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The purpose of this study was to find a parsimonious representation of hand kinematics

data that could facilitate prosthetic hand control. Principal Component Analysis (PCA)

and a non-linear Autoencoder Network (nAEN) were compared in their effectiveness

at capturing the essential characteristics of a wide spectrum of hand gestures and

actions. Performance of the two methods was compared on (a) the ability to accurately

reconstruct hand kinematic data from a latent manifold of reduced dimension, (b) variance

distribution across latent dimensions, and (c) the separability of hand movements in

compressed and reconstructed representations derived using a linear classifier. The

nAEN exhibited higher performance than PCA in its ability to more accurately reconstruct

hand kinematic data from a latent manifold of reduced dimension. Whereas, for two

dimensions in the latent manifold, PCA was able to account for 78% of input data

variance, nAEN accounted for 94%. In addition, the nAEN latent manifold was spanned

by coordinates with more uniform share of signal variance compared to PCA. Lastly,

the nAEN was able to produce a manifold of more separable movements than PCA,

as different tasks, when reconstructed, were more distinguishable by a linear classifier,

SoftMax regression. It is concluded that non-linear dimensionality reduction may offer a

more effective platform than linear methods to control prosthetic hands.

Keywords: kinematics, neural networks, principal component analysis, dimensionality reduction, unsupervised

learning, prosthetics

INTRODUCTION

The complexity of the human hand makes it the subject of intensive research in prosthetics
and robotics control. Controlling several degrees of freedom (DOFs)—there are 27 in each
hand—can be a difficult task when both precision and speed are required as in dexterous prosthetic
hand control. Since their first development in the 1940s, myoelectric prostheses, operated by
electromyographic (EMG) signals, have undergone a series of design and control changes (Zuo
and Olson, 2014).

Technological advances have resulted in more complex prostheses with an increased number
of DOFs (Belter et al., 2013). The increase in design complexity was also associated with the high
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demand of prosthetic users to be able to perform dexterous
tasks, such as handicrafts, operation of domestic and electronic
devices, as well as dressing/undressing (Pylatiuk et al., 2007). For
acceptable performance in such tasks, individual digit control
is often required. Instead of allowing the independent control
of each degree of freedom, currently available market options
include a variety of prosthetic hands with a limited number
of preset gestures associated with the most common grasp
patterns to be performed in activities of daily living (ADLs).
For example, the Michelangelo Hand (Ottobock, Duderstadt,
Germany) includes seven grip patterns whereas its successor,
the Bebionic Hand, from the same company includes 14
grip patterns.

While there have been many developments in the design
of prosthetic hands, advances in control strategies have been
limited. There are numerous types of controls used in upper-limb
myoelectric prostheses from simple finite-state machines (FSM)
to complex pattern recognition (PR) (Geethanjali, 2016). In FSM,
usually two EMG signals are used to switch between grip patterns.
This method can be effective for a small number of postures but
in the case of 14 or even seven grips, this can be a strenuous
and time-consuming task. In addition to slow controller speeds,
prosthetic users have identified their myoelectric device speeds as
inadequate for task completion (Pylatiuk et al., 2007). Such issues
in the device performance could be contributing to the high
abandonment rates that are prevalent in upper-limb prostheses
(Biddiss and Chau, 2007).

Recently, a new type of prosthetic control has been
proposed—posture control (Geethanjali, 2016). This capitalizes
on the results of previous dimensionality-reduction studies
performed on hand kinematics (Santello et al., 1998; Todorov
and Ghahramani’s, 2004; Ingram et al., 2008). In these studies,
Principal Component Analysis (PCA) was utilized to simplify
the complex kinematics of hand grasps by finding a reduced
number of linear combinations of input signals that explain most
of the variability observed in grasping data. These combinations
span the latent manifold of hand kinematics. By projecting the
data along these directions, it is possible to obtain a compressed
representation of hand configurations. A related approach to the
control of prosthetic hands was introduced by Bicchi’s group
with the “Soft hand” (Della Santina et al., 2017, 2018). The
underlying novel idea is that a variety of grasping patterns can be
obtained by a single “synergy” of compliant actuators interacting
mechanically with different shapes of grasped objects. While we
recognize the value of this approach for the simplification of hand
control during manipulation, here we are also considering the
value of the hand as a communication device. In this broader
scope, as well as in the performance with musical instruments,
the ability to explicitly and precisely control finger configuration
is essential. For this, we are considering in this study a data set
obtained from American Sign Language (ASL).

In some myoelectric control methods, EMG signals are
mapped to control parameters of the latent manifold, or principal
components (PCs), which are derived through PCA (Matrone
et al., 2010, 2012; Segil, 2013, 2015; Segil and Huddle, 2016). An
important difference of this method with respect to FSM and PR
control is that posture control is continuous rather than discrete.

This allows users to directly operate the prosthetic device in a way
more consistent with natural movement control instead of being
limited to a finite set of pre-defined grasp options.

While PCA is a computationally straightforward and
inexpensive procedure, it is limited by its ability to only account
for linear relationships in the input signals. The assumption of
linearity is not consistent with the geometry of hand kinematics.

To account for kinematic non-linearities, this study considers
a dimensionality-reduction method based on autoencoder
networks (AENs). AENs are artificial neural networks that are
trained to reconstruct their inputs. They are composed of two
parts: an encoder that converts the input data to a lower-
dimensional, latent, manifold and a decoder that converts the
latent manifold into the outputs. AENs provide an unsupervised
method, reconstructing inputs in their outputs, without the
requirement of labeled data. Most importantly, AENs are able to
cope with both linear and non-linear relations in the input data
by making use of linear and non-linear activation functions.

This study compares the performance of a non-linear AEN
(nAEN) to that of PCA on examples of hand kinematics observed
in human participants. In addition, it evaluates the case for the
potential use of nAENs over PCA in a prosthetic controller.

MATERIALS AND METHODS

Experimental Setup
Ten unimpaired right-handed individuals (six males, four
females, 32.8 ± 9.4 years old) participated in this study.
Participant recruitment and data collection conformed with the
University of Washington’s Institutional Review Board (IRB).
Informed written consent was obtained from each participant.
Basic measurements were taken from the right hand of each
participant and recorded with other information.

