional
graphene implants.

Keywords: graphene, scaffold, skeletal muscle, tissue engineering, implants

INTRODUCTION

The discovery of methods to generate and genetically manipulate stem cells, the advances in bio-
fabrication technologies including 3D bioprinting and the innovations biomimetic biomaterials
are the three pillars of modern tissue engineering (Khademhosseini and Langer, 2016). The
bidimensional flake of carbon, graphene, represents undoubtedly the revolutionary material of
the last decade. Graphene has a hexagonal lattice structure of sp2 hybridized carbon atoms and
is extremely thin (<0.5 nm), electrically and thermally conductive, mechanically resistant and light
absorptive (Dreyer et al., 2014; Trusovas et al., 2016). Its derivative, the graphene oxide (GO) has
oxygen functional groups decorating carbon plane and has largely been exploited in medicine due
to its water dispersibility. Indeed pristine graphene is highly hydrophobic and tends to precipitate in
biological media (Huang et al., 2020). GO has been functionalized with polymers and biomolecules
and is also the precursor of rGO, the reduced form obtained by different chemical, hydrothermal,
electrochemical procedures and similar to pristine graphene, but with defects and holes on the
carbon skeleton (Dreyer et al., 2014; Palmieri et al., 2019a,b). Graphene-based materials (GBM)
have been studied for several applications in biomedicine due to their unique interactions with
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proteins and molecules: from the first studies, it was evident that
the surface area and chemistry of GBM allowed high adsorption
of proteins that can mediate interactions with cells, bacteria
and therapeutic compounds that can be delivered by graphene
nanoflakes (Palmieri et al., 2018; Di Santo et al., 2019; Papi et al.,
2019). Several methods to produce 3D graphene scaffolds have
been designed, from hydrogels to electrospun graphene fibers and
3D printed GBM scaffolds (Zhang et al., 2018; Choe et al., 2019a;
Li et al., 2019; Palmieri et al., 2020).

Graphene-based materials have been largely 3D printed or
bioprinted (Palmieri et al., 2020). Though studies on 3D-printed
GBM for cardiac muscles have been conducted (Choe et al.,
2019a; Li et al., 2019), there is a lack of production of 3D printed
GBM scaffolds for skeletal muscle regeneration. In this mini-
review, we want to define a primer to boost research on 3D
printed implants for skeletal muscles based on GBM (Zhang et al.,
2018). We foresee that graphene multi-functional scaffolds will
represent the future of myo-regeneration based on 3D scaffolds.

REPAIRING SKELETAL MUSCLE

Skeletal muscle tissue is composed of multinucleated contractile
muscle cells, the myofibers (Figure 1A). Parallel-aligned
myofibers are bundled together to form fascicles and multiple
fascicles are held by connective tissue to form mature muscle.
Skeletal muscle can efficiently repair itself in response to
injury (Tedesco et al., 2010). Muscle regeneration is a highly
coordinated process that requires the recruitment of a pool of
undifferentiated cells, called satellite cells. Satellite cells normally
lie in a quiescence state beneath the basal lamina of muscle
fibers but upon muscle injury are induced to proliferate, fuse and
differentiate into multinucleated fibers leading to the complete
regeneration of the injured muscle (Schultz and McCormick,
1994). Immediately after a muscle injury, proteolytic enzymes,
cytokines and growth factors are released creating a local
microenvironment that stimulates the migration of inflammatory
cells and fibroblasts at the site of injury. A new temporary
extracellular matrix (ECM) is produced stabilizing the tissue and
acting as a scaffold to direct the migration of the satellite cells in
the injured site (Charge and Rudnicki, 2004). Satellite cells are
induced to differentiate in myoblasts that then fuse in mature
myotubes. It is through this combination of ECM with muscle
fibers that the injured muscle is repaired. This regeneration phase
peaks at 2 weeks after injury and it also involves the generation of
new blood vessels and nerves.

