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Endophytes are abundant in plants and studies are continuously emanating on their

ability to protect plants from pathogens that cause diseases especially in the field of

agriculture. The advantage that endophytes have over other biocontrol agents is the

ability to colonize plant’s internal tissues. Despite this attributes, a deep understanding

of the mechanism employed by endophytes in protecting the plant from diseases is still

required for both effectiveness and commercialization. Also, there are increasing cases

of antibiotics resistance among most causative agents of diseases in human beings,

which calls for an alternative drug discovery using natural sources. Endophytes present

themselves as a storehouse of many bioactive metabolites such as phenolic acids,

alkaloids, quinones, steroids, saponins, tannins, and terpenoids which makes them a

promising candidate for anticancer, antimalarial, antituberculosis, antiviral, antidiabetic,

anti-inflammatory, antiarthritis, and immunosuppressive properties among many others,

even though the primary function of bioactive compounds from endophytes is to make

the host plants resistant to both abiotic and biotic stresses. Endophytes still present

themselves as a peculiar source of possible drugs. This study elucidates the mechanisms

employed by endophytes in protecting the plant from diseases and different bioactivities

of importance to humans with a focus on endophytic bacteria and fungi.
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INTRODUCTION

Endophytic microorganisms are referred to as the microbes that inhabit the internal parts
of a plant. They gain entrance into the seed, leaf, stem, and root of a plant and they are
not harmful to the host plant (Yadav, 2018). Endophytes improve plant growth by secreting
phytohormones and consequently help in nutrition improvement using bidirectional nutrient
transfer and enhancement of the health of plants by protecting them against phytopathogens
(Andreozzi et al., 2019; Shen et al., 2019). Plant-endophyte interaction triggers the protection of
plants against harmful conditions of the environment such as heavy metal presence and drought
(Khan et al., 2019; Kushwaha et al., 2019). Endophytes are numerous and studies have it that
they are present in many plants; they became important due to their capacity to produce many
bioactive metabolites and biotechnologically relevant enzymes (Khan et al., 2014; Rajamanikyam
et al., 2017). Most times when endophytes are inoculated in the plant, they produce significant
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biomass increment and also help in boosting commercial
agriculture (Santoyo et al., 2016; Shen et al., 2019). Endophytes
are gaining biotechnological and industrially relevance as
a result of their ability to secrete secondary metabolites,
serve as biocontrol agents, antimicrobial agents, antitumor
agents, and immunosuppressants, and to secrete antiviral
compounds and development of natural antioxidants,
antidiabetic agents, antibiotics, and insecticidal products
(Gouda et al., 2016; Yadav, 2018).

In the last 20 years, endophytes isolated from most plants
have shown themselves to be a rich source of natural
products for industrial and agricultural use amongst several
other applications. Enzymes can be used to replace poisonous
chemicals. They thrive best under normal temperatures and
neutral pH. As the years’ progress, researchers are beginning
to see prospects in microbial enzyme production. There are
many reports currently that microorganisms isolated from the
extreme environments have great biotechnological applications
in medicine, agriculture, and industry (Archna et al., 2015; Yadav
et al., 2015; Singh et al., 2016; Sahay et al., 2017). This review
aimed to present the various mechanisms of action used by
endophytes in protecting a plant and report some bioactivities
of importance to people with special emphasis on endophytic
bacteria and fungi.

AN OVERVIEW OF ENDOPHYTES

The word endophyte connotes “in the plant,” and studies
have established that endophytes emanate from the phyllo
sphere and rhizosphere (Verma et al., 2017). Endophytes are
generally isolated from the internal tissues of plants after
surface sterilization. Plant association with microorganisms may
be classified in many forms such as mycorrhiza, pathogenic,
epiphytic, saprotrophic, and endophytic based on the type
of colonization and their roles (Brader et al., 2017). Only
a few microorganisms such as endophytic microbes and
mycorrhiza fungi can be exceptional and find their way into
the inner tissues of a plant. Endophytic microorganisms such
as bacteria, fungi, eukaryote, and archaea inhabit plant tissues
(de Tender, 2017), they are known not to cause any harm
to the host plant. They exhibit a symbiotic association with
tissues of most plants and sometimes can be slightly pathogenic.
These endophytic microbes have been identified in many
varieties of plants some of which are Rice, Wheat, Tomato,
Cowpea, Maize, Strawberry, Chickpea, Mustard, Sugarcane,
Chili, Citrus, Soybean, Cotton, Pearl millet, and Sunflower
(Verma et al., 2017; Yadav et al., 2018).

