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The pathological development of ovarian cancer (OC) is a complex progression that

depends on multiple alterations of coding and non-coding genes. Therefore, it is

important to capture the transcriptional-regulating events during the progression of OC

development and to identify reliable markers for predicting clinical outcomes in patients.

A dataset of 399 ovarian serous cystadenocarcinoma patients at different stages from

The Cancer Genome Atlas (TCGA) was analyzed. Stage-specific transcription factor

(TF)-long non-coding RNA (lncRNA) regulatory networks were constructed by integrating

high-throughput RNA molecular profiles and TF binding information. Systematic analysis

was performed to characterize the TF-lncRNA-regulating behaviors across different

stages of OC. Cox regression analysis and Kaplan-Meier survival curves were used

to evaluate the prognostic efficiency of TF-lncRNA regulations and cliques. The

stage-specific TF-lncRNA regulatory networks at three OC stages (II, III, and IV) exhibited

common structures and specific topologies of risk TFs and lncRNAs. A TF-lncRNA

activity profile across different stages revealed that TFs were highly stage-selective in

regulating lncRNAs. Functional analysis indicated that groups of TF-lncRNA interactions

were involved in specific pathological processes in the development of OC. In a

STAT3-FOS co-regulating clique, the TFs STAT3 and FOS were selectively regulating

target lncRNAs across different OC stages. Further survival analysis indicated that this

TF-lncRNA biclique may have the potential for predicting OC prognosis. This study

revealed the topological and dynamic principles of TF-lncRNA regulatory networks and

provided a resource for further analysis of stage-specific regulating mechanisms of OC.
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INTRODUCTION

Ovarian cancer (OC) is the most common disease worldwide with the highest death rate of all
gynecological tumors (Siegel et al., 2018). Due to its asymptomatic stages and rapidmetastasis to the
peritoneum, most patients have already developed metastases by the time they are first diagnosed
(Bowtell, 2010). Despite advances in chemotherapy and surgical treatment, the prognosis for OC
patients remains unsatisfactory, and only 30% of patients survive as long as 5 years after initial
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diagnosis (Rustin et al., 2011). The pathological development of
OC is a complex progression that depends onmultiple alterations
of oncogenes and tumor suppressors. Although our knowledge of
OC is increasingly expanding, the precise molecular mechanisms
underlying this complex disease are still not fully understood.
Therefore, it is important to understand mechanisms promoting
the progression of OC and to identify reliable markers for
predicting clinical outcomes in patients.

In recent years, emerging evidences have shown the
importance of long non-coding RNAs (lncRNAs) as new
regulators of many physical or pathological processes (Gibb et al.,
2011). Accumulating evidence suggests that variations in lncRNA
expression play critical roles in the progression of OC tumors.
Transcription factors (TFs) perform key functions in controlling
lncRNA expression through sequence-specific binding sites in
lncRNA transcripts. The differential expression of TFs and their
downstream targets have been proved to be associated with
the progression of multiple types of cancers. For example, the
TF Oct4 promotes development of osteosarcoma by regulating
lncRNAAK055347 (Fan et al., 2017). Some oncogenes and tumor
suppressors such as TP53, STAT3, and JUN were found to be
associated with glioma development (Wei et al., 2015). In a
previous study, four differentially expressed TFs (MYC, FOXO1,
FOXM1, and SMAD) were found to regulate 16 lncRNAs
involved in the pathogenesis of obliterative bronchiolitis (Dong
et al., 2015). With the acquisition of more genome-wide
annotations, large-scale analysis based on the bipartite network
has been performed to dissect regulatory mechanisms between
coding and non-coding genes (Liu et al., 2019; Zhao et al.,
2019). Previous studies have found that human TF-regulating
networks are highly specific to different types of cells (Neph
et al., 2012) and appear to undergo dynamic reconfiguration in
specific contexts (Carro et al., 2010). By constructing a lncRNA-
mediated feed-forward loop network, Ning et al. demonstrated
that some TF-lncRNA interactions were involved in prognostic
motifs in different cancers (Ning et al., 2016). These studies have
significantly enhanced our understanding of the TF-regulating
mechanisms underlying disease progression. Unfortunately,
there has only been limited work on the dynamic TF-lncRNA
networks involved in OC development.

