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RNA interference (RNAi) is an efficient post-transcriptional gene modulation strategy
mediated by small interfering RNAs (siRNAs) and microRNAs (miRNAs). Since its
discovery, RNAi has been utilized extensively to diagnose and treat diseases at both
the cellular and molecular levels. However, the application of RNAi therapies in bone
regeneration has not progressed to clinical trials. One of the major challenges for RNAi
therapies is the lack of efficient and safe delivery vehicles that can actualize sustained
release of RNA molecules at the target bone defect site and in surrounding cells. One
promising approach to achieve these requirements is encapsulating RNAi molecules
into hydrogels for delivery, which enables the nucleic acids to be delivered as RNA
conjugates or within nanoparticles. Herein, we reviewed recent investigations into RNAi
therapies for bone regeneration where RNA delivery was performed by hydrogels.

Keywords: RNA interference, bone regeneration, hydrogel, drug delivery, tissue engineering

INTRODUCTION

RNA interference (RNAi), first observed in the late 1980s by Fire et al. (1998) is an efficient gene
silencing therapeutic strategy. This technique enables the post-transcriptional downregulation of
disease-related gene expression by using small interfering RNA (siRNA) and microRNA (miRNA)
molecules (Gori et al., 2015; Chen X. et al., 2018). Since the discovery of RNAi won the Nobel prize
in 2006, billions of dollars have been investigated in this field and a wide range of applications
have been used for various therapeutic purposes, including bone regeneration (Liang et al., 2015;
Nguyen et al., 2018; Yang et al., 2018). On despite its vast therapeutic potential, RNAi-based clinical
trials have encountered obstacles, including immune-related toxicities and insufficient therapeutic
efficacy (Kleinman et al., 2008; Davis et al., 2010; DeVincenzo et al., 2010; Bobbin and Rossi, 2016).
One of the major issues that impedes RNAi’s translational progress toward clinical usage is how
to deliver RNA molecules locally and accurately to enhance efficiency and avoid side effects of
RNAi therapy (Krebs and Alsberg, 2011). Three-dimensional biomaterials, such as hydrogels, are
prospective tools for the local and controlled delivery of a variety of molecules for disease treatment
and tissue engineering applications (Zhang et al., 2019). Some hydrogels have been engineered
specifically for RNA delivery to facilitate their therapeutic efficacy (Wang and Burdick, 2017; Wang
et al., 2017; Feng G. et al., 2018).

Recently, several reviews have introduced the current progress in RNAi therapy for treating
bone related diseases (Ji et al., 2016; Arriaga et al., 2019; Leng et al., 2020), and advancement of
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designed scaffolds for RNAi delivery in vitro or in vivo for treating
various diseases (Ku et al., 2014; Ho W. et al., 2016; Wang
and Burdick, 2017; Singh et al., 2019). However, no study has
yet systematically summarized the application of hydrogel-based
scaffold as RNAi delivery method for bone regeneration. Herein,
this review will discuss the hydrogel-based delivery system, and
their advanced design strategies for carrying two types of RNAi
molecules, including siRNAs and miRNAs, in the field of bone
regenerative medicine.

CLINICAL NEED FOR NEW BONE
REGENERATION STRATEGIES

Bone defects can be caused by fracture, infection, trauma, tumor
resection, or skeletal abnormalities. Nearly 2.2 million bone
grafts are performed worldwide annually, and over 20% of
patients suffer from delayed healing (Giannoudis et al., 2005;
Fillingham and Jacobs, 2016). To date, autologous bone grafts
are still the main therapeutic strategy for repairing segmental
defects of a critical size (Schemitsch, 2017). The bone is usually
harvested from the iliac crest, which is a site that is not
weight bearing. However, the weak points of autologous surgery
are obvious, including the multiphase operation, post-operative
infection after the harvesting procedures, and the possibility of
low effectiveness of the grafts (Betz, 2002). Synthetic scaffolds
or demineralized bone matrix are substitutes that provide a
hospitable environment for new bone formation, but their
efficiency and osteogenesis potential are in need of improvement
(Betz, 2002).