The advent of microbial biotechnology has helped in
establishing the fact that microorganisms play significant roles
in industry, agriculture, and medicine (Gouda et al., 2016;
Rajamanikyam et al., 2017). Having a better understanding
of the diverse roles microorganisms play in the ecosystem
will enhance the ways they can be applied in the field of
agriculture most importantly for plant growth and crop yield
(Nair and Padmavathy, 2014). The world of endophytes has
attracted the interest of many researchers due to their significant

roles in promoting growth and in enhancing the survival of
plants under extreme conditions (Shen et al., 2019). Bioactive
metabolites secreted by endophytic microorganisms are useful in
industries, agriculture, and the field of medicine. Plants perform
a major function of determining the type of microorganism
that can be associated with it by the makeup of its root
exudates (Andreozzi et al., 2019). Thus, the interaction between
endophytic microorganisms and plants greatly depends on the
capacity of these microbes to use the exudates produced by
the plant roots as their energy source (Kandel et al., 2017).
Endophytes can efficiently enhance growth promotion using
different modes of operations and increasing the resistance of
plants to extreme conditions (Yadav, 2018). Notably, endophytic
microbes have been used in the mass production of industrially
relevant products such as antibiotics, enzymes, and riboflavin
among others (Latz et al., 2018). The resistance to antibiotics is
on the increase especially among organisms that cause disease
and this has great public health implications if proper care is not
taken (Adegboye et al., 2012).

Microbial biotechnology has gone beyond the production
of only metabolites such as ethanol and butanol, now
biotransformation of many chemicals has been incorporated to
reduce the impact of environmental pollution using different
strategies such as bioremediation, waste management, and
composting. For some decades now, attention has been shifting
to the use of microorganisms, animals, and plants for the
production of new drugs (Gouda et al., 2016; Latz et al., 2018).
These products, mainly from natural sources, are less toxic and
cheap. Endophytic fungi have a great prospect for the secretion of
numerous bioactive metabolites. Some of these phytonutrients or
metabolites like polyphenol and anthocyanin can reduce diseases
such as cancer and heart diseases.

GENERAL MECHANISMS EMPLOYED BY
ENDOPHYTIC BACTERIA AND FUNGI IN
PLANT PROTECTION

Endophytic microorganisms help in boosting plant fitness
through several mechanisms of action. The generally
mechanisms employed by endophytic bacteria and fungi
was discussed in this section. The modes of action include
direct and indirect mechanisms as illustrated in Figure 1. These
mechanisms were discussed in detail below.

DIRECT MECHANISMS OF PLANT
PROTECTION FROM PATHOGENS

Recent studies carried out on endophytes have established their
capacity to enhance host defense against diseases and reduce
the damages attributed to pathogenic microorganism (Ganley
et al., 2008; Mejía et al., 2008). The most common strategy
employed by these researchers is in vitro direct plate antagonistic
reaction against pathogens or by comparing the rate of survival
of plant inoculated with control. Although some studies have
presented new mechanisms used by endophyte in reducing
the effects of pathogens, current knowledge about endophytes,
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FIGURE 1 | Mechanisms employed by endophytes for plant protection.

pathogen, and plant regulations still not fully understood
(Ganley et al., 2008). In this section, we shall be discussing
a direct mechanism (endophytes-pathogens interactions) and
indirect mechanism (enhanced plant defense). In the direct
mechanism, endophytes directly produce antibiotics which help
in suppressing pathogens. However, direct endophyte-pathogen
interactions are compounded and responsive to species-specific
antagonism (Arnold et al., 2003). Some examples of direct
mechanisms used by endophytes are discussed below.

ANTIBIOTICS PRODUCED BY
ENDOPHYTES

Most endophytes have been reported to produce some secondary
metabolites and some of them exhibit antibacterial and
antifungal properties which help in inhibiting the growth
of phytopathogenic microorganisms (Gunatilaka, 2006). Many
types of research are still ongoing in a bid to identify endophyte
metabolites for possible commercial use. Different bioactive
compounds have been studied for their ability to inhibit
many phytopathogens (Suryanarayanan, 2013; Daguerre et al.,
2016). Also, many metabolites with antimicrobial properties
have been discovered from endophytes, some recently reviewed
one are flavonoids, peptides, quinones, alkaloids, phenols,
steroids, terpenoids, and polyketides (Mousa and Raizada, 2013;
Lugtenberg et al., 2016). When many microbial species are
present in the same plant, the association propels the secretion of
metabolites by the endophytes or the host to inhibit the growth of
microbes that are harmful (Kusari et al., 2012). In some instances,

the endophytes and the host plant do use some distinct pathways
in enhancing the production of metabolites, some use induced
metabolism which helps in metabolizing the product of the other
(Kusari et al., 2012; Ludwig-Müller, 2015). It was later concluded
that many endophytic strains cannot produce the compounds
independently (Heinig et al., 2013).