To address this issue, we analyzed a dataset of 399 ovarian
serous cystadenocarcinoma patients at different stages from The
Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Research
Network, 2011). By integrating high-throughput RNA molecular
profiles and TF binding information, we constructed TF-lncRNA
regulatory networks and performed systematic analysis for each
stage of OC patients. We found that three stage-specific TF-
lncRNA regulatory networks exhibited common structures and
specific topologies of risk TFs and lncRNAs. A TF-lncRNA
activity profile across different stages revealed that TFs were
highly stage-selective in regulating lncRNAs. Functional analysis
indicated that groups of TF-lncRNA interactions tend to be
involved in specific pathological processes in the development
of OC, such as uncontrolled tumor cell growth at stage II,
immune cell activation and differentiation processes at stage
III and chondroitin sulfate biosynthesis at stage IV. Based on
network clique analysis, we found that TF-lncRNA bicliques were

associated with several cancer hallmarks. In a STAT3-FOS co-
regulating network clique, the TFs STAT3 and FOS selectively
regulated target lncRNAs in different OC stages. Survival analysis
indicated that the TF-lncRNA biclique may have a potential
role for predicting OC prognosis. The prognostic efficiency was
further evaluated in the independent cohorts GSE26193 and
GSE9891. In summary, our systematic analysis not only sheds
new light on dynamic regulatory mechanisms of TF-lncRNA
interactions, but may also help in OC prognosis stratification and
discovery of therapeutic targets.

MATERIALS AND METHODS

The Expression Datasets of mRNAs and
lncRNAs in OC
The expression profile of whole-genome transcripts, including
coding and non-coding RNAs, was derived from a previous
study (Akrami et al., 2013), which calculated RPKM values
using raw RNA-sequencing libraries from the TCGA OC dataset.
Transcript annotations of coding mRNAs and lncRNAs were
downloaded from GENCODE (v19) (Harrow et al., 2012).
Finally, 29,250 mRNAs and 10,412 lncRNAs were identified from
RNA-sequencing data. Another two independent OC datasets
(GSE26193 and GSE9891) were downloaded from publicly
available Gene Expression Omnibus (GEO) database, including
107 and 278 patients, respectively. Both of the microarray
datasets were tested using the Affymetrix Human Genome
U133 Plus 2.0 Array platform. Patients with well-annotated
clinical follow-up information were retained for further analysis.
To derive lncRNAs and mRNAs expression from microarray
datasets, we mapped probe sequences to the human genome of
GENCODE (v19) by using SeqMap software (Jiang and Wong,
2008). Probes that were uniquely mapped to lncRNA transcripts
were reserved. No mismatches were allowed in the mapping
procedure. If multiple probes were mapped to the same gene, the
mean expression value was calculated. This procedure has been
performed in previous studies to obtain lncRNA expression from
microarray datasets (Du et al., 2013). Finally, 16,345 mRNAs and
3,308 lncRNAs were identified from microarray data.

Clinical Characteristics of OC Patients
The clinical and pathological characteristics of OC patients were
downloaded from the TCGA data portal. The staging and grading
information was collected based on criteria of the International
Federation of Gynecologists and Obstetricians and the World
Health Organization. A subset of 399 patients (including 20
stage-II, 318 stage-III and 61 stage-IV) with clinical follow-up
information were retained for survival analysis (Table 1).

Identification of TF-lncRNA Regulatory
Interactions
To identify potential TF-lncRNA relationships, we used an
integrated pipeline, which was developed and utilized in our
previous studies (Ning et al., 2014, 2016). The locations
and conserve scores based on multiz46way alignments of
transcription factor binding sites were downloaded from the
UCSC table browser (Karolchik et al., 2003). Genome locations
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TABLE 1 | Clinicopathologic characteristics of ovarian cancer patients (n = 399).

Characteristics Number of patients P

All patients

n = 399

Training set

n = 200

Testing set

n = 199

Stage 0.13a

II 20 6 14

III 318 160 158

IV 61 34 27

Age 0.95b

Mean ± SD 59.54 ± 11.35 59.50 ± 10.91 59.58 ± 11.81

Range 30–87 34–84 30–87

Histological grade 0.66a

GX 7 3 4

G1 1 1 0

G2 46 20 26

G3 344 175 169

G4 1 1 0

Residual tumor

diameter (cm)

0.87a

<1 192 98 94

≥1 101 51 50

Unknown 106 51 55

Lymph node

metastasis

0.27a

Absent 54 22 32

Present 102 50 52

Unknown 243 128 115

Survival (month) 0.93b

Mean ± SD 34.35 ± 27.70 34.22 ± 28.33 34.47 ± 27.11

Range 0.30–182.70 0.77–182.70 0.30–131.77

State 0.29a

Living 81 92

Death 119 107

aP-values were determined using Chi-square test or Fisher’s exact test when appropriate.
bP-values were determined using Student’s t-test.