The participants were first fitted with a right-handed data
glove (VirtualMotion Labs, Dallas, TX, USA). A total of 20 signals
were extracted from the glove that accounted for finger joint
kinematics (Figure 1). The signals were recorded at a sampling
rate of 100 Hz.

To calibrate the data glove, the participants were asked to
perform a series of hand gestures presented to them on the
screen. The movements were finger flexion/extension, finger
abduction/adduction, thumb flexion/extension, and individual
finger flexion against the thumb.

Once the glove was calibrated, the participants were guided
through a sequence of hand movements consisting of: (i) ASL
Gestures, (ii) Object Grasps, and (iii) ADL Tasks (Figure 2) as
described in the following.

ASL Gestures
During the first phase of the experiment, the participants were
asked to perform 10 different ASL gestures (Figure 2A). They
were asked to repeat each gesture 10 times. Each gesture
repetition counted as a trial. At the beginning of each trial, the
participants started in the REST position with their elbows on
the table and the right hand raised straight up.

When presented with a gesture, the participants were given
3 s to mimic it as displayed on the screen and maintain the
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FIGURE 1 | Virtual Motion Labs Glove used for the study to record kinematics of the right hand. Numbers on the glove represent the kinematic signals that were

extracted and recorded for analysis.

gesture until instructed to return to REST position. After 3 s in
the REST position, a new trial would start. The participants had
an opportunity to practice the gestures before the beginning of
the phase.

Object Grasps
During the second phase of the experiment, the participants were
asked to perform a series of object grasps from the Southampton
Hand Assessment Procedure (SHAP) (Figure 2B) (Light et al.,
2002). The testing board was placed 8 cm from the edge of the
table closest to the participant. The board was then aligned so that
the target object was directly in front of the participant. There
were 12 objects to be grasped with six different grasping types.
Furthermore, each object could be either light or heavy.

Each object had to be grasped 10 times. Before grasping a
new object, video instructions were shown to the participants on
the required way of grasping. They could then practice grasping
under the supervision of the experimenter to ensure a correct and
consistent execution.

The participants were given 5 s to complete each grasp starting
and ending the grasp on the REST position. In the REST position,
both participant’s hands lied prone on the table. Between each
trial, there was a 5 s resting period.

ADL Tasks
During the third phase of the experiment, the participants
performed the ADL portion of the SHAP. A total of eight
different tasks were selected for this phase (Figure 2C). Each

task was performed 10 times. The participants were given 7 s to
perform each task with a 5 s of REST time between each trial.

As in the second phase, the participants were shown a video
with instructions on how to appropriately complete the task.
They were then instructed to practice the task until ready. The
testing board was placed 8 cm away from the edge of the table
closest to the participant. During REST, the participants held the
hands supine on the table to the sides of the testing board.

Data Processing
For each phase, data were recorded during both REST (when
participants were instructed to be in REST position) andACTIVE
(when participants were instructed to perform the given task)
conditions. Only ACTIVE conditions were used for data analysis.

Preprocessing
The recorded data were filtered with a first-order Butterworth
filter in MATLAB (MathWorks, Natick, MA, USA). The cutoff
frequency was 10Hz. REST data were removed from analysis, and
the remaining data points were labeled to indicate different hand
movements and trial numbers for each participant.

Trials, in which participants did not complete the movement
as requested, possibly due to loss of attention or inability to
understand the given task in due time, were excluded from
the analysis.

The data were then arranged into four datasets: ASL Gestures,
Object Grasps, ADL Tasks, and Combined. The Combined dataset
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FIGURE 2 | Study setup consisting of three different phases: (A) American Sign Language (ASL) Gestures; (B) Object Grasps; (C) Activities of Daily Living (ADL) Tasks.
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contained data from ASL Gestures, Object Grasps, and ADL Tasks
for each participant.

Each signal was normalized by the absolute maximum
value across all signals in each dataset prior to analysis
(Sola and Sevilla, 1997).

Data of each participant were randomly split into training
(80%) and testing (20%) using a holdout method (Oxford and
Daniel, 2001). Training samples were used to generate a model,
PCA or nAEN.

Data Analysis
To study the effects of linear and non-linear dimensionality-
reduction methods, we compared the performance of PCA and
nAEN algorithms with two, three, four, five, and six latent
dimensions [PCs and coding units (CUs), respectively].

PCA was performed using the built-inMATLAB function pca,
which is based on singular value decomposition (Madsen et al.,
2004). Dimensionality reduction using nAEN was performed
using TensorFlow, a Python (Python Software Foundation, DE,
USA) library for machine learning applications developed by
Google Brain (Abadi et al., 2016).

nAEN Architecture
The basic nAEN structure used for this experiment included a
total of three hidden layers, the middle one being the bottleneck
layer (Figure 3). Similarly to the original AEN proposed by
Kramer (1991), we chose a non-linear activation function for
the first and third hidden layers, and a linear activation function
for the bottleneck (Kramer, 1991). The use of both linear and
non-linear activation functions had been shown to increase the
ease with which the network learns linear relationships in the
data (Haesloop and Holt, 1990). The transformations from the
normalized input X to the output data Y through the encoder
(Equations 1, 2) and decoder (Equations 3, 4) parts of nAEN are:

layer1 = tanh (X ∗ w1 + b1) (1)

layer2 = layer1 ∗ w2 + b2 (2)

layer3 = tanh (layer2 ∗ w3 + b3) (3)

Y = layer3 ∗ w4 + b4 (4)

where wi were the weights and bi were the biases found during
network modeling.

While the main purpose of the study was to compare
the performance of linear and non-linear dimensionality-
reduction algorithms, it is important to note that neural network
structures, such as AENs, can be optimized further for improved
performance. A simple nAEN structure was chosen for this
study while more complex structures can be explored. Neural
networks can have multiple layers, various structures, and
many hyperparameters that directly affect the performance of
the network.

Full-batch gradient descent was used for training the network.
Tuning of hyperparameters, such as the learning rate,

number of steps, type of non-linear activation functions, and
regularization, was performed (Figure 4). A separate validation
dataset from a participant, whose data were not used in the
experiment for overall analysis, was utilized for hyperparameter

tuning. In this dataset, the participant (P0) performed all the
tasks of the ASL Gestures phase, 10 trials each. A 5-fold cross-
validation (CV) was conducted (Oxford and Daniel, 2001), and
the performance of each hyperparameter pair was evaluated
using Variance Accounted For (VAF) (see section Performance
Metrics for more information on VAF).