However, in chronic tissue damage, such as muscular
dystrophies, or in acute severe muscle tissue loss due to traumatic
injuries, skeletal muscle is unable to fully regenerate its structure
leading to functional impairment and severe disability (Liu
et al., 2018). Current cell therapies characterized by locally or
systematically injection of stem cells or other myogenic/non-
myogenic cells are promising (Tedesco and Cossu, 2012)
however, poor cell survival remains a challenge. GBM-scaffolds
provide a structural synthetic framework that recreates the
tridimensional microenviroment favorable for cell adhesion and
proliferation (Jenkins and Little, 2019). In vitro analysis of these

engineered muscles envisages morphological and functional
evaluation of muscle maturation (Juhas et al., 2016), but the
large-scale production of scaffolds induced the development of
computational modeling systems for high-throughput testing
(Torii et al., 2018).

3D GRAPHENE SCAFFOLDS AND
MYOGENESIS

For skeletal muscle regeneration, scaffolds need particular
features to direct fusion of myocytes in multinucleated myotubes,
stimulate vascularization and innervations. Moreover, materials
have to degrade in a biocompatible way when the regenerated
tissue is stable (Grasman et al, 2015; Torii et al., 2018). In
Table 1, we summarize GBM 3D scaffolds produced and, in the
following paragraphs, we analyze the advantages of using GBM
scaffolds (Figure 1B).

Graphene Composites

Graphene composites for 3D scaffolds production are usually
synthesized by combining a GBM and a synthetic or natural
polymer. Natural biomaterials are usually biocompatible, easy
to functionalize and primed for enzymatic degradation (Del
Bakhshayesh et al., 2019). However, they are limited by batch-to-
batch variability in chemical composition, and some components
may be immunogenic. Synthetic polymers, on the other hand, are
precisely mechanically and chemically controlled but degradation
into byproducts and inflammatory responses might occur in
response to this kind of material (Nakayama et al., 2019).

Graphene-based materials bring several advantages in skeletal
muscle engineering. First, graphene derivatives can reinforce bare
material mechanical properties and simulate muscle response
to tension (Rogers and Liu, 2013; Hwang et al,, 2019). GO
films can mimic the adaptive behaviors of natural muscles
including strengthening in response to strain (Dai et al., 2016)
much more than other carbon nanomaterials. Natural polymers,
like gelatin, collagen and chitosan, combined to GO can
induce spontaneous differentiation of C2C12 murine myoblasts
cells (Shin et al., 2015; Lee et al., 2016; Patel et al., 2018).
Graphene can also enhance materials biocompatibility. GO
improves biocompatibility of microbeads of alginate for delivery
of encapsulated C2C12 myoblasts (Ciriza et al., 2015) especially if
embedded with a protective protein corona that mitigates in vivo
foreign response (Ciriza et al., 2018). rGO-alginate hydrogels
protect mesenchymal stem cells thanks to reactive oxygen species
scavenging (Choe et al, 2019a). GO-alginate is bioprintable
and bioconductive effects have been observed in many tissue
engineering applications, paving the way for skeletal muscle
reconstruction studies (Choe et al., 2019b).

As for neurons, electrical conductivity is essential for muscle
cells that have indeed the ability to undergo depolarization
and repolarization during cell contraction. The main advantage
of electrical (and mechanical) stimulation in vitro for skeletal
muscle cells is the mimicking of the physical simulation
of stretch and electrical coupling in muscle. Ion channels
on cell membranes generate an electrical potential within
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FIGURE 1 | (A) Skeletal muscle regeneration. Upon injury, quiescent muscle stem cells (satellite cells) undergo rapid proliferation, followed by differentiation into
myoblasts, which fuse and mature to generate new muscle fibers. Muscle regeneration is characterized by the activation of transcription factors that are specific for
each stage of the myofiber maturation process. In the figure, the most relevant modulators of myogenic lineage progression are indicated. (B) lllustration of GBM
materials usage in skeletal muscle regeneration. GBM are obtained by combining graphene or graphene derivatives with natural or artificial polymers and a 3D
scaffold is produced. GBM effects on muscle cells include induction of cell proliferation and differentiation. GBM are also conductive and can be electrically