of conserved transcription factor binding sites were mapped
to the promoter region (5 kb upstream to 1 kb downstream
of the transcription start site) for each lncRNA. A total of
690 ChIP-Seq datasets in different cell lines and tissues were
downloaded from the ENCODE project (Wellcome Trust Case
Control Consortium, 2007). The peaks of sequenced reads were
computed using the PeakSeq method (Rozowsky et al., 2009),
which identifies enriched peaks by comparing each ChIP-Seq
dataset to the corresponding control experiments. The peaks
located in the promoter region were retained. By integration
of TF-lncRNA relationships from conserved transcription factor
binding sites and ChIP-Seq datasets, 58,119 potential TF-lncRNA
interactions among 151 TFs and 3,981 lncRNAs were obtained.
To identify the actual TF-lncRNA regulatory relationships, we
performed co-expression analysis in different OC stages. Pearson
correlation coefficients were calculated for each of the potential
TF-lncRNA pairs based on their expression profiles in patients

at stages II, III, and IV. We used Pearson coefficient >0 and
false discovery rate (FDR)<0.05 as thresholds to capture positive
relationship between TFs and lncRNAs. Specifically, 2,852 edges
between 144 TFs and 1,261 lncRNAs (Table S1), 7,395 edges
between 147 TFs and 1,797 lncRNAs (Table S2) and 3,908 edges
between 145 TFs and 1,403 lncRNAs (Table S3) were constructed
for patients in stages II, III, and IV, respectively.

Network Illustration and Topological
Analysis
Cytoscape software (v3.1.1) was used to construct and illustrate
the TF-lncRNA regulatory networks. Several topological
properties, such as the node degree, topological coefficient and
betweenness centrality, were analyzed by the built-in Network
Analyzer tool in Cytoscape. The degree for a node is the number
of its network neighbors. The topological coefficient for node
n is calculated as an average of J(n,m)/e, where m is the one-
step-neighbor of n, J(n,m) is the number of nodes shared by
m and n, and e is the number of neighbors of n. Betweenness
centrality indicates the network centrality of a node and is equal
to the proportion of shortest paths from all nodes to all others
that pass through this node. The biclique module is a complete
bipartite graph in which all TFs are connected with all lncRNAs.
The TF-lncRNA-regulating bicliques were identified using an
R package for enumerating maximal complete bipartite graphs
(Zhang et al., 2014).

The Activity Scores of TF-lncRNA
Interactions
For a TF-lncRNA interaction, the co-expression coefficient in
each stage of OC was used as the activity score and normalized
by the z-score method:

z =
x− µ

σ
(1)

Where x is the activity score for a certain TF-lncRNA pair,µ is the
mean value of all activity scores in a stage and σ is the standard
deviation. In each stage, the z-scores were further transformed by
subtracting the minimum value. After normalization, the activity
scores in each stage were required to have similar distributions
(Table S4 and Figure S1).

The Specificity Scores of TF-lncRNA
Interactions and Cliques
The specificity of each TF-lncRNA interaction across different
stages of OC was determined by the specificity score as:

Specificity score =

∑N
i=1 (1− xi)

N − 1
(2)

Where N is the number of OC stages and xi is a component
normalized to the maximum value of the Pearson correlation
coefficient. For a TF-lncRNA regulatory clique, the specificity is
evaluated by the average value of specificity scores for all TF-
lncRNA relationships in the clique. According to a previous study
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(Wang et al., 2015), the range of specificity score is from 0 to
1, indicating low to high specificity. The specificity scores of
TF-lncRNA interactions are listed in Table S5.

Construction of the Risk Score Model
To evaluate the efficiency of TF-lncRNA cliques in predicting
the survival of OC patients, the 399 OC patients were randomly
divided into two groups that were used as training (n= 200) and
testing (n = 199) datasets (Table S6). There were no significant
differences in the clinical characteristics between two groups of
patients (Chi-square test or Student’s T-test, P > 0.05, Table 1).
Univariate Cox regression analysis was used to evaluate the
association between survival and expression level of each TF and
lncRNA. The risk score for each patient was calculated according
to the linear combination of expression values weighted by the
coefficient from the univariate Cox regression analysis:

RiskScore =

n∑

i=1

riExp(i) (3)

Where ri is the Cox regression coefficient of a TF or lncRNA
node in the training set, n is the number of nodes in the clique.
Exp(i) is the expression value of node i. The median risk score
was used as the cut-off to divide patients into high- and low-risk
groups. The patients in the high-risk group were expected to have
poor survival outcomes. Conversely, the patients in the low-risk
group were expected to have good survival outcomes.