Learning rates of 0.01 and 0.025 produced the most stable
results across the variety of number of steps tested (Figure 4A).
The largest learning rate of 0.05 produced the worst results while
the smallest learning rate of 0.001 produced the best results
for the number of steps over 10,000. The nAEN performance
difference was minimal across the learning rates of 0.01, 0.05, and
0.001 for 10,000 steps. Although 20,000 steps resulted in a slightly
improved performance of the network for the learning rate of
0.001, a larger number of steps would lead to longer training
times for nAEN. Since it was of interest to optimize both the
network performance as well as the training times, the learning
rate of 0.01 and 10,000 steps were chosen for this study.

Sigmoid (sig), hyperbolic tangent (tanh), and rectified linear
unit (relu) performed similarly for the learning rate of 0.01
(Figure 4B). As a result, we were free to choose any non-linear
activation function for the nAEN structure, and the hyperbolic
tangent was chosen for this experiment.

Adaptive Moment Estimation (ADAM) optimizer was used
to speed up the training of the nAEN (Kingma and Ba, 2014).
No regularization was used in training the model for this study,
as we did not find any evidence of overfitting for our dataset
(Figure 4C).

For nAEN, the weights and biases for all models created
for each participant were initialized in the same way for
comparative purposes.

Performance Metrics
The performance in terms of VAF was evaluated on the testing
samples. Variability of dimensions as well as visualization and
separability of movements in the latent and reconstructed
manifolds were tested on the entire dataset (training and
testing combined).

Dimensionality Reduction
VAF measures the difference between reconstructed output
and original input signals. It was chosen to capture the
ability of a dimensionality-reduction method to reconstruct
the desired signal from the latent manifold. VAF offers a
measure of the information preserved by the dimensionality-
reduction algorithm and is directly related to reconstruction
error (Equation 5). A VAF of 100% indicated that the output and
the input were identical.

VAF(%) = (1−
var(Y − Ŷ)

var(Y)
)∗100 (5)

Y − original data

Ŷ − reconstructed data

In addition, data variance across three datasets (ASL Gestures,
Object Grasps, ADL Tasks) was calculated for each participant.
It was done by first calculating the variance of each of the
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FIGURE 3 | The non-linear Autoencoder Network (nAEN) structure used in this study. Curved lines over neurons represent that non-linear activation functions (i.e.,

hyperbolic tangent) were used to calculate that layer. Otherwise, activation functions were linear.

20 kinematic signals across all samples in the input data.
The variance values were then averaged across 20 signals
to produce one value of variance for each participant. The
correlation between data variance and resulted VAF with two
latent dimensions was calculated for both PCA and nAEN.

Lastly, to explore the reconstructing performance of nAEN
and PCA, the second gesture of the ASL Gesture dataset
(“gesture signifying number one”) was reconstructed from two-
dimensional latent manifolds of these dimensionality-reduction
methods. To visualize the reconstructed gesture, one of the Leap
Motion (Leap Motion Inc., San Francisco, CA, USA) hand models
was utilized in Unity (Unity Technologies, San Francisco, CA,
USA). A few snapshots were taken as the reconstructed gesture
went from the REST into the ACTIVE positions.

Dimension Variance
Dimension variance was the variance associated with each
dimension in the latent manifold of PCA and nAEN. To calculate
dimension variance, the input data were reduced to PCs and CUs
for each participant across each of the four datasets. For PCA,
it was done in the following way, where eig produces a diagonal
matrixD of eigenvalues of a covariancematrix, cov, of normalized
data X (Equation 6).

D = eig(cov (X)) (6)

Each PCA dimension, PCi, where i was the dimension number,
was found by sorting the diagonal matrix D in the descending
order and taking the ith column of the sortedmatrix (Equation 7).

PCi = diag(D (:, i)) (7)

For nAEN, latent dimensions were calculated by passing the
normalized data X through the encoder part of the network
(Equations 1, 2). CUs were the corresponding columns of layer2
(Equation 8).

CUi = layer2(:, i) (8)

Each latent dimension (PCs or CUs) was represented by Ai, an
m × n matrix, where m was the number of observations and n
was the number of latent dimensions. The mean of each latent
dimension was calculated (Equation 9).

µ =
1

m

∑

m
j=1Aj (9)

Afterwards, the variance of each latent dimension, υi, was
calculated (Equation 10).

vi =
1

m− 1

∑

m
j=1

∥

∥Aj − µ
∥

∥

2
(10)

Lastly, what was defined as dimension variance in this study,
vdim, was calculated by determining the percentage of vi with
respect to the overall variance of all considered latent dimensions
(Equation 11).

vdim =
vi

∑n
i=1 vi

(11)

Dimension variance was ordered in descending order for
visualization and comparative purposes.

In addition, the average difference between dimensions with
the highest and lowest values of variance (rangedim,avg) was
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FIGURE 4 | Effects of certain hyperparameters on the non-linear Autoencoder Network (nAEN) performance: (A) number of steps and learning rate (0.001, 0.01,

0.025, 0.05); (B) learning rate and type of non-linear activation function (tanh, relu, sig). The performance is calculated using Variance Accounted For (VAF), which

represents the difference between the output and the input. Solid lines represent average results across all paritcipants. Faint shaded lines represent 95% confidence

interval. (C) nAEN performance difference on training and testing datasest for different activation functions with no regularization. Error bars represent 95% confidence

intervals. The nAEN performance difference was minimal across the learning rates tested for over 10,000 steps. The difference in the performance was minimal for the

learning rate of 0.01 across the non-linear activation functions tested. No evidence of overfitting of the dataset was found.

calculated across all 10 participants for each dataset and called
range of dimension variance (Equation 12).

rangedim,avg =
1

n

n
∑

dim=1

max (vdim) −min (vdim) . (12)

Latent Trajectories Visualization
To aid the visualization of the latent trajectories, we focused
on manifolds with two dimensions. To visualize the PCA latent
trajectories, the input data was first reduced to 2PCs. The PC pairs
for each dataset and each participant were then plotted on a 2D
surface where PC1 represented the x-axis and PC2 represented
the y-axis. Each sample representing a kinematic instance in 20D
space was plotted as a point in this 2D graph.