An endophyte isolated from Cassia spectabilis, named
Phomopis cassia was able to synthesize five substances similar
to 3,11,12-trihydroxycadalene and cadinane sesquiterpenes in
which one of the five derivatives produced the most active
antifungal metabolite against Cladosporium cladsporioides and
Cladosporium sphaerospermum (Silva et al., 2006). Alkaloids
were reported to have strong potential in inhibiting the
proliferation of microbes, for instance, altersetin, a novel
alkaloid which was isolated from the endophyte Alternaria
spp., exhibited a strong antibacterial effect against many gram-
positive bacteria that are pathogenic (Hellwig et al., 2002).
Another metabolite which exhibited antibiosis is a volatile oil. An
endophytic fungus from the tropical trees known as Muscodor
albus produced many volatile organic compounds, including
aciphyllene, 2-butanone and 2-methyl furan which were reported
to produce antibiotic properties (Atmosukarto et al., 2005).
Also, fungal endophytes isolated in vitro from Artemisia
annua can suppress the growth of most phytopathogenic
organisms by the production of antifungal compounds such
as n-butanol and ethylacetate (Liu et al., 2001). Tian et al.
(2017) assessed the role of anti-fungal protein produced by
Epichloë festucae in controlling Sclerotinia homoeocarpa in
Festuca rubra. The result presented this attribute by fescues as
one of the unique ones. The mechanism of plant protection

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 May 2020 | Volume 8 | Article 467

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Fadiji and Babalola Endophytes Mechanisms of Plant Protection

TABLE 1 | Summary of studies on the antimicrobial activities of endophytes.

Endophytes Plant host Activity Compounds Class of compound References

Endophytic bacteria

B. subtilis – Antifungal Bacilysocin Phospholipid Tamehiro et al.,

2002

B. substilis Allanmands cathartica Antifungal Terpene Terpenoids Nithya and

Muthumary,

2011

B. substilis – Antibacterial Subtilin Peptides Singh et al.,

2017

Bacillus atrophaeus,

Bacillus mojavensis

Glycyrrhiza uralensis

(Licorice)

Antifungal 1,2-bezenedicarboxyl acid, Methyl

ester, Decanodioic acid,

bis(2-ehtylhexyl) ester

Polyketides Mohamad

et al., 2018

Lysinibacillus,

Staphylococcus,

Enterobacter,

Pseudomonas, and Bacillus

species

Combretum molle Antibacterial – Diale et al.,

2018

B. licheniformis, B. subtilis

subsp. Inaquosorum, and

B. pumilus

Moringa peregrina Antibacterial and

antifungal

– Aljuraifani et al.,

2019

Endophytic fungi

Phoma sp. Cinnamomum

mollissimum

Antifungal 5-hydroxyramulsin Polyketides Santiago et al.,

2012

Geotrichum candidum,

Cylindrocladium sp.

Fusarium sp. Cladosporium

cladosporioides sp., Mucor

pusillus, Rhizopus sp., and

Alternaria alternata

Phyllanthus reticulatus

Poir

Antibacterial and

antifungal

– Pai and

Chandra, 2018

Phompsis sp. Aconitum carmichaeli Antifungal Gavodermside and Clavasterols Steroids Wu et al., 2013

Xylaria sp. F0010 Abies

holophylla

Antifungal Griseofulvin – Park et al.,

2005

Chaetomium globosum Ginkgo biloba Antifungal Chaetomugilin A and D Azaphilone derivative Qin et al., 2009

Pestalotiopsis mangiferae Mangifera indica Linn Antibacterial 4-(2,4,7-trioxa-bicyclo[4,10]-

heptan-3-yl)

Phenols Subban et al.,

2013

Aspergillus sp. Bauhinia guianensis Antibacterial Fumigaclavine C and Pseurtotin C Alkaloids Pinheiro et al.,

2013

Phomopsis sp.,

Botryosphaeria sp.