Functional Analysis
Functional annotation for the TFs and lncRNAs was performed
using the Enrich web based tool (http://amp.pharm.mssm.
edu/Enrichr/) (Kuleshov et al., 2016), which performs a
comprehensive gene set enrichment analysis based on 180,184
annotated gene sets from 102 gene set libraries. The fuzzy P-
value enrichment score can be calculated by decomposing the
null distribution.

Statistical Analysis
Statistical analyses were performed based on R 3.1.0 framework.
Kaplan-Meier survival curves were plotted for different groups
of patients, and statistical significance was assessed using the log-
rank test (P < 0.05). In two groups of OC patients, significant
differences in several OC clinicopathologic factors such as stage,
age, histological grade type, and survival status were considered
and assessed using the Chi-square test or Student’s t-test (P
< 0.05). The K-means clustering method was used to classify
the TF-lncRNA relationships into different groups based on
the regulatory activity across different OC stages. The Jaccard
coefficient was used to evaluate the similarity between two TF-
lncRNA cliques. It is a statistical method for comparing similarity
and diversity of two datasets. For two datasets X and Y, the
Jaccard coefficient is defined as the size of the intersection divided
by the size of the union of the sample sets:

J(X,Y) =
|X ∩ Y|

|X ∪ Y|
(4)

RESULTS AND DISCUSSION

Construction of Stage-Specific TF-lncRNA
Regulatory Networks in OC Development
To identify potential TF-lncRNA regulations, we used an
integrated pipeline, which was developed and applied in our
previous studies (Ning et al., 2014, 2016). This pipeline
integrates conserved transcription factor binding sites based on
multiz46way alignments of UCSC (Karolchik et al., 2003) and
ChIP-Seq datasets in different cell lines and tissues from the
ENCODE project (Wellcome Trust Case Control Consortium,
2007). Consequently, we obtained 58,119 potential TF-lncRNA
interactions among 151 TFs and 3,981 lncRNAs (Figure 1A).
Considering that predictive binding sites of TFs do not directly
imply their actual regulation of lncRNAs in certain conditions,
exploring TF regulation of lncRNAs through co-expression
analysis can offer useful information to identify active TF-
lncRNA relationships in different OC stages. Pearson correlation
coefficients were calculated for each potential TF-lncRNA pair
based on their expression values at different stages (Figure 1B).
We used Pearson coefficient>0 and FDR<0.05 as the thresholds
to identify links between TFs and lncRNAs in the regulatory
networks. Finally, stage-specific TF-lncRNA regulatory networks
were constructed (Figure 1C). Specifically, 2,852 edges between
144 TFs and 1,261 lncRNAs, 7,395 edges between 147 TFs
and 1,797 lncRNAs and 3,908 edges between 145 TFs and
1,403 lncRNAs were constructed for stages II, III, and IV OC
patients, respectively. Although 58,119 potential TF-lncRNA
relationships were identified based on initial sequence binding
analysis, only a fraction (4.91–6.72%) of these regulating edges
were actively constructed in each stage. The different sizes of
these stage-specific networks indicate the heterogeneity of TF-
lncRNA interactions in the development of OC.

Common and Specific Features of
Stage-Specific TF-lncRNA Regulatory
Networks
Based on the stage-specific TF-lncRNA regulatory networks, we
performed an analysis of the network structures and topological
properties. We found that more than 95% of TFs regulating at
least two lncRNAs and more than 50% of the lncRNAs were
co-regulated by two or more TFs. Most TFs and lncRNAs were
connected and participated in the major component (the largest
connected subnetwork) of the regulatory networks.We examined
the degree distributions of both TF and lncRNA nodes and
observed power-law distributions in all stage-specific networks
(Figures 2A–C). These results reveal that the three TF-lncRNA
regulatory networks are similar to classic biological networks
and well-characterized by a core set of regulating principles in
structure (Nacher and Akutsu, 2007). TF nodes had significantly
higher degree values than lncRNA nodes in each stage, indicating
the complicated combinations in terms of TF co-regulation and
lncRNA multiplicity (Figures 2A–C). The negative association
between topological coefficients and number of neighbors for
TF and lncRNA nodes explains that hubs are rather exclusive
with rare common neighbors compared to individual nodes with
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FIGURE 1 | Construction of the stage-specific TF-lncRNA regulatory networks in OC. (A) Identification of conserved transcription factor binding sites on lncRNAs

from ChIP-Seq datasets. (B) Identification of stage-specific TF-lncRNA relationships in different OC stages based on co-expression analysis. (C) Network illustration of

the three stage-specific TF-lncRNA regulatory networks. N, nodes; E, edges.

fewer links (Figures 2D–F). This observation indicates that TF-
lncRNA regulatory networks have hierarchical modularity and
subnetworks (Ning et al., 2016).