stimulated to favor muscle regeneration.
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the membrane and application of electrical fields can alter
the level of intracellular calcium content and cause signal
transduction. This occurs in vivo for the regulation of
muscular function by motor neurons and influences also cell
attachment and proliferation. Electrical stimulation is known
to cause myogenic differentiation and increase muscular forces
(Nakayama et al., 2019). However, the exact mechanism that
relates electrical stimulation and myogenic differentiation is
still unknown though researchers hypothesized an involvement
of calcineurin pathway mediated by the ion flow through cell
membrane (Dong et al,, 2019). rGO is known to have better
electrical conductivity that can be further improved if other
materials of the carbon family are anchored to its surface,
like carbon nanotubes (Morimoto et al., 2016; Kim et al,
2017). A direct comparison of effects of rGO (obtained by
hydrazine reduction) and GO substrates on C2C12 cells was
reported in an early study of Ku and Park (2013) with a
better performance of GO in the induction of myogenic protein
expression, multinucleate myotube formation, and expression of
differentiation-specific genes (MyoD, myogenin, Troponin T, and
MHC). Nanotopography-mediated cell adhesion cannot explain
differences between GO and rGO, that have similar roughness.

However, the pro-differentiation effects of GO could be ascribed
to its higher ability to adsorb serum proteins through its
functional oxygen groups and ability to retain 3D conformation
of proteins especially fibronectin, which is a mediator of muscle
cell adhesion and differentiation (Ku and Park, 2013). Oppositely,
rGO (obtained by ascorbic acid reduction) and polyacrylamide
(PAAm) induce a significantly enhanced proliferation and
myogenic differentiation compared with GO/PAAm and are
electronically stimulable (Jo et al., 2017). These contrasting
results could be explained by the mild reduction method
employed by authors based on ascorbic acid, which possibly
leaves a percentage of oxygen groups that might facilitate protein
adsorption and consequently cell attachment. Alternatively,
electrically conductive environments could per se facilitate
electrical communication among muscle cells and result in the
induction of increased myogenic differentiation besides external
electrical stimulation. Poly (citric acid-octanediol-polyethylene
glycol)-graphene (PCEG) composites have been produced and
tested in vivo in rats as biodegradable and electrically conductive
scaffolds. After subcutaneous implantation in rats, there was a
lack of immunoreaction and a good capillary formation in the
skeletal muscle lesion (Du et al., 2018).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

May 2020 | Volume 8 | Article 383


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Palmieri et al.

Graphene Implants for Myogenic Differentiation

TABLE 1 | 3D graphene scaffolds for myoblasts growth and differentiation.

Effects

References

GBM composite Cells
Self-assembling composites GO-Gelatin C2C12
Graphene-CS-GG C2C12
GO-Alginate C2C12
GO-(PAAM); rGO-(PAAM) C2C12

rGO-PCEG C2C12 and in vivo
Foams Graphene-laminin C2C12

GO-PU C2C12
Electrospun fibers GO-RGD-PLGA C2C12

GO-PLGA-Collagen C2C12

GO-PCL C2C12; CB-hSkMCs
Graphene-PCL C2C12
GO-PU C2C12

Good cell growth and proliferation within the hydrogel
and spontaneous myogenic differentiation

Efficient cell spreading, proliferation and differentiation
Increased viability of cells, for in vivo cell delivery

Improved myoblast growth, myogenic differentiation
and electrical stimulation on rGO-(PAAmM) compared to
GO-(PAAm), alignment along micropatterns

Enhanced proliferation, differentiation and formation of
muscle fibers and blood vessels in vivo

Efficient differentiation into myotubes and contraction
upon electrical stimulus

Promoted myogenic differentiation

Enhanced adhesion, proliferation, myoblasts alignment
and fusion

Enhanced attachment, proliferation and differentiation

Promoted myogenic differentiation and activation of
IGF signaling

Promoted adhesion proliferation and differentiation in
growth media

Enhanced initial adhesion and spreading, up-regulated

Lee etal., 2016

Patel et al., 2018
Ciriza et al., 2015

Joetal, 2017;
Park et al., 2019

Du et al., 2018

Krueger et al.,
2016

Shin et al., 2018a
Shin et al., 2018b

Shin et al., 2015

Chaudhuri et al.,
2014, 2016

Patel et al., 2016

Bin Jo et al., 2020

the myogenic mRNA levels and myosin heavy chain
expression. Mechanically stretchable fibers

CB-hSkMCs, human cord blood mesenchymal stem cells derived skeletal myoblast; CS, chitosan; GG, gellan gum; GO, graphene oxide; rGO, reduced graphene;
PAAm, polyacrylamide; PCEG, Poly (citric acid-octanediol-polyethylene glycol); PCL, poly(s-caprolactone); PLGA, poly(lactic-co-glycolic acid); PU, polyurethane; RGD,

Arg-Gly-Asp peptide.