Garcinia sp. Antibacterial and

antifungal

– – Phongpaichit

et al., 2006

Nigrospora sphaerica

(URM-6060) and

Pestalotiopsis maculans

(URM-6061)

Indigofera suffruticosa

Miller

Antibacterial – – Santos et al.,

2015

MR1B and MRB.2 Catharanthus roseus

and Euphorbia hirta

Antibacterial and

antifungal

Citreoisocoumarin, paxilline,

nigricinol, fatty acid, sceptrin,

cladosporin

Isocoumarin derivative Akpotu et al.,

2017

Endophytic actinomycetes

Streptomyces noursei – Antifungal Nystatin Steroids Fjærvik and

Zotchev, 2005

Streptomyces sp. – Antibacterial Harmaomycin Peptide derivatives Bae et al., 2015

Streptomyces remosus – Antifungal Tetracyclin Steroids Nelson, 2001

Streptomyces sp. Grevillea pteridifolia Antibacterial Kakadumycin A

Echinodermycin

Peptides Castillo et al.,

2003

Streptomyces sp.

TP-A0595

Allium tuberosum Antifungal 6-Prenylindole Alkaloids Singh and

Dubey, 2018

Aeromicrobium ponti Vochysia divergens Antibacterial 1-Acetyl-β-carboline,

Indole-3-carbaldehyde,

3-(Hydroxyacetyl)-Indole,

Brevianamide F, and

Cyclo-(L-Pro-L-Phe)

Alkaloids Gos et al., 2017

(Continued)
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TABLE 1 | Continued

Endophytes Plant host Activity Compounds Class of compound References

Streptomyces sp. neau-D50 Glycine max Antifungal 3-Acetonylidene-7-Prenylindolin-2-

one and

7-Isoprenylindole-3-carboxylic acid

Alkaloids Zhang et al.,

2014

Actinosynnema pretiosum Maytenus serrata Antibacterial Ansamitocin Polyketides Siyu-Mao, 2013

Streptomyces sp.

TP-A0456

Aucuba japonica Antibacterial Cedarmycin A and B Terpenes and

Terpenoids

Sasaki et al.,

2001

Streptomyces

aureofaciens CMUAc130

Zingiber officinale Antifungal 5,7-Dimethoxy-4-

pmethoxylphenylcoumarin;

5,7-Dimethoxy-4-phenylcoumarin

Coumarins Taechowisan

et al., 2007

Streptomyces sp. BT01 Boesenbergia rotunda

(L.)

Antibacterial 7-Methoxy-3,

3′,4′,6-tetrahydroxyflavone and

2′,7-Dihydroxy-4′,5′-

Dimethoxyisoflavone,

Fisetin, Naringenin,

3′-Hydroxydaidzein,

Xenognosin

Flavonoids Taechowisan

et al., 2014

Streptomyces sp. DSM

1175

Alnus glutinosa Antibacterial Alnumycin Quinones Singh and

Dubey, 2018

Dactylosporangium sp.

strain

SANK 61299

Cucubalus sp. Antifungal Streptol Tannins Singh and

Dubey, 2018

Verrucosispora maris

AB-18-032

Sonchus oleraceus Antibacterial Proximicin Peptides Fiedler et al.,

2008

used by Paraconiothyrium strain SSM001 linked with the
production of taxol from yew tree (Taxus spp.) against dangerous
wood-decaying fungi was investigated by Rafiqi et al. (2013)
and Soliman et al. (2015). A summary of related studies
on the antimicrobial properties of endophytes is presented
in Table 1.

LYTIC ENZYMES SECRETION

Most microorganisms secrete lytic enzymes for the hydrolysis
of polymers (Gao et al., 2010). About 1,350 compounds can
be secreted; among them are cellulose, hemicellulose, proteins,
DNA, and chitin (Tripathi et al., 2008). For endophytes
to colonize the surface of plants, they produce numerous
enzymes which successively aid the hydrolysis of the plant
cell wall. These enzymes help in reducing phytopathogens
indirectly and also aid the fungi cell wall degradation. There
are numerous types of enzymes some of which are chitinases,
cellulases, hemicellulases, and 1, 3-glucanases. Application of
mutagenesis to the genes of 1, 3-glucanase present in a strain of
Lysobacter enzymogenes reduced the biocontrol activity toward
the damping-off disease of sugar beet caused by Pythium
and tall fescue leafspot disease (Gao et al., 2010). The lytic
enzymes produced by Streptomyces have a strong effect on
antagonizing cacao witches broom disease (Macagnan et al.,
2008). Even though enzymes may not be solely effective as an
antagonizing agent, they may enhance antagonistic activities
when combined with other mechanisms. Pectinase was also
reported to aid the reduction of pathogenesis in a plant
(Babalola, 2007).