A similar technique was utilized for visualizing the latent
trajectories of nAEN. After reducing the input data to the latent
manifold, the pair of CUs for each dataset was plotted on a

2D linear surface where CU1 represented the x-axis and CU2

represented the y-axis.
Separate movements for each dataset were plotted with a

different color for ease of differentiation.

Movement Separability
Movement separability was defined as a measure of distance
between movements (from the 20D input, latent manifold, or
reconstructed 20D data) that allowed a simple classification
algorithm to differentiate between given classes of postures.
Movement separability was calculated for all datasets, except
for Combined, using SoftMax regression (Gao and Pavel, 2017).
SoftMax regression was chosen as a simple example of a linear
classification algorithm that did not require hyperparameter
tuning such as Dense Neural Networks (DNNs), which can
also be used for classification purposes (Schmidhuber, 2015).
The aim was to develop a simple understanding of the linear
separability of different movements across latent manifolds of
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nAEN and PCA. Higher accuracy percentage indicated a latent
manifold in which classes (i.e., hand movements) were more
linearly separable.

When designing a controller, creating a space where different
movements can be easily separated can be of high importance.
When navigating along a more separable control space, the
user might have the ability to switch between different tasks
and/or movements much faster than in cases where tasks are
less separable.

SoftMax regression was applied to the 2CUs/PCs latent
manifolds, as well as to the reconstructed 20D data for nAEN
and PCA and the original input data for each participant and
dataset. Assessing the separability of reconstructed space might
be important in understanding how data variability is preserved
upon reconstruction in both nAEN and PCA. We used a 5-fold
CV to calculate the accuracy on each dataset.

Statistical Analysis
We used MATLAB Statistics Toolbox functions and custom-
written code for our statistical analysis. The normality was
tested by applying the Anderson-Darling (AD) Test (Anderson
and Darling, 1954). When the normality assumption was
violated, we used rank statistics for our statistical analysis. This
was the case for the VAF, range of dimension variance, and
classification accuracy.

We used the Wilcoxon Signed-Rank Test (Wilcoxon, 1945) to
understand the differences in VAF between the dimensionality-
reduction methods, and the Friedman’s Test (Friedman, 1937) to
understand the effect of datasets (e.g., ADL Tasks, ASL Gestures,
etc.) on VAF. In a post-hoc analysis, Bonferroni correction
(Bonferroni et al., 1936) was used to verify statistically significant
differences among datasets within nAEN and PCA.

We also used the Wilcoxon Signed-Rank Test to compare
the differences in range of dimension variance between two
dimensionality-reduction methods across all latent dimensions
and datasets, and for the comparison of SoftMax classification
accuracy between reduced-dimension (2D) and reconstructed
(20D) data for both nAEN and PCA.

In all our analyses, the level of significance was set to 0.05.
After the Bonferroni adjustment, the level of significance for the
post-hoc analysis was set to 0.0125 (0.05/4).

RESULTS

Dimensionality Reduction
For all four datasets, nAEN outperformed PCA by reconstructing
the input data with higher VAF for two, three, four, five, and six
latent dimensions (Figure 5). The average VAF with just 2CUs
across all datasets was 94% for nAEN whereas it was 78% with
2PCs for PCA.

Wilcoxon Signed-Rank Test revealed an effect on VAF by
the dimensionality-reduction method (p < 0.001). When
comparing nAEN and PCA, the difference in the performance
between the twomethods decreased as the number of dimensions
in the latent manifold increased (Figure 5).

By performing the Friedman’s Test on VAF produced by PCA
and nAEN models with two-dimensional latent manifolds, an

effect of datasets was revealed on both dimensionality-reduction
methods (p < 0.001). Specifically, PCA performed similarly
for both Object Grasps and ADL Tasks datasets (p = 0.986),
but its performance decreased significantly for ASL Gestures
(p = 0.002 and p = 0.006 when compared to Object Grasps
and ADL Tasks, respectively). The nAEN, on the contrary, had
higher performance for ASL Gestures over two dimensions in
comparison to ADL Tasks (p < 0.001) and Combined (p <

0.001) datasets.
Accordingly, the correlation between VAF and signal variance

of each dataset was analyzed (Figure 6A). The R2 values for
a linear model between two variables were 0.58 and 0.54 for
nAEN and PCA, respectively. The relationship is positive for
nAEN and negative for PCA (observed from the slopes of the
linear regression lines). Lastly, from Figure 7, one can observe
the visual differences in the performance of two dimensionality-
reduction methods. While nAEN (middle column) was able to
closely match the original hand gesture (left column), PCA (right
column) failed to reconstruct the proper flexion of middle, ring,
and pinky fingers as well as the full extension of the index
finger. Reconstruction of all gestures and trials is shown in
Supplementary Video.

Dimension Variance
Variance spread across nAEN and PCA dimensions was plotted
for participant P1 performing ASL Gestures (Figure 8). Variance
dropped significantly for each new added PC dimension whereas
nAEN exhibited a less prominent decrease in variance for
every additional latent dimension. The sharper drop in PCA
variance appears to be a consequence of the orthogonality of
subsequent eigenvectors.

Such behavior was consistent across all participants, as
described by the average difference between dimensions with
the highest and lowest variance (Figure 9). This difference was
greater for PCA than for nAEN and significant in all conditions
(p = 0.002), with the exception of ASL Gestures reconstructed
with 2CUs/PCs

(

p = 0.106
)

, according to Wilcoxon Signed-
Rank Test.

In addition, an interesting observation could be made in
regard to the average difference between latent dimensions
with highest and lowest variance across three datasets (ASL
Gestures, Object Grasps, ADL Tasks). When plotting the range of
dimension variance vs. the signal variance across each dataset, a
correlation is revealed for the PCA case—R2 of 0.53 (Figure 6B).
No such correlation was found for nAEN (R2 of 0.05). The
relationship found for PCA was inverse: higher signal variance
dataset resulted in lower difference between latent dimensions
with highest and lowest variance.

Lastly, plotting the VAF of each participant for the three
datasets vs. the range of dimension variance for 2CUs/PCs reveals
similar correlation for PCA (R2 = 0.78) and no correlation for
nAEN (R2 = 0.06) (Figure 6C).