During skeletal development, signaling molecules, such as
bone morphogenetic proteins (BMPs), play important roles in
inducing osteoblast differentiation and bone growth (Salazar
et al., 2016; Majidinia et al., 2018). BMPs have also been widely
used as growth factors for the induction of mesenchymal stem
cell (MSC) osteogenesis in bone tissue engineering applications
(Ho S.S. et al., 2016; Chen Z. et al., 2018). Because of their
extensive bone-induction properties, BMP-based therapy has
been approved by the Food and Drug Administration (FDA)
in selected indications, such as sinus augmentations and spinal
fusions (McKay et al., 2007). In these treatments, recombinant
human BMP-2 (rhBMP2) was added to an absorbable collagen
sponge (ACS) carrier to induce bone formation. It was reported
that the clinical outcomes were equivalent to those of autogenous
bone grafts at a 1.5-mg/cc concentration of rhBMP2/ACS.
However, as the concentration of endogenous proteins in natural
bone was at the ∼ng/ml level, the high dose protein therapy has
been found to be associated with a greater apparent risk of new
malignancy, wound-related complications, and osteolysis (Cahill
et al., 2009; Carragee et al., 2011). Moreover, the high cost of
protein products leads to the significant elevation of hospital
charges, which might also impede widespread application
(Cahill et al., 2009).

The bone microstructure is composed of mineralized
extracellular matrix and bone remodeling units. The balance of
osteoclasts and osteoblasts consistently helps to maintain bone
hemostasis (Datta et al., 2008). Osteocytes, which are located

within the bone matrix, are the most abundant cells in bone.
MSCs can be differentiated into osteocytes under certain stimuli,
and they can obtain the ability to self-renew without losing their
multipotency. Based on their superior biological behaviors, MSCs
are used as a promising cell source for bone tissue engineering
and regenerative medicine (Klimczak and Kozlowska, 2016).
MSCs are usually transplanted on scaffolds, and the cells are
able to produce an extracellular matrix to induce local bone
formation (Heo et al., 2019; Zhang et al., 2019; Zhao et al., 2019).
However, cell-based therapy still cannot efficiently regenerate
critical-sized bone defects.

RNAi MEDIATED GENE SILENCING AND
ITS APPLICATIONS IN BONE
REGENERATION

Bone is continuously turning over and remodeling through
the actions of bone-resorbing osteoclasts and bone-forming
osteoblasts, which originate from hematopoietic and
mesenchymal lineages, respectively. The activity of these
two types of cells is regulated by several key signaling pathways
(Majidinia et al., 2018), including the RANKL pathway, BMP
signaling pathway (Katagiri and Watabe, 2016), Wnt signaling
pathway (Karner and Long, 2017), and Notch signaling pathway
(Rebay et al., 1991). The crosstalk between these signaling
pathways helps to maintain the balance between bone resorption
and bone formation (Figure 1). RNA molecules, including
miRNAs and siRNAs, have been recently discovered as a crucial
mechanism in modulating bone remodeling (Lian et al., 2012).

As a single gene can modulate bone formation or bone
resorption extensively, gene therapy is particularly applicable
to bone tissue regeneration, and upregulating Runt-related
transcription factor 2 (Runx2) or BMP expression levels may
induce extensive new bone regeneration (Salazar et al., 2016;
Liu et al., 2019). To promote osteogenesis, genetic elements can
also negatively regulate the expression of proteins that inhibit
osteogenesis. The strategy of RNAi-based therapy is to alleviate
the disease phenotype by reducing specific disease-related gene
expression levels (Lam et al., 2015; Murashov, 2017). Both
miRNA and siRNA can bind messenger RNA (mRNA) and
induce the degradation of mRNA, and this process can be used
to downregulate inhibitors of osteogenesis (Figure 2).

miRNAs are the most studied non-coding RNAs related
to bone diseases and bone metabolism. miRNAs are single-
stranded RNA molecules composed of 20–24 nucleotides, and
they function by silencing the expression of mRNA through
binding to complementary sequences in the 3′ untranslated
region (UTR) of target mRNAs. Approximately 1,800 miRNAs
are encoded by the human genome, and each miRNA is predicted
to regulate several target genes (Lewis et al., 2005). It has been
concluded through computational predictions that more than
50% of genes are potentially regulated by miRNAs, and this type
of regulation exerted by miRNAs has been proven to be reversible
(Lewis et al., 2005; Friedman et al., 2009). To date, miRNAs
have been demonstrated to be critical regulators participating
in various biological processes, including cell differentiation
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FIGURE 1 | Signaling pathways in osteogenesis. Reprinted from a previous study Arriaga et al. (2019) with permission.