Graphene Foams
Graphene foams 3D architectures consist of an interconnected
lightweight continuous network of graphene sheets and has
been used as an effective reinforcing agent in composites for
biomedical and electronics (Idowu et al., 2018). Krueger et al.
(2016) demonstrated that nickel/graphene foams can induce
myotube formation if C2C12 cells are seeded on it, especially
if the foam is coated with laminin. Compared to C2C12 cells
cultured on planar graphene, the foams exhibited higher cell
and myotube densities and have also been successfully used
for electrical stimulation (+10 V, 50 ms duration, 1 Hz) and
induction of contraction of myotubes (Krueger et al., 2016).
Foams have been also produced by adding GO to polyurethane
(PU) and a spontaneous myogenic differentiation of myoblasts
ascribed to the synergistic effects of GO and to the “community
effect” was observed. This effect occurs when cells grown in
the interconnected GO-PU foam pores, having an average size
of 300 pm, have an augmented communication among the
neighboring cells through cell-cell and cell-scaffold interactions
(Shin et al., 2018a).

GBM Topographies and Electrospun
GBM Fibers

Cell alignment is one of the most critical factors in skeletal
muscle regeneration. Alignment can be obtained by both
simulation of ECM topography and usage of fibrous elements
within scaffolding materials (Grasman et al., 2015). Though the
exact mechanism through which cells respond to topography
is not well understood, it was shown that a period of 6 pm

is optimal for myoblast differentiation of myoblasts (Lam
et al., 2006). While micropatterning has proven to be efficient
in providing contact guidance to alignment, ECM proteins
have nanoscale features that stimulate cytoskeletal-responsive
pathways to enhance differentiation. Several bioengineering
techniques aim to mimic the microenvironment topography
features such as ripple and wrinkles that offer contacts
for cell adhesion and can enhance stem cell differentiation
(Grasman et al., 2015).

Graphene can modify micro and nano-features of 3D
scaffolds. For example, the introduction of GO in hydrogel
is used to increase the surface roughness (Zhou et al., 2018).
Further, compressive strain-induced deformation of graphene
substrates has been employed to form crumpled folds and
cause the alignment and elongation of myoblasts (Kim et al.,
2019). Nanotopographies can be added to surfaces of GBM-
containing scaffolds also through laser printing by exploiting
light absorption properties of graphene (Papi et al., 2016; Palmieri
et al., 2017). Park et al. (2019) used femtosecond laser ablation
on hydrogels of GO and PAAm to evaluate the effects of stripes
on myoblasts alignment. Micro-groove patterns (20 m wide and
10 wm deep) were designed on GO scaffolds at 20, 50 or 80 um
distance and then the scaffold was submerged in ascorbic acid
to obtain rGO and enhance electrical properties of the samples
(Park et al., 2019). rtGO/PAAm with a 50 pm pattern showed the
best performance for differentiation and myotube alignment and,
after the electrical stimulation of myoblasts, the differentiation
was further enhanced. These implants were also biocompatible
in vivo, ie., didn’t cause recruitment of inflammation cells
(Park et al., 2019).
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FIGURE 2 | (A) Bioprinted muscle. (a) Fiber bundle structure for muscle organization with PCL pillars (green) used to maintain the structure and to induce cell
alignment. (b) Visualized motion program for 3D printing muscle construct. Lines of green, white and blue indicate the dispensing paths of PCL, cell-laden hydrogel
and sacrificial material, respectively. (¢) 3D patterning outcome of designed muscle organization before and after removing the sacrificial material. The PCL pillar
structure is essential to stabilize the 3D printed muscle as visible from scaffolds without PCL pillar (d) and with PCL pillar (e). The cells with PCL pillar showed
unidirectionally organized cellular morphologies (f). The live/dead staining of the encapsulated cells in the fiber structure indicates high cell viability (green: live; red:
dead). (g) Immunofluorescent staining for myosin heavy chain of the 3D printed muscle organization after 7 days differentiation. (h) Schematic diagram of ectopic
implantation of bioprinted muscle construct in vivo. (i,j) The bioprinted muscle construct subcutaneously implanted and the harvested implants after 2 weeks of
implantation showed the presence of organized muscle fibers and innervating capability within the implanted construct, as confirmed by desmin muscle marker (j).
Reproduced with permission from Kang et al. (2016). Copyright 2016 Nature America. (B) The architecture of the stretchable and transparent cell-sheet-graphene
hybrid made of layers of C2C12 myoblasts, an ultrathin graphene mesh doped with Au, Au nanomembrane connective electrodes, polyimide and a PDMS substrate