PRODUCTION OF PHYTOHORMONE

Endophytes produce phytohormone which enhances plant
growth promotion and changes the morphology and structure
of the plant. As a result of this attribute, endophytes
have gained ground in the area of agricultural sustainability
(Sturz et al., 2000). The mechanism adopted by endophytes in
the production of phytohormones in the host plant is related
to the mechanism used by rhizobacteria in plant growth
promotion. They help in growth promotion and protection of
non-leguminous plants by the secretion of gibberellic acid (Khan
et al., 2014), auxins (Dutta et al., 2014), indole acetic acid (Khan
et al., 2014; Patel and Patel, 2014), and ethylene (Babalola, 2010;
Kang et al., 2012).

Indole acetic acid (IAA) triggers plant cell division,
differentiation and extension; stimulates of seed and tuber
germination; increases the rate at which root and xylem develop,
enhances lateral initiation, controls the rate of vegetative growth,
and the formation of adventitious root formation; aw well as
the formation of pigments and biosynthesis of metabolites,
controls responses to gravity, light, and fluorescence, affects
photosynthesis and resistance to extreme conditions (Gao
et al., 2010). IAA secreted by plant growth-promoting bacteria
sometimes slows down the physiological processes listed above
by affecting the level of auxin secretion by the plant. Also, the IAA
produced by endophytic bacteria has the capacity to increase the
root length and surface area, thereby giving room for the plant
to have better access to nutrients from the soil. Additionally,
IAA production expands bacteria cell walls and increases the
secretion of exudates alongside providing more nutrients for
growth enhancement of other beneficial bacteria present in
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the rhizosphere. Therefore, the IAA produced by endophytic
bacteria is recognized as the major effector molecule in
phytostimulation, pathogenesis, and plant-microbe interaction
(Gao and Tao, 2012). Several have studies demonstrated that
endophytic actinomycetes also produce plant growth-promoting
compounds such as IAA which have been reported to enhance
the formation and elongation of plant adventitious roots in a
plant (de Oliveira et al., 2010; Shimizu, 2011).

PHOSPHATE SOLUBILIZATION

The third most important nutrient for plant growth is potassium
(K) and endophytes are capable of solubilizing forms of
potassium that are insoluble. Most soil-related microorganisms
are capable of solubilizing insoluble phosphate to enhance the
production of P, thus making it available for plant use (Alori
et al., 2017). The most common mechanism used for inorganic
phosphate solubilization is the dissolution of mineral compounds
such as organic acids, protons, siderophores, carbon dioxide
(CO2), and hydroxyl ions (Olanrewaju et al., 2017). The existence
of microorganisms that solubilizes potassiummight have opened
our eyes to an alternative means of making potassium available
for plant uptake (Rogers et al., 1998). Endophytes also introduce
organic acids into the soil which help to solubilize the phosphate
complexes and change them into ortho-phosphates for plant
absorption and usage. Numerous bacteria species namely Bacillus
mucilaginosus, B. circulans, Pseudomonas sp., Burkholderia,
Paenibacillus sp., Acidothiobacillus ferrooxidans, and Bacillus
edaphicus were identified in the release of the accessible form
of potassium from potassium-bearing minerals in soils (Yadav,
2018). As abundant as phosphorus is in the soil, unfortunately,
many of its remains do not exist in an insoluble form (Miller
et al., 2010). Many studies have shown the role of endophytic
microorganisms as a biofertilizer and biocontrol agent. For
example, endophytes isolated from the root nodule for peanut,
identified as Pantoea spp. was reported to have strong solubilizing
activity (Yadav et al., 2018). Similarly, endophytic actinomycetes
have been reported to perform an important role in phosphate
solubilization and also enhances its availability to plants through
chelation, acidification, and mineralization and redox changes of
organic phosphorus (Singh and Dubey, 2018). Solubilization of
phosphate alongside secretion of phytase was demonstrated by
an endophytic actinomycete, Streptomyces sp., which significantly
improve plant growth (Jog et al., 2014).