In addition, some well-known TFs and lncRNAs were found
in the TF-lncRNA networks and exhibited higher values of
betweenness centrality and degree (Figures 2G–I). The higher
betweenness centrality indicates that the node is a bottleneck site
and acts as a bridge connecting different parts of the network
(Wang et al., 2015). The higher degree indicates that the node is
a hub site that participates in additional regulating interactions.
For example, STAT3 is a well-identified oncogene that promotes
invasion and metastasis of OC (Pradeep et al., 2015). CTCF
expression is closely associated with DNA hypomethylation and
confers poor prognosis on OC patients (Woloszynska-Read et al.,
2011). E2F1, the most classic member of the E2F family, has
been determined to play dual functions and serve as a useful
prognostic indicator in OC (Zhan et al., 2016). The lncRNA
MALAT1 has been found to promote proliferation andmetastasis
in epithelial ovarian cancer via the PI3K-AKT pathway (Li et al.,
2016). Overexpression of NEAT1 is associated with poor OC

prognosis and promotes tumor growth and progression (Chai
et al., 2016). Furthermore, we found that some TFs tend to act
as temporal-hub and bottleneck nodes in certain stages of OC
progression, such as SP1 in stage III and MYC in stage IV.

The Dynamic Activity Profile of TF-lncRNA
Regulations
Although stage-specific networks share common topological
properties, the TF-lncRNA regulatory interactions may change
in different OC stages. To evaluate the proportion of common
and specific TF-lncRNA relationships during OC progression,
we explored the overlaps of TFs, lncRNAs and their regulatory
relationships among three stage-specific networks (Figure S2).
More than 90% TFs were common to all three stages of OC
(Figure 3A) while only about 28% lncRNAs were common to
all three stages, indicating that lncRNAs were more temporally-
specific than TFs (Figure 3B). Only 1.8% of TF-lncRNA
relationships were retained in all three stages. Most of them were
involved in only one stage (Figure 3C). These results indicate that
TFs in different OC stages tend to selectively regulate different
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FIGURE 2 | Topological properties of stage-specific TF-lncRNA regulatory networks. (A–C) The degree distributions of nodes in the three networks. The TF nodes

have significantly higher degree values than lncRNA nodes in each stage. (D–F) The topological coefficients decreased with the increase in number of neighbors. (G–I)

Some well-known OC risk TFs and lncRNAs can be found in the TF-lncRNA networks and exhibit higher values of betweenness centrality and degree.

targets, similar to a previous conclusion on glioma (Li et al.,
2015), which may help us interpret the pathological divergence
of OC progression.

To provide an overview of all possible TF-lncRNA
relationships and their dynamic regulatory status, we built
an activity profile for TF-lncRNA relationships across different
OC stages (Figure 3D). The co-expression coefficients for a
TF-lncRNA pair in all stages were normalized and used as the
activity scores (Materials and Methods). This strategy has been

applied in our previous work to evaluate lncRNA-miRNA-mRNA
competing activity across 12 types of cancers (Wang et al., 2015).
Based on activity scores, these TF-lncRNA interactions were
grouped by the K-means clustering method. Different groups
of TF-lncRNA interactions were apparently activated at one
or more stages. To evaluate the specificity of each group, we
calculated the specificity score for every TF-lncRNA relationship
(Materials and Methods). The corresponding specificity scores
were plotted in Figure 3E. The groups a, c, d, and e have higher
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FIGURE 3 | Dynamic TF-lncRNA interactions across the progression of OC. (A–C) Venn diagrams showing the overlaps of TFs, lncRNAs and their regulation in

different stages. TFs in different stages of OC regulate different target lncRNAs. (D) The activity profile for TF-lncRNA relationships across different stages of OC. The

co-expression coefficients for TF-lncRNA pairs in each stage of OC were used as activity scores. Clustering analysis revealed that different groups of TF-lncRNA

relationships were apparently activated in one or more stages of OC. (E) The corresponding specificity scores were plotted. The groups a, c, d, and e have higher

specificity scores than other groups, indicating these groups are stage specific.

specificity scores than other groups, indicating these groups were
more stage-specific. Other groups such as b, f and g were less
specific and were involved in two or three stages. For example,
lncRNA NEAT1 was associated with poor prognosis and was
highly upregulated in late OC stages (III and IV) (Chai et al.,
2016). We found that NEAT1 was involved in group b, which was
specific to stages III and IV, and regulated by NR3C1, FOSL1,
and CEBPD. These genes have been found to be associated
with OC progression (Huang et al., 2007; Simpkins et al., 2012;
Lau et al., 2014). The mean specificity score of all TF-lncRNA

regulations was 0.38, and more than 94% of these interactions
had specificity scores >0.15, which is a threshold indicating a
housekeeping gene (Yanai et al., 2005) (Figure S3). These results
reveal a high degree of specificity for TF-lncRNA interactions in
different stages of OC.