Latent Trajectories Visualization
nAEN and PCA latent trajectories were visualized for
2CUs/PCs in the case of participant P1 performing ASL
Gestures (Figure 10A), Object Grasps (Figure 10B),
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FIGURE 5 | Performance of non-linear Autoencoder Network (nAEN, blue) vs. Principal-Component Analysis (PCA, red) with 2, 3, 4, 5, and 6 dimensions in the

bottleneck layer on four different datasets: American Sign Language (ASL) Gestures, Object Grasps, Activities of Daily Living (ADL) Tasks, and Combined. The

performance is calculated using Variance Accounted For (VAF), which represents the difference between the output and the input. Solid lines represent average results

across all paritcipants. Faint shaded lines represent 95% confidence interval. nAEN outperformed PCA across all datasets and for all number of latent dimensions

tested in this study.

and ADL Tasks (Figure 10C). All trials used in the
analysis were plotted, and separate gestures were indicated
using different colors.

The overall structures of the plotted latent trajectories were
similar across PCA and nAEN, with different gestures visually
separated. Some movements appeared closer to each other in
the 2D manifold than to other movements. Certain ASL gestures
(e.g., gestures 2 and 3) appeared closer to each other than to
others in both nAEN and PCA manifolds. In Object Grasps,
heavy and light versions of the same grasp took the same part
of the visualization space. ADL tasks that required similar type of
grasping (e.g., using a screwdriver and opening a jar lid) appeared
in the same part of the 2D space.

Movement Separability
SoftMax regression on the 2D manifold of nAEN and PCA
did not reveal any significant difference in separability of
movements between the twomethods (Figure 11). The difference
was insignificant across all three datasets (p = 0.846 for ASL
Gestures, p = 0.695 for Object Grasps, and p = 0.557 for
ADL Tasks).

There was a significant difference (p = 0.002) in the
classification accuracy when the 20D manifolds, reconstructed
from two latent dimensions, were evaluated. Across all three
datasets, nAEN generated more separable representations than
PCA. There was no significant difference between the separability
of the reconstructed 20D and reduced 2D representations with
PCA across ASL Gestures (p = 0.695), Object Grasps (p =

0.492), and ADL Tasks (p = 0.695).
Lastly, when applying SoftMax regression on the original

input 20D kinematic space, the separability of classes was higher
than that of the reconstructed 20D and the reduced 2Dmanifolds
for both PCA and nAEN. The classification accuracy was at
nearly 100% across all datasets (Figure 11).

The overall separability was much higher for ASL Gestures
than for Object Grasps or ADL Tasks datasets for the reduced
2D and reconstructed 20D spaces (Figure 11).

DISCUSSION

The complexity of a human hand makes the control of its
prosthetic analog a challenging task. While posture control has
been shown to be a novel and innovative way of providing
a continuous controller for prosthetic users of their highly
sophisticated devices, it has been limited by the linear nature of
its underlying dimensionality-reduction algorithm. In this study,
a non-linear equivalent of PCA, nAENs, demonstrated higher
performance in: (i) reducing complex hand kinematics into a
lower dimensional manifold with a smaller loss of data variability,
(ii) creating higher spread of dimension variance in the latent
manifold, and (iii) reconstructing a more separable manifold.
All of these points could make nAEN a potentially effective at
supporting continuous posture control for prosthetic hands.

Dimensionality Reduction
The ability to reduce the dimensions of kinematic data without
ignoring their effective complexity is an essential yet challenging
task to understand the biological mechanisms of control as
well as to design precise artificial controllers. When it comes
to developing a controller for multi-DOF hand prostheses,
reducing the number of control signals may result in a more
intuitive interface for the user. While the human brain is able
to simultaneously manage multiple DOFs, such as those in the
hands, often with high dexterity and precision, many research
studies suggest that it does so through a smaller number of
control “knobs” identified as synergies (Santello et al., 1998;
Todorov and Ghahramani’s, 2004; Weiss and Flanders, 2004;
Feldman and Latash, 2005; Ting and Macpherson, 2005).
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FIGURE 6 | (A) Correlation between average signal variance of input data across 10 participants and Variance Accounted For (VAF) with two-dimensional latent

manifold plotted for three different datasets (American Sign Language (ASL) Gestures, Object Grasps, Activities of Daily Living (ADL) Tasks) for non-linear Autoencoder

Network (nAEN, blue) and Principal Component Analysis (PCA, red). (B) Correlation between average signal variance of input data across 10 participants and range of

dimension variance for 2 Coding Units (CUs)/Principal Components (PCs). (C) Correlation between VAF and range of dimension variance for 2CUs/PCs for three

datasets (ASL Gestures, Object Grasps, ADL Tasks). PCA exhibited some correlation across all three scenarios tested whereas nAEN experienced no correlation.

To understand how dimensionality reduction may preserve
the essential complexity of behavior, investigators have
applied dimensionality-reduction techniques such as PCA
to human hand coordination (Santello et al., 1998; Todorov
and Ghahramani’s, 2004). Santello’s group determined that
2PCs were sufficient to account, on average, for ∼84% of
hand kinematic variance, a higher value than the figure in our
study. Such difference may be explained by the difference in
the kinematic data. While the entire range of kinematic data

from the REST to ACTIVE positions was recorded and used for
analysis in our study, Santello’s group only utilized one static
instance of kinematics per imaginary grasp. In addition, the
number of signals that was used in the Santello et al. was 15
whereas our study utilized 20 kinematic signals for analysis,
which could have made it more difficult for PCA to reduce the
dimensionality of the kinematic space.

Such dependence of PCA performance on the number of
analyzed signals was also presented in the study of Todorov and

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 May 2020 | Volume 8 | Article 429

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Portnova-Fahreeva et al. Linear and Non-linear Dimensionality Reduction

FIGURE 7 | Visualization of gesture 1 from American Sign Language Gestures dataset, reconstructed from two-dimensional latent manifolds of non-linear

Autoencoder Network (nAEN, middle column) and Principal Component Analysis (PCA, right column). The reconstructed gestures were compared to original gesture

(left column). A few snapshots of each gesture were taken in time from REST to ACTIVE states.

Ghahramani’s (2004) as they ran PCA on 20 and 15 kinematic
signals from a sensorized glove. They determined that in a 20-
signal analysis, more PCs were required to account for the same
variance of data than in a 15-signal analysis. In addition, they
calculated that anywhere from three to seven PCs were required
to account for 85% of data variance if the analyzed angle data was
raw without normalization. The number of PCs depended on the
performed task. In the aforementioned study by Todorov’s group,
the analysis was performed on a larger set of kinematic samples,
similar to our study; however, it was done on individual tasks
rather than full datasets containing various tasks.