FIGURE 2 | Schematic of gene-based therapies. Pathway (A) shows the central dogma of molecular biology. The regulation of protein translation through RNAi is
shown in Pathway (B). Endogenous miRNAs, exogenous miRNAs, or synthetic siRNAs can bind mRNA and induce its degradation. Pathway (C) shows the
production of recombinant proteins. Reprinted from a previous study Rose and Uludag (2013) with permission.
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(Chen et al., 2017; Yang et al., 2018), cell death (Liu et al.,
2018), cell proliferation (Chen et al., 2017), and metabolism
(Vienberg et al., 2017). The variation of miRNAs can affect bone
remodeling and can result in bone fractures and osteoporosis
(Feng Q. et al., 2018).

To date, a large number of miRNAs have been identified
that are involved in the regulation of bone metabolism and
serve as specific therapeutic targets for diagnosis and bone
disease treatment (Chen et al., 2017; Taipaleenmaki, 2018; Yang
et al., 2018). Runx2 is a key regulator of bone development,
and it is targeted by a range of miRNAs. In MSCs, miR297a-
5p, miR297b-5p, and miR297c-5p were found to reduce MSC
osteogenic differentiation potential by targeting the 3′UTR
of Runx2 and inhibiting the expression levels of alkaline
phosphatase (ALP) and osteocalcin (OCN) (Yang et al., 2018).
In osteoblasts, miR542-3p targets bone morphogenetic protein-7
(BMP-7), which results in the suppression of cell differentiation
and proliferation (Kureel et al., 2014). However, miR433-
3p promoted osteoblast differentiation by targeting dickkopf-1
(DKK-1) (Tang et al., 2017), which is an antagonist of the
WNT signaling pathway; the inhibition of DKK-1 upregulated
WNT signaling and promoted osteogenic differentiation of
cells. Furthermore, miRNAs can also serve as therapeutic
targets for bone diseases. It was reported that miR151-5p can
effectively ameliorate osteopenia in systemic sclerosis (SSc) by
targeting IL-4. Overexpression of miR151-5p in bone marrow
mesenchymal stem cells (BMMSCs) was capable of decreasing
the IL-4 expression level and inhibiting its induced osteogenic
deficiency (Chen et al., 2017). These investigations indicated
that miRNAs played an important role in bone remodeling
by targeting major genes and signaling pathways related to
osteogenic differentiation.

Short interfering RNAs (siRNAs) are used in a subset of
RNAi-based approaches and have been increasingly investigated
for therapeutic purposes. Similar to miRNA mimics, artificially
synthesized siRNAs can lead to gene silencing. siRNAs are
double-stranded RNA molecules that can exert gene silencing
against a complementary mRNA target after the transfection
of the siRNA, which is performed by a method similar to
that used for miRNA mimics. However, while miRNAs may
target a number of genes at the same time through partial
complementarity, siRNAs can only target one specific gene with
full complementarity (Lam et al., 2015).

THE CHALLENGES OF RNAi THERAPY

RNAi methods represent very powerful tools for elucidating
gene function, but there are inevitable challenges that need
to be overcome to achieve clinical translation. In 2010,
unmodified siRNAs were used for the first time in clinical
trials, resulting in questionable RNAi effects and immune-related
toxicities (Kleinman et al., 2008; DeVincenzo et al., 2010). Later,
investigators used systemically administered siRNA nanoparticle
systems to achieve great advances, but their therapeutic efficacy
was still insufficient (Davis et al., 2010). Recently, the first
RNAi drug, patisiran (Onpattro; Alnylam Pharmaceuticals),

was introduced for the treatment of hereditary transthyretin
amyloidosis (hATTR) and was approved by the US Food and
Drug Administration (FDA) on 10 August 2018, which indicated
that a new era in RNAi therapy had begun (Adams et al., 2018;
Heras-Palou, 2019). Currently, after absorbing the lessons from
prior failures and achievements, investigations that applied RNAi
to soft tissue diseases, such as kidney, liver, and dermis, have
been established in the form of several clinical trials (Ozcan
et al., 2015; Zuckerman and Davis, 2015; Bobbin and Rossi,
2016). However, studies on bone-related diseases based on RNAi
techniques remain limited.