Functional Characterization of
Stage-Specific TF-lncRNA Relationships
Next, we explored the functions of lncRNAs by using Enrichr
web based tool (Chen et al., 2013; Kuleshov et al., 2016),
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FIGURE 4 | Functional analysis of stage-specific TF-lncRNA regulatory groups. (A) Group a was found to be associated with Repression of WNT target genes and

other OC-related pathways. (B) Group c was found to be associated with chondroitin sulfate biosynthesis pathway and process (GO:0030206). (C) A series of

immune cell activation and differentiation processes were found in group d. (D) Group e was associated with FGFR ligand binding and activation pathways.

which performs a comprehensive gene set enrichment analysis
based on different functional contexts. For lncRNAs in each
group, we found a series of common and specific functions
across different OC stages (Table S7). For example, group a
was specifically activated in stage II OC patients. This group
was found to be associated with Repression of WNT target
genes, multiple antiapoptotic pathways from IGF-1R signaling
which lead to BAD phosphorylation and some other OC-related
pathways (Figure 4A). The WNT pathway has been found to
be involved in OC progression (Yoshioka et al., 2012) and
be associated with clinical outcomes (Reinartz et al., 2016).
Via modulation of BAD phosphorylation, the BAD apoptosis
pathway influences chemosensitivity and overall survival of OC
(Marchion et al., 2011). This pathway was enriched in groups
c and d. LncRNAs in group a were found to be involved in
tumor amplification-related biological processes such as cell
migration and proliferation. We also found that lncRNAs in
group a were associated with inactivation of MAPK activity
(GO:0000188), which is a critical pathway for human cancer
cell survival, dissemination, and drug therapy (Zhang et al.,
2015). These functional annotation results reveal that lncRNAs
in group a are involved in uncontrolled tumor cell growth and
processes of development at an early OC stage. For group c,
which was specific to stage IV patients, the chondroitin sulfate
biosynthesis pathway and process (GO:0030206) were found in
the enriched functional list (Figure 4B). Chondroitin sulfate is
a natural product of tumor fibrosis and is highly expressed
in fibrotic OC tissue (Nash et al., 2002). A previous study
revealed that the stroma of late OC stage showed significantly

increased expression of 4,6-disulfated chondroitin sulfate, which
is an independent predictor for progression-free survival in
OC (Vallen et al., 2012). For group d, a series of immune cell
activation and differentiation processes, including regulation of
B-cell activation and macrophage differentiation, were enriched
(Figure 4C). It has been well-documented that the immune cell
system is a natural defense against tumor cells (Nogrady, 2014)
and associated with OC patients’ clinical outcomes (Curiel et al.,
2004). Group e was found to be related with FGFR ligand binding
and activation pathways (Figure 4D), which are associated with
cisplatin sensitivity in OC clinical treatment (Cole et al., 2010).

Identification of Dynamic TF-lncRNA
Regulatory Cliques Associating With
Cancer Hallmarks
In TF-lncRNA regulatory networks, one TF can regulate different
lncRNAs, while one lncRNA can be regulated by different
TFs during tumor progression. Thus, partial network cliques
can provide more detailed information of cross-talk between
different TFs and lncRNAs. Topological analysis revealed that the
TF-lncRNA regulatory networks have hierarchical modularity
(Figures 2D–F). We then identified TF-lncRNA regulating
cliques using the biclique method, which is an R package
for enumerating maximal complete bipartite graphs (Zhang
et al., 2014). In total, 4,886 TF-lncRNA cliques were identified,
in which the number of nodes ranges from 5 to 220 with
an average of 11.74 nodes per clique. Considering that 4,886
cliques is a large number for further analysis and that some
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cliques may have overlaps with each other, we ranked these
cliques in descending order based on the mean specificity scores
(Materials and Methods). The top 50 (∼1% of 4,886) cliques,
which were highly specific across different OC stages, were
retained for further analysis. A clustering profile of these top
50 cliques was built based on the similarity between every
two clique pairs (Figure 5A). Jaccard coefficient was used to
evaluate the similarity between two cliques. We found that these
cliques were generally grouped into five clusters. In each cluster,
cliques were similar to each other for sharing common TFs and
lncRNAs. Further, we found that different clusters of cliques were
associating with a broad range of cancer hallmarks (Figure 5B),
which have been determined to promote tumor growth and
metastasis (Hanahan and Weinberg, 2011). For example, the
hallmarks including “Self Sufficiency in Growth Signals,” “Tissue

Invasion andMetastasis,” and “Evading Apoptosis” were themost
highly enriched processes, indicating the rapid growth and high
metastasis rates of OC (Nieman et al., 2011).