In our study, it was also noted that PCA performance was
significantly inferior for ASLGestures than for Object Grasps and

ADL Tasks with just 2PCs. Similar behavior could be observed
in Todorov and Ghahramani’s (2004) study where the number
of PCs to describe individuated joint movements was higher
than that for object grasping and manipulation. This might be
explained by the kinematic complexity of ASL gestures, in which
independent joint control is required. In ADL tasks and object
grasping, on the contrary, many joints move simultaneously to
achieve the desirable posture or grasp, potentially joining into
linear combinations that can be easily detected by PCA.

It is interesting to note that while PCA appeared to be less
efficient with the ASL Gestures dataset (reconstructing with
lower VAF), nAEN exhibited stronger performance with the
ASL dataset (reconstructing with higher VAF) than with Object
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FIGURE 8 | Variance percentage of each latent dimension (represented with different colors) with respect to the overall variance of the dimensions considered in the

analysis [number of Principal Components (PCs)/Coding Units (CUs)] for P1 performing American Sign Language (ASL) Gestures. Two, three, four, five, and six

dimensions in the bottleneck are compared for non-linear Autoencoder Network (nAEN) and Principal Component Analysis (PCA) and ranked by order of decreasing

variance. nAEN exhibited smaller drop of variance across latent dimensions in comparison to PCA for P1.

Grasps or ADL Tasks. This point was also clearly indicated
in the inverse relationship between the signal variance of a
dataset and the VAF with 2CUs for nAEN. As a result, nAEN
improved VAF and signal reconstruction when the input signal
had more variability (as in ASL Gestures), contrary to the linear
PCA. This is consistent with the observation that attempting
to estimate the dimension of the data generated by a non-
linear process with a linear method, like PCA, results in the
overestimation of the actual process dimensionality (Tenenbaum
et al., 2000). Accordingly, adding variance to the input data
would result in the reduction of VAF by an insufficient number
of PCs.

When comparing the performance of linear and non-linear
dimensionality-reduction techniques, our study demonstrated
that nAEN outperformed PCA by reconstructing over 90%
of data variability with only 2CUs. Such results overpower
the dimensionality-reduction performance of PCA presented
in earlier hand kinematic studies. A comparison of non-linear
dimensionality reduction was performed earlier by Romero et al.
(2010) and by Cui and Visell (2014) over datasets obtained
from hand grasping patterns. Somewhat surprisingly, Cui and
Visell concluded that the quality of dimensionality reduction
obtained by PCA was superior to that obtained by non-linear
algorithms, including AEN. Our findings are not consistent
with their conclusion. We believe that this discrepancy may be
attributed to two factors. First, the analysis of Cui and Visell
was limited to grasping, whereas our data set included other
hand task. Perhaps, most notably, our data included ASL gestures
and a broader spectrum of hand configurations associated with
ADLs. In fact, in our dataset, the difference in performance
between PCA and nAEN was smaller for hand grasps. A
second observation concerns the performance measures. While
we base our conclusions on VAF, Cui and Visell adopted a
criterion based on the preservation of neighborhood relations

after dimensionality reduction. This criterion was based on
Euclidean distance, which, as noted by the authors, has an
implicit bias in favor of a linear method like PCA. And one
can add that Euclidean distance is not a clearly applicable
measure for angular manifolds. Like Cui and Visell, Romero
and colleagues limited their analysis to grasping patterns. They
compared the latent manifold generated by different non-
linear dimensionality-reduction algorithms observing a better
performance compared with PCA.

Our findings highlight the potential superiority of nAEN
when used as a control method for hand prostheses. Higher VAF
value signifies that with a smaller number of control signals,
the nAEN-based controller would be competent to generate a
more precise representation of multiple DOFs in a prosthetic
hand, compared to PCA. As a result, tasks that require high
precision and dexterity (e.g., handcrafts, personal hygiene) may
become more feasible. The decreased number of control signals
required to control a precise motion of the prosthesis may result
in lowering the mental burden on the users without sacrificing
performance. For example, current techniques, such as PR in
Coapt Gen2 (Coapt LLC, Chicago, IL, USA), rely on eight EMG
signals to control a prosthetic device. The results of our study
suggest that potentially by reducing the number of EMG signals
to two and allowing each signal to control one CU would still
allow the user to cover a large space of hand gestures.

The findings of this study also suggest the inherent non-linear
nature of hand kinematics. The apparent differences between
nAEN and PCA with only two dimensions in the latent manifold
highlight the former’s ability to capture components of the
data that are not being picked up by the linear function of
PCA. Evidently, this may suggest the need to, first, test and,
potentially, utilize non-linear methods when analyzing biological
systems, such as hand kinematics. While their mathematical
manipulation might be more difficult and less intuitive, the
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FIGURE 9 | Difference between dimensions with highest and lowest variance values averaged across all participants for four datasets: American Sign Language (ASL)

Gestures, Object Grasps, Activities of Daily Living (ADL) Tasks, and Combined. Statistical significance: p = 0.106 for ASL Gestures for 2CUs/PCs; *indicates

statistical significance of p = 0.002. nAEN exhibited smaller drop of variance across latent dimensions in comparison to PCA across all datasets and for all number

of latent dimensions except for 2 dimensions in ASL Gestures.

importance of capturing non-linearities of a system might be of
greater importance.

We feel it is important to emphasize that our use of an
artificial neural network, the autoencoder, is not associated with
any claim or pretense to represent information processing in
the neural system. This is presumably a limit shared by PCA,
as there is no evidence that constraint of orthonormality is
satisfied by neuromuscular activity. Nevertheless, a relevant
element in our analysis is that the information that can be
extracted from the observation of hand motions is better
captured by a low-dimensional non-linear manifold than by a
linear space. While there are other non-linear statistical methods
for signal processing (Tenenbaum et al., 2000), AENs have
the distinctive property of acting as non-linear filters whose
parameters are set by training on an initial dataset. Then
the network with these same parameters is used to project
incoming data on the same latent manifold of the initial dataset,
under the critical assumption that the signal statistics has
not changed.