Transportation of RNAi molecules into specific organs or
cells is the main obstacle to RNAi therapeutic development.
Naked RNAi molecules are vulnerable when directly injected
into tissues or blood and will further cause off-site bioactivities.
When transported through cell membranes, RNAi molecules
can be repelled because of their like-charged physiochemical
property, as miRNA and siRNA have a negatively charged
phosphate backbone (Whitehead et al., 2009; Lam et al.,
2015). During internalization, siRNAs and miRNAs are exposed
to endolysosomal fusion, rapid acidification and degradation,
which dramatically affect RNAi delivery efficiency (Kim et al.,
2019). Moreover, the large size of RNAi molecules and their
hydrophilic properties may also impede the transportation
process. Therefore, a promising delivery system is essential for
the clinical translation of RNAi therapies.

A successful delivering system should protect RNAi molecules
from cellular barriers, target RNAi to a specific type of cells or
tissues, and achieve sustained release of RNAi molecules into the
cytoplasm. To date, although the delivering method undergoes
a rapid development, scaffolds obtain both advantages and
limitations in the use of RNAi delivering for bone regeneration,
as we discussed in Table 1.

APPLICATIONS OF HYDROGEL RNAi
DELIVERY SYSTEMS FOR BONE TISSUE
REGENERATION

A range of biomaterials have been investigated as molecular RNAi
carriers for bone tissue engineering, including nanoparticles
(Schade et al., 2014; Levingstone et al., 2019), bioactive glass
(Kim et al., 2016a,b), multilayer films (James et al., 2019),

TABLE 1 | Advantages and disadvantages of using scaffolds as RNAi delivery
method for bone tissue engineering.

Advantages Disadvantages

Delivery platform for RNAs and
structural support for infiltrating cells
during bone regeneration

The interactions between scaffolds and
vectors may limit the release of RNAs

Locally deliver RNAs to specific sites
to reduce unwanted off-target effect

Long-term controlled release of RNAs from
scaffolds is difficult to be achieved in vivo

Release RNAs in a controlled manner

Protect RNAs from physiological
degradation
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solid porous scaffolds (Liu et al., 2015; Chen et al., 2017),
and hydrogels (Huynh et al., 2018; Nguyen et al., 2018).
Hydrogels are 3D hydrophilic networks composed of natural or
synthetic polymers and can be designed with diverse mechanical,
physical and chemical properties for various applications. In
this case, hydrogel-based scaffolds are popular choices as RNAi

carriers. They are biocompatible, biodegradable, capable of
encapsulating RNAi molecules into specific bone defect sites,
and achieving a sustained release to surrounding cells (Wang
and Burdick, 2017). The applications of RNAi hydrogel-based
scaffolds are summarized in Table 2, and their applications are
reviewed in more detail.

TABLE 2 | The applications of RNAi delivered by hydrogel scaffolds for bone tissue engineering.

Scaffolds RNA interference Cell type Animal models/time points References

PEG hydrogel siRNA-Noggin miR-20a Human mesenchymal stem cell Calvarial bone defect in rats, 12 weeks. Nguyen et al., 2018

SFCS scaffolds siRNA-GNAS1
siRNA-PHD2

Human embryonic stem cell Subcutaneous transplantation,
10 weeks.

Zoldan et al., 2011

PLGA-PEG-PLA-DM hydrogel
scaffolds

siRNA-Cy5 – Femur fracture model, 4 weeks. Wang Y. et al., 2018

PLLA scaffolds siRNA-Sema4d – Femur osteoporotic defect model in
ovariectomized rats, 8 weeks.