We built a risk model to evaluate the prognostic efficiency
of these 50 highly specific TF-lncRNA cliques (Materials and
Methods). The hazard ratio and corresponding confidence
interval for each clique were shown in Figure 5C. We found
most cliques (48 of 50) were significantly associating with patient
prognosis (P < 0.05). Among them, 10 cliques were highly
significant with P < 0.001 (Table S8). To illustrate which TF
were involved in these cliques, a world cloud map indicating
TF frequency was constructed (Figure 5D). We found that
some well-known cancer prognostic genes, such as STAT3,
ETS1, and FOS, were frequently involved in different cliques.
These findings reveal that highly specific TF-lncRNA cliques

FIGURE 5 | TF-lncRNA regulatory cliques are associated with cancer hallmarks. (A) Clustering profile of the top 50 cliques based on their similarity. (B) Different

clusters of cliques were associated with a broad range of cancer hallmarks. (C) The hazard ratio and 95% confidence interval for each of the 50 TF-lncRNA cliques

based on Cox regression analysis. Most of the cliques (48 of 50) were significantly associated with patient prognosis (P < 0.05). *P < 0.05, **P < 0.01, and

***P < 0.001. (D) A world cloud map indicating TF frequency in the 50 cliques. Some well-known cancer prognostic genes such as STAT3, ETS1, and FOS were

frequently involved in different cliques.
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FIGURE 6 | Survival analysis of a STAT3-FOS-regulating TF-lncRNA clique. (A–C) Illustration of TF-lncRNA regulatory relationships in different OC stages. The TFs

STAT3 and FOS selectively regulate different target lncRNAs. (D,E) The risk scores and survival status of this clique in the training dataset. (F) Kaplan-Meier survival

curves revealed significant difference in survival between the two groups of patients in the training dataset. The high-risk group consisted of patients with higher risk

scores and shorter survival time. (G,H) Risk scores and survival status of this clique in the testing dataset. (I) Kaplan-Meier survival curves for two groups in the testing

dataset using the same risk score threshold as the training set. There was significant difference between high- and low-risk groups.

TABLE 2 | Univariate and multivariate analysis of clinicopathological factors and the STAT3-FOS clique in 399 OC patients.

Variables Univariate analysis Multivariate analysis

HR (95% CI) Coefficient P HR (95% CI) Coefficient P

Stage 1.31 (0.98–1.75) 0.27 0.07 1.26 (0.93–1.70) 0.23 0.13

Age 1.02 (1.00–1.03) 0.02 0.01 1.02 (1.00–1.03) 0.02 0.02

Histological grade 1.06 (0.81–1.39) 0.06 0.69 1.04 (0.80–1.36) 0.04 0.76

STAT3-FOS clique 2.58 (1.50–4.43) 0.95 6.22e-4 2.50 (1.45–4.32) 0.92 1.00e-3

The bold values are representing significant factors (P-values < 0.05).
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play critical roles in OC tumorigenesis and may be potential
prognostic markers.

Survival Analysis of a
STAT3-FOS-Regulating TF-lncRNA Clique
In a TF-lncRNA clique (clique 32 in Figure 5A), TFs STAT3 and
FOS were found to selectively regulate different target lncRNAs,
including two known OC-risk lncRNAs, MALAT1, and NEAT1
(Figures 6A–C). Both of MALAT1 and NEAT1 regulate cell
proliferation and apoptosis of OC (Yong et al., 2018; Sun et al.,

2019). In the above Cox regression analysis, this clique was
found to be significantly associated with prognosis (P = 2.78e-
4). To further evaluate the prognostic efficiency, the 399 OC
patients were randomly divided into two groups used as training
(n= 200) and testing (n = 199) datasets (Table 1). There were
no significant differences in the clinical characteristics between
the two groups (P > 0.05). In the training dataset, the median
risk score was used as a threshold to divide patients into two sub-
groups (Figures 6D–E). Kaplan-Meier survival analysis revealed
significant difference in survival between the two sub-groups of
patients in the training dataset (Figure 6F, P = 4.69e-3). The

FIGURE 7 | Survival analysis of STAT3-FOS-regulating TF-lncRNA clique in another two-independent dataset. (A) The risk scores and survival status of this clique in

the GSE26193 dataset. (B) Kaplan-Meier survival curves revealed significant difference in survival between the two groups of patients in the GSE26193 dataset. (C)

The risk scores and survival status of this clique in the GSE9891 dataset. (D) Kaplan-Meier survival curves revealed significant difference in survival between the two

groups of patients in the GSE9891 dataset.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 May 2020 | Volume 8 | Article 460

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Guo et al. Prognostic TF-lncRNA Regulation in Ovarian Cancer

high-risk group consisted of patients with higher risk scores and
lower survival time. Furthermore, we investigated the prognostic
efficiency of this STAT3-FOS clique in the testing dataset using
the same risk score threshold from training set. Using this
strategy, the testing patients could also be significantly divided
into high- and low-risk sub-groups (Figures 6G–I, P = 1.69e-3).