Dimension Variance
Dimension variance is an important aspect of every controller.
In some cases, the distribution of control authority across the
controlled dimensions should be uniform as controlling each
DOF may be similarly important. One of such cases includes
control of a two-dimensional cursor on a screen—in Euclidean
geometry, where all directions are by definition equivalent,
the control of each dimension should be distributed equally.
However, if the dimensionality reduction results in an uneven
distribution (a large range of dimension variance), then control
is distributed unevenly.

While keeping the number of control signals as low as
possible is important in ensuring the mental load to the user
is manageable, adding more signals can be crucial to allow
the controller to account for important information that may
otherwise be thrown away. As a result, it might not be useful to
limit the controller to the minimal number of control signals.

In such cases, the dimensionality-reduction method of choice
may be detrimental. From the results presented above, nAEN
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FIGURE 10 | Visualization of the latent trajectories for nAEN and PCA for P1 performing (A) American Sign Language (ASL) Gestures, (B) Object Grasps, and

(C) Activities of Daily Living (ADL) Tasks. The hand movements tested are represented with different colors. The latent manifold only consists of two dimensions. For

Object Grasps, the legend can be interpreted as follows: the first letter represents the type of grasp (E, Extension; L, Lateral; P, Power; S, Spherical; T, Tip; Tri, Tripod);

the last letter represents the weight of the object being grasped (H, Heavy; L, Light).

could prove its feasibility as a method that would allow
developers adding control signals that account for task-relevant
variability. In the case of PCA, if the controller requires six
signals, the last two signals oftentimes have the variance of <5%
of the entire range of motion for all six dimensions. Inmost cases,
such addition would be equivalent to adding noise. Noisy signals
may decrease the controller performance and negatively affect

the user’s ability to perform tasks. In nAEN, on the contrary,
adding more control signals does not organize data variance in
a decreasing manner across dimensions but rather does so in
a proportional manner where no signal accounts for <10% of
data variability.

With a much smaller difference between the dimensions of
highest and lowest variance for larger number of dimensions,
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FIGURE 11 | Accuracy of SoftMax regression applied to different datasets [American Sign Language (ASL) Gestures, Object Grasps, Activities of Daily Living (ADL)

Tasks] across all participants. Regression was applied to original input data (green), reduced non-linear Autoencoder Network (nAEN) 2D (light blue) and reconstructed

20D (dark blue) data, as well as reduced Principal Component Analysis (PCA) 2D (light red) and reconstructed 20D (dark red) data. Error bars represent 95%

confidence interval. Statistical significance: *indicates statistical significance of p < 0.001. No significant difference was found on the reduced 2D manifold of nAEN

and PCA across all datasets. Original data exhibited high (nearly 100%) of movements. There was a significant difference between the reconstructed (20D) and

reduced (2D) manifolds of nAEN with the former being more separable than the latter.

nAEN highlights its ability to distribute data information across
CUs more evenly than PCA.

Another interesting point that was made in the analysis is the
correlation between input data variance and the variance spread
across latent dimensions in PCA. It appears that data of higher
variance (e.g., ASL Gestures) results in latent dimensions with a
smaller range of variance, implying that variance is distributed
more equally across dimension. On the contrary, when input
data exhibits less variance (e.g., Object Grasps, ADL Tasks), there
is a large difference between dimensions of highest and lowest
variance. Similarly, when VAF is high, PCA appears to exhibit a
more dramatic drop between dimension variance, thus proving
this dimensionality-reduction method to be the less desirable
choice even in cases when it exhibits high VAF. Such results
highlight that in cases when PCA is able to reconstruct with a
desirable VAF, the variance across its latent dimensions will not
be equally spread, thus resulting in a higher chance of producing
control signals that would appear noisier.

Latent Trajectories Visualization
Visualization of the latent trajectories can be useful in
understanding the internal works of a dimensionality-reduction
method. In addition, if this latent structure is utilized in the
controller, it can aid researchers in identifying the properties of
the control manifold.While visualization of the latent trajectories
of PCA is simple due to the orthonormality of the principal
eigenvectors and the overall linearity of the space they span,
things are different with nAEN since CUs are neither orthogonal
nor linear elements.

As one visualizes the latent trajectories of a nAEN by
representing CUs as Cartesian coordinates, one must understand
that this representation is unable to capture the non-linear
properties of the manifold. However, research in visualization of
non-linear manifolds has been limited.

In this study, the 2D Cartesian representation of the latent
trajectories was used to visualize the separability of different
movements within each dataset. From the results, it appeared
that there was no significant difference between the separability
of classes of nAEN and PCA manifolds across all subjects.

When visualized, certain movements appeared to be much
closer in the 2Dmanifold to some than to others, increasing their
chance of being misclassified. Such spatial closeness could be
explained by the kinematic similarity of certain movements. For
example, gestures 2 and 3 were closely placed on the 2Dmanifold
of both nAEN and PCA. When examining the two gestures
kinematically, one could notice that the only difference between
the two was in the flexion of the thumb. Likewise, movements
that were very different from each other kinematically (e.g.,
gestures 1 and 9) appeared further away from each other on
the 2D plot. Same results could be seen across other datasets,
indicating that kinematic similarity resulted in closer appearance
of the movements on the 2D manifold.

Movement Separability
Separability between nAEN and PCA in 2D was participant- and
movement-dependent, implying that some participants created
a more separable nAEN manifold for certain tasks while others
exhibited a more separable PCA manifold for the same tasks.
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Such occurrence may be due to the kinematic difference across
participants performing various tasks. It is also important to note
that the goal of the created nAEN structure was to minimize
the error between the output and the input and not to create a
more separable manifold of reduced dimension. However, one
could rewrite the algorithm in such a way that the network would
search for parameters that create a more separable manifold in
the bottleneck layer.

It was noted in the results that separability of movements
was much higher for ASL Gestures than other datasets for both
nAEN and PCA. This could potentially be explained by hand
kinematics being more distinct during ASL Gestures that clearly
differentiate different classes. This is consistent with the very
purpose of a sign language to generate readily distinguishable
patterns. In addition, it is important to note that both heavy and
light variations of the same grasp type were used as separate
classes in Object Grasps, which could make it more difficult
for the classifier to differentiate between them since they were
very similar kinematically. If other information, such as for
example, kinetic, was used in addition to kinematic data to
differentiate between different grasps, the classification accuracy
of Object Grasps would potentially be higher. Lastly, in ADL
Tasks, many movements required similar grasping types, which,
in turn, resulted in similar kinematic output, making classes
less differentiable.