Zhang Y. et al., 2016

PLA-DX-PEG polymer siRNA-Noggin – The dorsal muscle pouches of mouse
for ectopic bone formation, 7 days.

Manaka et al., 2011

CS/TPP/hyaluronic acid NPs Anti-miR-138 Rat mesenchymal stem cells Calvarial bone defect in rats, 8 weeks. Wu et al., 2018

PLLA scaffold; HP vector-PLGA
microsphere

miR-26a – Calvarial bone defect in mouse,
8 weeks.

Zhang X. et al., 2016

PEG, polyethylene glycol; PEI, polyethyleneimine; SFCS, silk fibroin-chitosan; GNAS1, guanine nucleotide-binding protein alpha subunit 1; PHD2, prolyl hydroxylase
domaincontaining protein 2; PEG-PLA-DM, poly (ethylene glycol)-poly (lactic acid)-dimethacrylate; PLLA, poly-l-lactide; Sema4d, semaphorin4d; PLA-DX-PEG, poly-D,L-
lactic acid-p-dioxanonepolyethylene glycol block co-polymer; CS, chitosan, TPP, tripolyphosphate, NPs, nanoparticle; HP, Hyperbranched polymer.

FIGURE 3 | Hydrogel-based RNAi delivery strategies include encapsulation within a nanoparticle or the use of an RNAi conjugate. Degradable sequences, varied
polymer charges, and crosslinking mechanisms control the rate of RNAi molecule release. Upon release, nanoparticles or RNAi molecules are able to interact with
cell membranes and enter the cell, leading to gene silencing. Reprinted from a previous study Wang and Burdick (2017) with permission.
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To improve RNAi uptake from hydrogels and protect
the RNA molecules from enzymatic hydrolysis, numerous
strategies have been investigated, including inclusion within
nanoliposomes to produce lipophilic nanoparticles or ionic
complexation with cationic polymers, such as polyethyleneimine
(PEI) (Tamura and Nagasaki, 2010; Kim et al., 2014;
Zhang X. et al., 2016). To date, hydrogels have been used
as carriers in which nucleic acids have been delivered as RNA
conjugates or within nanoparticles (Wang and Burdick, 2017;
Figure 3).

For in vivo local bone induction, Manaka et al. (2011) used
a hydrogel consisting of a poly-d, l-lactic acid-p-dioxanone-
polyethylene glycol block copolymer (PLA-DX-PEG) as an
siRNA carrier to increase BMP-2 expression levels and promote
local new bone formation. The investigation indicated that the
ectopic bone formation induced by hydrogel encapsulated with
an siRNA targeting noggin (antagonist to BMPs) and BMP-2
was significantly increased when compared with those induced
by hydrogel with BMP-2 alone. Moreover, the translocation
efficacy of double-stranded RNA (dsRNA) from this type
of hydrogel was higher than that of local injection, which
indicated a promising and effective hydrogel delivery system
for siRNA therapy. For miRNA delivery, Zhang X. et al.
(2016) used a hyperbranched polymer (HP) vector consisting
of PEG chains and a low molecular weight cationic PEI
for miR-26a delivery; the miRNA was mainly encapsulated
in biodegradable polymer microspheres, which self-assembled
into the hydrophilic PEG layer (Figure 4). This two-stage
miRNA delivery system significantly improved the miRNA
release duration and transfection efficiency. In addition, the
microspheres were immobilized into a nanofibrous 3D scaffold,
which facilitated the localization of the scaffold and activation
of endogenous cells to promote regeneration of critical-sized
calvarial bone. After delivering miR-26a into the bone defect
site, miR-26a was able to target Gsk-3β and activate the Gsk-
3β/β-catenin signaling pathway in osteoblasts, which promoted
osteogenic differentiation and bone regeneration. This study
indicated that hydrogels could be a promising platform for
controlling miRNA delivery.