To further evaluate the prognostic independence of STAT3-
FOS clique, the prognostic association with other known clinical
and pathological risk factors was estimated by univariate and
multivariate analysis. Several OC clinicopathologic factors, such
as stage, age, and histological grade type were taken into
consideration. As expected, in addition to patient age (Table 2,
P = 0.01), which is already a known OC risk factor (Ferrero
et al., 2017), the STAT3-FOS clique was significantly associated
with survival in the univariate (Table 2, P = 6.22e-4) and
multivariate analysis (Table 2, P = 1.05e-3), indicating the
potential independent prognostic ability of this clique.

Further Validation of Prognosis in Another
Two Independent Datasets
To further test the prognostic efficiency and application scope of
the STAT3-FOS clique, we collected another two independent OC
datasets (GSE26193 and GSE9891) and applied the same survival
risk model to them. Univariate Cox regression analysis indicated
it was significantly associated with patients’ survival in the dataset
of GSE26193 (HR = 2.51, 95% CI = 1.65–3.84, P = 1.97e-5)
and GSE9891 (HR = 2.04, 95% CI = 1.310–3.18, P = 1.65e-
3). Kaplan-Meier survival analysis indicated it could significantly
divide the 107 patients of GSE26193 dataset into high- and
low-risk sub-groups (Figures 7A,B, P = 1.86e-5). Further,
this TF-lncRNA clique could also significantly divide the 278
patients of GSE9891 into two sub-groups with different survivals
(Figures 7C,D, P = 9.27e-3). These results are consistent with
the observation in the TCGA dataset. Although some lncRNAs in
this clique were not covered by these microarray datasets, the risk
model could also predict high- and low-risk groups of patients
only based on partial TF and lncRNA members, indicating the
robustness of prognostic efficiency for this clique. These results
indicate that the STAT3-FOS clique could be used as a potential
prognostic factor for OC.

CONCLUSIONS

In recent years, many studies have been carried out to
characterize lncRNAs functions based on the general assumption
that lncRNAs are key regulators of biological processes.
Although these studies have successfully characterized the roles
of lncRNAs, little is known about the upstream regulators
of lncRNAs. In biological processes and signaling pathways,
lncRNAs may be regulated by other regulators such as TFs.
In production processes of lncRNAs, TFs play key roles
in controlling lncRNA expression through sequence-specific
binding sites on lncRNA transcripts. The differential expression
of TFs and their downstream lncRNA targets have demonstrated
association with progression of multiple types of diseases
(Dong et al., 2015).

The pathological development of OC is a complex progression
that depends on multiple alterations of coding and non-coding
genes. Although our understanding of OC has increased, the
precise regulatory mechanisms underlying this complex disease
are still not fully known. Therefore, it is important to uncover
the regulating events during OC progression and identify
reliable markers for predicting clinical outcomes. To address
this issue, we constructed stage-specific TF-lncRNA regulatory
networks based on 399 ovarian serous cystadenocarcinoma
patients with different stages from TCGA. Our study indicated
that all three stage-specific TF-lncRNA regulatory networks
exhibited common network structures and specific topologies
of risk TFs and lncRNAs. A TF-lncRNA activity profile
revealed that TFs were highly stage-selective in regulating
lncRNAs. Functional analysis indicated that groups of TF-
lncRNA interactions tend to be involved in specific pathological
processes in OC development. Based on network clique analysis,
we found that TF-lncRNA bicliques were associating with several
cancer hallmarks. These hallmarks provide a framework for
understanding the remarkable diversity of cancers. For example,
the hallmarks including “Self Sufficiency in Growth Signals,”
“Tissue Invasion and Metastasis,” and “Evading Apoptosis” were
the most highly enriched processes. Survival analysis of TF-
lncRNA bicliques indicated the potential role for predicting
OC prognosis. Although these results are interesting and
meaningful, we still lack the biological experiments required for
further validation. We will continue to investigate the biological
mechanisms governing how lncRNAs regulate cell cycle genes
during carcinogenesis in our future work.
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