While nAEN exhibited an increase in separability of classes
when going from the 2D latent manifold to its 20D embedding,
no such difference was observed for PCA. The latter result is
expected, because with PCA the latent manifold is a 2D plane
embedded in the 20D dimensional signal space. In this linear
case, the Euclidean distances between points in the plane are
the same if we take them over the plane or over the embedding
signal space. The same cannot be concluded with non-linear
dimensionality reduction, because the latent manifold is now a
curved space and distances between points over a curved surface
are generally different when taken over the surface or over the
embedding space. In fact, distances over a curved surface (think
of a sphere) can only be longer than the differences over the
embedding signal space. The results in Figure 10 show that this
difference in Euclidean metric leads to a poorer classification
when the distances are taken in the local coordinates of the latent
manifold, as points belonging to the same class are mislabeled
as belonging to different classes. Figure 10 also shows that there
is not a difference in classification accuracy between nAEN and
PCA, when the data are taken in the respective low-dimensional
latent representations. Therefore, we do not have a case for using
the non-linear rather than linear dimensionality reduction for a
prosthetic controller based on PR. However, the conclusions are
different for a prosthetic system based on continuous control,
where the reconstruction error and the variance accounted for
play a greater role and where these both best captured by the
non-linear dimensionality reduction (Figures 5, 6A).

An interesting note could be made regarding the high
separability of classes in the original input data. It is important
to understand that the original data contains 20 signals that
can each vary across different movements. And although every
movement started from approximately the same position in every

dataset, differences in signals that could appear insignificant
on their own could result in a significant difference when
added together across all 20 signals. Hence, it is intuitive that
classes are more separable when more dimensions are present.
However, in such a case, both PCA- and nAEN-reconstructed
20D spaces should exhibit just as high accuracy. While we
noted before that the PCA-reconstructed space might not see a
significant improvement in class separability when going from
2D to 20D, a careful consideration of the nAEN results must
be made. Although there was a significant improvement when
going from 2D to 20D for nAEN, the 20D results were still not
as high in accuracy as those of the original input data. This
could be explained by the potential elimination of insignificant
signal differences during reconstruction by the nAEN. These
insignificant differences could be taken by the autoencoder as
noise, which it aimed to reduce in the system, only leaving
information that produced high variability. As a result, data with
small variability is not reconstructed. This observation can also
lead to the conclusion that PCA, when reconstructing, removes
more of low-variability samples from the data, resulting in a less
separable reconstructed space.

Other Applications in Prosthetic Control
It is important to mention that the findings of this study might
have wider applications beyond the myoelectric control. One of
such examples would be in hardware development similar to the
aforementioned “Soft Hand,” in which the simplified prosthetic
control relies on the linear combination of the first n PCs (Della
Santina et al., 2017). This results from the linear nature of PCA
that is discussed earlier in this paper. To obtain the desired
posture in a hardware using nAEN, one might utilize the decoder
part of the network and pass the first nCUs through the third and
fourth layer as described in Equations (3) and (4). In such way,
the development of the hardware of the prosthetic hand would
rely on the composition of the decoder component of nAEN.

In addition, when dealing with myoelectric control for
prosthetic hands, one must consider not only the domain
of kinematic behaviors of the device, but the control signals
themselves (i.e., EMG). While reducing the dimensionality of
kinematics is of high importance, one can consider applying
dimensionality-reduction methods studied in this paper to the
control signals. This would expand the potential of using a greater
number of signals, fused in a latent manifold, for prosthetic
control. Such application of nAEN will be explored with EMG
signals in future research of improving myoelectric control of
hand prosthesis.

Supervised vs. Unsupervised Learning
Many of the state-of-the-art techniques in prosthetic control
involve supervised learning methods. For example, the PR
method utilizes a form of a classification algorithm, which
typically consists of a feature extraction from the given EMG
signal and feature classification of the desired hand movement
(Geethanjali, 2016). With the use of this technique, prosthetic
users are able to associate certain EMG patterns with desired
grips, thus decreasing the time it takes to select and perform
the anticipated movement. Despite of its rising popularity, PR
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control exhibits issues such as long training time, chances of
inaccurate classification, and being limited to a finite number
of preselected hand postures (Hargrove et al., 2006; Scheme and
Englehart, 2011; Young et al., 2011; Castellini et al., 2014; Atzori
et al., 2016; Geethanjali, 2016).

In addition, all forms of supervised learning are limited
by their dependence on labeled data, the ground truth, based
on which they learn a function that best approximates the
relationship between the input and output observable in the
data. For unimpaired individuals, creating supervised output
might not be an issue (e.g., flex a joint to a specific degree,
etc.). However, for individuals with motor impairments, such
task is inherently difficult or completely unachievable, making the
creation of labeled data impossible.

In contrast, PCA and AENs are unsupervised algorithms,
whose data do not need to be labeled as their goal is to learn
the data’s statistical properties rather than minimizing some
classification error. As a consequence, a user interface based on
unsupervised methods can adapt to the particular statistics (e.g.,
in kinematics) of the users without requiring them to perform
specific movements in specific ways.

Another form of supervised learning is regression, which
some research groups have proposed for prosthetic control
(Muceli and Farina, 2011; Muceli et al., 2013; Ngeo et al., 2014;
Geethanjali, 2016). This is a form of a learning method, in
which the output data is continuous in contrast to that of a
classifier. While it may be a useful feature in the development
of a continuous controller, in which device movements are not
limited to a number of preset postures, regression has not been
proven effective in its use with prostheses. Oftentimes, regression
algorithms developed for prosthetic hands require clean forearm
EMG signals that can be associated with certain hand movement.
However, in case of transradial (below-elbow) amputations, these
signals are heavily dependent on the site of amputation, amount
of residual limb, and many other factors (Li et al., 2010). Clean
surface EMG signals can be obtained in a lab setting from able-
bodied individuals, but are much harder to get from amputees
outside of the lab, thus making regression less effective control
tool for prostheses.

In summary, unsupervised continuous learning methods,
such as nAENs, promise to be a useful tool in the development of
prosthetic controllers in addition to their superior performance
in dimensionality reduction.
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