Nguyen et al. (2014) synthesized an in situ 8-arm PEG
hydrogel loaded with siRNA/PEI nanocomplexes. The siRNA
release profile indicated that sustained delivery was obtained,
and siRNA remained bioactive over a prolonged period.
In vitro experiments showed that sustained delivery of siNoggin
and siNoggin/miRNA-20a augmented hMSC osteogenic
differentiation in hydrogel 3D cultivation (Nguyen et al., 2014).
Similar results were obtained in a rat calvaria bone defect model
(Nguyen et al., 2018). Bone is a highly vascularized tissue; hence,
the angiogenic procedure is as crucial as osteogenesis during
bone repair. Li et al. (2013) created a miRNA-26a enhancer
sustained delivery system by encapsulating MSCs and an
agomir into a commercialized hydrogel. In vivo osteogenesis
experiments demonstrated that sustained release enhanced
miRNA-26a expression at both the defect and the surrounding
tissue, which promoted vascularization and bone formation.
Huynh et al. (2016) introduced a photodegradable linkage to a
PEG hydrogel matrix. Thus, intriguingly, the release of siRNA

FIGURE 4 | Two-stage delivery of miRNA from PLGA microspheres
immobilized on a nanofibrous (NF) scaffold. Hyperbranched polymer (HP) and
miRNAs formed polyplexes in water. The PLGA microspheres encapsulated
HP/miRNA polyplexes. The PLGA microsphere-incorporated PLLA NF
scaffolds were implanted into mice to promote bone regeneration. The
HP/miRNA polyplexes could be introduced into cells through endocytosis.
After enzymatic polymer degradation, miR-26a was then released in the
cytosol where it could perform its regulation of gene expression. Reprinted
from a previous study Zhang X. et al. (2016) with permission.

could be triggered and accelerated by ultraviolet light, which
could provide “on-demand” RNA delivery. Moreover, sustained
delivery of miRNA inhibitors capable of downregulating
endogenous miRNA expression would also be beneficial to bone
regeneration. Wu et al. (2018) constructed stromal cell-derived
chitosan/tripolyphosphate/hyaluronic acid/anti-miRNA-138
nanoparticles and loaded stromal cell-derived factor-1α (SDF-
1α) in a chitosan/β-sodium glycerol phosphate hydrogel
for bone regeneration. The spatiotemporal sequence release
pattern of the bioactive factors enhanced osteogenesis both
in vitro and in vivo.

CONCLUSION AND FUTURE
PERSPECTIVE

With the approval of patisiran, liver-targeted RNAi systemic
therapy has become a clinical reality. The therapeutic effect of
delivering RNAi to non-liver and non-kidney tissues has become
viable in the experimental setting. For bone tissue regeneration,
a range of investigations have identified the potential of
hydrogels to deliver RNAi molecules to specific bone defect sites
and achieve sustained gene silencing. Emerging modification
methods have been carried out with hydrogel delivery systems
for accelerating bone tissue regeneration, and they have shown
efficacy in preclinical animal models. However, translation to the
clinic is still ongoing.
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The unique properties of hydrogels, such as their high water
content, help to improve cell adhesion and tissue response.
Their mechanical, chemical, and physical properties can also be
modulated for specific clinical applications. Moreover, for drug
delivery, hydrogels are an ideal platform for assisting in retention
and promoting sustained drug release.

While hydrogels are a promising platform for RNAi delivery,
the improvement of RNAi molecular release and uptake from
hydrogels is still needed. The structure and size of nanoparticles
may need more exploration to facilitate hydrogel-based delivery
methods. Micro- or nanopatterning can also be used to study
and understand the cellular responses to RNAi (Lee and
Koh, 2014; Jeon et al., 2018; Li et al., 2019). Furthermore, a
drug release signal could also be fabricated into hydrogel to
improve responsiveness, such as pH (Hossieni-Aghdam et al.,
2018; Shi et al., 2018), temperature (Amoli-Diva et al., 2017;
Turabee et al., 2018; Wang P. et al., 2018), stress (Chaudhuri
et al., 2016; Wei et al., 2018), enzymatic activity (Lian et al.,
2016; Skaalure et al., 2016), and light (Song et al., 2015;

Rastogi et al., 2018). An appropriate administration time
might enhance the effectiveness of RNAi therapy and help to
promote the clinical application of hydrogel RNAi therapy for
bone regeneration.
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