SIDEROPHORE PRODUCTION

Siderophores are small molecular compounds which are capable
of chelating iron which can be produced by endophytes
and can make iron available for plant use while starving
pathogens of iron (Yadav, 2018). Some of the siderophores
known to be produced by endophytes can confer biocontrol
activities such as hydroxymate, phenolate and/or catecholate
types (Rajkumar et al., 2010). Also, the iron-deficient plant is
enhanced by siderophores which help in the fixing of nitrogen
since diazotrophic organisms require Fe2+ and Mo factors for

the functioning and synthesis of nitrogenase (Kraepiel et al.,
2009). There are many literature evidences to support the
insecticidal properties of endophytes (Azevedo et al., 2000). Some
endophytes reduce pest penetration of the stele by thickening
the endodermal cell wall (Gao et al., 2010). Others destroy
insects by producing secondary metabolites. Though some toxic
metabolites are traceable to endophytes some of thesemetabolites
are pyrrolizidine, alkaloids, pyrrolopyrazine alkaloid, peramine
ergot alkaloid, and ergovaline (Wilkinson et al., 2000).

In the case of plant growth-promoting bacteria, Fe2+

is oxidized to Fe3+-siderophore complex in the bacterial
membrane, which is later introduced into the cell by
endophytes through a gating mechanism (Gao et al., 2010).
The concentration of soluble metals increases when siderophores
bind to the metal surface (Rajkumar et al., 2010). Once
the level of heavy metal contaminants is removed, different
mechanisms are employed by plants to ingest iron from bacterial
siderophores, for example, iron chelates aid the direct absorption
of siderophore-Fe complexes, or ligand exchange (Schmidt,
1999). A siderophore-producing endophyte, Pseudomonas strain
GRP3 was tested on Vigna radiate for iron nutrition and the
result showed that after 45 days, the plants showed a reduction in
iron and chlorotic symptoms, while there was an increase in the
content of chlorophyll a and chlorophyll b when the plant was
inoculated with strain GRP3 as compared to the control (Sharma
et al., 2003). Some endophytic actinomyces such as Streptomyces
sp. GMKU 3100, Streptomyces sp. mhcr0816, Streptomyces sp.
UKCW/B, and Nocardia sp. have been reported to produce
siderophores (Singh and Dubey, 2018). Similarly, S. acidiscabies
E13 was also reported as a superb producer of siderophore which
enhances the growth of Vigna unguiculata under nickel stress
conditions (Sessitsch et al., 2013).

1-AMINOCYCLOPROPANE-1-
CARBOXYLATE (ACC)
UTILIZATION

Generally, ethylene is an essential metabolite for the normal
growth and development of plants (Khalid et al., 2006). This
important hormone known for enhancing plant growth is
secreted by almost all plants and is affected by different abiotic
and biotic activities in the soil which improve physiological
changes in most plants. The occurrence of extreme conditions
such as pathogenicity, drought, salinity, and heavy metals
increases the level of ethylene which has side effects on the
growth of the plant; this may result in alteration of the
cellular processes and defoliation which affects the yield of
the crop (Bhattacharyya and Jha, 2012). Many endophytic
bacterial species that can produce ACC deaminase have
been discovered in genera like Achromobacter, Agrobacterium,
Acinetobacter, Bacillus, Enterobacter, Pseudomonas, Serratia,
Ralstonia, Rhizobium, Alcaligenes, Burkholderia etc. (Kang
et al., 2012). Most of the bacterial endophytes trap the
ethylene precursor of ACC and change it into ammonia
and 2-oxobutanoate (Arshad et al., 2007). Lugtenberg and
Kamilova (2009) reported that some stresses like radiation,
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heavy metals, flooding resistance due to stress coming from
polyaromatic hydrocarbons, high light intensity, wounds,
high salt concentration, insect predation, draft, and extreme
temperature can be overcome by plants that can produce
ACC deaminase.

COMPETITION WITH PATHOGENS

Competition is a strong mechanism used by endophytes in
preventing pathogens from colonizing the host tissue (Martinuz
et al., 2012). Endophytes possess the ability to colonize many
plant tissues systemically or locally (Latz et al., 2018). For
example, they act through colonization and the lurking of
nutrients that are available and by occupying the position that
is available for pathogens to carry out their activities (Rodriguez
et al., 2009). This can be further buttressed using a study by
Mohandoss and Suryanarayanan (2009), who discovered that
destruction of endophytes in mango leaves by the application of
fungicides in its treatment allows other fungi to inhabit the niche,
especially pathogenic fungi.