(a). Atomic force microscope image of graphene mesh (b) and C2C12 myoblasts (¢) labeled for myosin heavy chain (green) and nuclei (blue). Reproduced with

permission from Kim et al. (2016), Copyright Elsevier Ltd., 2019.

Electrospinning is a versatile technique to produce polymer
nanofibers (diameter from 40 to 2000 nm) forming 3D scaffolds
and replicate aligned muscle architecture. Electrospinning is
performed when the electric force of the mother liquid surface
exceeds the surface tension and initiates an electric spark
provoking the solution to be ejected from a syringe, and as jet
flows the nanofiber is produced. Graphene gained significant
interests for electrospinning researchers, for its high strength,
flexibility, optical transparency, and conductivity (Javed et al.,
2019; Parlayici et al, 2019). Electrospinning fibers have been
also used for muscle cells growth in several recent papers.
GO-poly(e-caprolactone (PCL) composites have been produced
by Chaudhuri et al. (2016) to create a mesh with ~85%
porosity for C2C12 cells growth. On GO-PCL, the myogenic
proteins expression (Desmin and MyoD) and cell signaling
were improved with a superior myogenic differentiation on
these scaffolds, probably due to enhanced conductivity of the
GO containing mesh. The same authors demonstrated that
also human skeletal muscle cells derived from umbilical cord
blood-derived mesenchymal stem cells, can form myotubes on
GO-PCL (Chaudhuri et al., 2014). GO-PCL seems to have an
effect on the insulin-like growth factor-1 pathway which is related
to the myotube formation and maturation (Chaudhuri et al.,

2016). Also pristine graphene has been electrospun with PCL.
Graphene-PCL had a decrease in impedance with the increase of
graphene concentration (up to 2%) and a good cytocompatibility
besides being able to induce myogenic differentiation (Patel et al.,
2016). The incorporation of GO in electrospun PU improved
hydrophilicity, elasticity, and stress relaxation capacity (Bin
Jo et al., 2020). PU/rGO composite nanofibrous electrospun
scaffolds have been produced for cardiac tissue engineering.
The rGO increased the electrical conductivity, Young’s modulus
and ultimate tensile strength and decreased the elongation at
break of PU. On these scaffolds, troponin I gene expression
was enhanced, especially when fibers were produced in aligned
arrangement (Azizi et al., 2019). Electrospun fibers of poly(lactic-
co-glycolic acid, PLGA) and collagen with GO (GO-PLGA-
Col) significantly improved the attachment and proliferation of
the C2C12 and stimulated the myogenic differentiation (Shin
et al,, 2015). Similarly, scaffolds of GO-PLGA enriched with
RGD peptide (Arg-Gly-Asp) prompted myoblasts growth and
differentiation (Shin et al., 2018b).

3D Printing in Skeletal Muscle Research
Despite 3D printing has been successfully employed for
the production of skin, adipose, bone and cardiac muscle
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(Li et al, 2019), limited research on skeletal muscle has
been undertaken. 3D printed disks of polylactic acid are
capable of myogenic differentiation induction thanks to cell
proximity in printed channels (Rimington et al, 2017). PU
bioink with muscle cells can be co-printed with fibroblast-
containing PCL to obtain differentiated stiffness and also
stimulate tissue development and differentiation (Merceron
et al,, 2015; Choi et al., 2016). Interestingly both PU and PCL
have been successfully combined to graphene derivatives in
other studies and future research could be focused on muscle-
tendon units improved on GBM scaffolds (Shin et al., 2018a;
Palmieri et al., 2020).

Kang et al. (2016) created an integrated tissue-organ,
printed and fabricated 3D muscle construct containing mouse
myoblasts (Figure 2A). After 2 weeks, the retrieved muscle
constructs showed well-organized muscle as well as nerve
contacts and vascularization. Similarly, PEG/fibrinogen/alginate
constructs generate a fully maturated muscle-like tissue
(Costantini et al., 2017).