The mechanism used for competition by most endophytes
usually takes place in combination with other mechanisms,
instead of acting independently. Since the control method
employed by endophytes is often local, they will, however, need
to systematically colonize the part of the host where most
pathogensmay attack. The colonization of the root of oilseed rape
with endophyte Heteroconium chaetospira could not successfully
prevent clubroot symptoms (Lahlali et al., 2014). The result,
therefore, indicates the limitations that may be encountered with
competition as a biocontrol method, as it may be inactive when
there is a high presence of microorganisms causing disease. The
symptoms of Phytophthora sp. were successfully reduced when
treated through a foliar application with mixtures of endophytes
from leaves of cacao tree leaves, thus showing competition as
one mechanism of disease suppression in a plant. However,
some of the strains were also observed to produce other active
metabolites which is an indication that, competition might
not be the only mechanism used in controlling the disease
(Arnold et al., 2003).

INDIRECT MECHANISMS OF PLANT
PROTECTION FROM PATHOGENS

Plants employ several mechanisms to survive in extreme
conditions such as drought, salt stress, and cold. Some of
the rapid noticeable biochemical and morphological changes
observed include the hypersensitive response, cellular necrosis
and phytoalexin production. In long term evolution, non-specific
(general) resistance and specific resistance are examples of innate
resistance developed for pathogen resistance (Kiraly et al., 2007).
Those that possess specific resistance can resist infection from
one or a few pathogens while the non-specific resistance is active
against many pathogens. Endophytes increase the plant defense
mechanism through the production of secondarymetabolites and
enhanced resistance.

INDUCTION OF PLANT RESISTANCE

For over 20 years now, many studies have concentrated on
the way plants respond to attack from parasites and pathogens
using various categories. Induced systemic resistance (ISR)
and Systemic acquired resistance (SAR) are the two resistance
patterns which have attracted the most attention of researchers.
ISR, which is induced by some non-pathogenic rhizobacteria,
is moderated by ethylene or jasmonic acid which cannot
be linked with the building up of pathogenesis-related (PR)
proteins. SAR, which is caused by infections from pathogens
is mediated by salicylic acid and linked with the building up
of PR proteins (Tripathi et al., 2008). These PR proteins have
many enzymes, such as 1, 3-glucanases and chitinases which
help in the direct lysing of invading cells, and strengthening
of cell wall boundaries to build resistance against infection
and cell death (Gao et al., 2010). ISR produced by endophytes
can also be linked with the enhancement of genes that
are expressed in pathogenesis. The root of tomato harbors
important endophytes called Fusarium solani which prompt ISR
against Septoria lycopersici, the causative agent of tomato foliar
pathogens and activate PR genes, PR7, and PR5 activities in the
roots (Kavroulakis et al., 2007). Redman et al. (1999) reported
that the inoculation of a non-pathogenic mutant strain of
Colletotrichum magna on Cucumis sativus and Citrullus lanatus
produced a high amount of peroxidase, lignin deposition, and
phenylalanine ammonialyase which help in protecting the plant
against diseases which are caused by Fusarium oxysporum and
Colletotrichum orbiculare. Reduction in the lesions on leaves
was observed when Neotyphodium lolii engaged against four
different pathogens, which could be attributed to enhanced
peroxidase and superoxide dismutase activities of the host plant
(Tian et al., 2008).

PLANT SECONDARY METABOLITES
STIMULATION

Secondary metabolites from plants are compounds which have
limited functions in the life cycle of the plant but are of great
importance in its adaption to different environments (Bourgaud
et al., 2001). Notable among all the secondary compounds
produced by a plant is an antimicrobial molecule with a low
molecular weight called phytoalexins (Gao et al., 2010). It
has many substances in it, some of which are terpenoids and
flavonoids among many others. Orchis morio and Loroglossum
hircinum were the first to produce phytoalexins in response
to a fungal attack initiated by a French botanist called Noel
Bernard, outcomes of other studies showed that phytoalexins
can now be produced through some abiotic stress factors such
as heavy metals ion, salt stress and UV light (Gao et al.,
2010). Some studies have concentrated on the production of
phytoalexins when triggered by pathogens (Pedras et al., 2008).
The production of plant secondary metabolism moderated by
endophytes is still a new research area. Findings revealed that the
elicitors of Fusarium E5 could propel triterpene and dipertene
production in cell suspensions of E. pekinensis. Li and Tao (2009)
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reported a similar result in Taxus cuspidate culture suspensions,
in which culture supernatants of endophytes resulted in increased
production of paclitaxel when compared with the control. It
is suspected that the co-culturing with elicitor endophytes is
a likely way of increasing plant secondary metabolites and
boosting plant resistance. Endophytic colonization induced the
production of hydrolase for plant cells to reduce the growth
of fungi, therefore making endophytes act as elicitors through
hydroxylation production (Gao et al., 2010). Some elicitors like
glycoprotein, polysaccharides and lipopolysaccharides trigger
plant defense mechanisms and increase secretion of plant
secondary metabolites which effectively reduce attack by
pathogens. However, there is limited information as regards
the way in which endophytes survive in the host plant when
producing large quantities of secondarymetabolites are produced
(Gao et al., 2010).