3D printing has been employed to create artificial muscles
that can be moved thanks to the photothermal properties
of graphene that can be embedded in prosthesis and allow
performing complex motions driven by laser light stimulation
(Peele et al., 2015; Han et al., 2019; Helps et al, 2019
Zhou et al., 2019).

DISCUSSION

The studies reported in this mini-review demonstrated how
scaffolds of GBM can induce myogenic differentiation.
Additionally, GBM has been also used as a platform for
neural cell growth, osteogenic differentiation, and chondrogenic
differentiation, the major components of the musculoskeletal
system. Besides being electrically activable, GBM have the
intrinsic capability of (i) improve the viability of myoblasts
(Ciriza et al, 2015) [and more generally of cells attached on
surface, thanks to the adsorption of biomolecules and surface
roughness (Zhou et al, 2018)] and (ii) induce myogenic
differentiation probably facilitating the communication between
cells (Jo et al,, 2017). GBM have also been used in 2D films
for muscle cell growth (Zhang et al., 2018), but we focused on
3D structures since these kinds of architectures recapitulate
the native tissue inducing the expression of key myogenic
modulators, parallel growth of muscle fibers and a correct
organization of cytoskeleton and cell junctions increasing
the community effect (Shin et al., 2018a; Naik et al., 2019).
Interestingly, 3D printing of GBM has not been exploited for
myogenesis, despite graphene inks and filaments are available.
GBM can be useful for their electronic properties: GO and
rGO have indeed been employed to create multifunctional
stretchable and transparent devices implantable in vivo for
electrostimulation and continuous monitoring of muscles
(Figure 2Bb; Kim et al., 2016). Graphene layers have been
transferred to 3D printed scaffolds of poly (methyl methacrylate)
to improve the conductivity of the polymer (Kim et al,
2020) with possible applicability in muscle regeneration.

Besides the stimulation of myoblasts, in vivo implantation
of graphene-based devices allows also neo-angiogenesis and
this property should be exploited in the future also in skeletal
muscle research (Kim et al., 2016; Du et al., 2018). GBM are
indeed known to be capable of initiation of neurogenesis and
neo-vascularization (Li et al., 2019), paramount to prevent
atrophy and tissue necrosis (Gilbert-Honick and Grayson,
2020). Traumatic musculoskeletal injuries are accompanied by
loss of blood supply and denervation and GBM might fulfill
multiple functions as long as the scaffold is engineered to
work in compartments that selectively attach different kinds
of cellular population, for example by bioprinting different
porosities/concentrations as demonstrated by Holmes et al. for
bone reconstruction (Holmes et al., 2016). Given the promising
results of GBM on stem cells, it is surprising that there is no
clinical translation of research findings. In vivo tests of GBM
regeneration of muscle are limited to the implantation of
PCEG containing rGO that didn’t induce immune response
(Du et al., 2018). However, this lack of immunogenicity cannot
be generalized to all GBM materials: toxicity evaluation is
made difficult by the infinite combinations of dose, shape,
surface chemistry, exposure route and purity of graphenes
used (Shareena et al., 2018). Future in vivo studies should
foresee a strict application of guidelines to standardize the
quality of toxicity evaluation (Reina et al., 2017). An ideal
biomaterial, as well as matching native tissue compliance, should
also degrade at a suitable rate to continue support during
gradual reconstruction (4~8 weeks after muscular trauma
(Winkler et al., 2011)). Biocompatibility and biodegradation
are certainly the Achille’s heel of GBM. GBM biodegradation
is strictly dependent on the synthesis method, lateral size,
and surface functionalization with polymers or proteins like
albumin (Palmieri et al., 2019b; Syama and Mohanan, 2019).
For this reason, it is difficult to generalize results on GBM
degradability. However, it is ascertained that peroxidases or
H,0, alone can degrade graphene (Kotchey et al.,, 2011; Xing
et al., 2014) and that the biodegradation of 3D scaffolds can
be sped up by pretreatment with O, plasma that increases
hydrophilicity and number of defects (Loeblein et al., 2016).
In conclusion, GBM promise to become the future exciting
nanoplatforms for muscle engineering provided that nano-bio
interactions and the toxic potential of GBM scaffold will be
carefully evaluated.
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