PROMOTION OF PLANT GROWTH AND
PHYSIOLOGY

Endophytes sometimes support the host plant defense
mechanism against plant pathogenic microorganisms by
taking over the plant physiology (Gimenez et al., 2007).
As the growth of the plant increases, it develops vigor and

resistance to different stresses both abiotic and biotic, this
is considered as one of the strategies used by the plant for
defense against pathogens (Kuldau and Bacon, 2008). Several
studies have shown that plants inoculated with endophytes
recorded an increase in growth, drought resistance (Gao et al.,
2010), and tolerance to any type of soil (Malinowski et al.,
2004). Plant growth can be enhanced by several compounds,
an endophyte, Colletotrichum sp., isolated from A. annua
produces a substance called indole acetic acid (IAA) which
helps in regulating plant physiology (Lu et al., 2000). Dai
et al. (2008) reported that extracts from Fusarium sp. E5
produced auxin. Another mechanism adopted by endophytes
can be said to be the release of phytohormones (Dai et al.,
2008). We can, therefore, believe that plant growth promotion
when triggered by endophytes will indirectly protect the plant
against pathogens.

HYPERPARASITES AND PREDATION

Hyperparasites is another mechanism endophyte use to protect
their host ecologically. In this mechanism, endophytes directly
attack identified pathogens or their propagules (Tripathi et al.,
2008). Endophytic fungi capture the pathogens by twisting
and penetrating their hyphae and by the production of lyase

FIGURE 2 | Bioactive compounds produced by endophytes.
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which destroys the cell wall of the pathogen. For instance,
Trichoderma sp. was able to capture and penetrate the hyphae
of Rhizoctonia solani, a known plant pathogen; the observation
was linked to biocontrol activities (Grosch et al., 2006). Another
mechanism is microbial predation; this entails a general way
of reducing pathogens of plants. Most endophytes exhibit their
predatory characteristics in nutrient-deficient conditions. As
an example, a variety of enzymes attacking the cell wall of
fungal pathogens directly are produced by Trichoderma sp.
(Gao et al., 2010).

ENDOPHYTIC BACTERIA AND FUNGI AS
PRODUCERS OF BIOACTIVE
COMPOUNDS AND BIOACTIVITIES OF
IMPORTANCE TO MAN

Several reports have noted that bioactive metabolites secreted
by endophytes are great sources of drugs for the treatment of
different types of ailments and their potential applications in
food, agriculture, medicine, and cosmetic industries cannot be
underestimated (Godstime et al., 2014; Shukla et al., 2014). The
metabolites secreted by endophytes are classified into different
functional groups such as alkaloids, terpenoids, flavonoids,
benzopyranones, tannins, phenolic acids, quinones, steroids,
tetralones, and chinones (Figure 2) (Joseph and Priya, 2011;
Godstime et al., 2014). Many factors have been reported to affect
the way metabolites are extracted from endophytes, some of
them are the climatic condition, the season of sample collection
and geographical location (Shukla et al., 2014). With the recent
developments in the synthetic process, extraction of metabolites
from a natural source is becoming efficient and promising
(Hussain et al., 2012). It has been linked with the development of
microorganisms which may have integrated genetic information
from higher plants, thereby ensuring better adaption to their host
and they may perform some functions such as protection from
insects, pathogens, and animals (Gouda et al., 2016).

Infectious and parasitic diseases are responsible for almost
half of the death rate all over the world (Menpara and Chanda,
2013). Endophytes have been reported as the source of many
bioactive compounds and several secondary metabolites
available commercially today (Singh and Dubey, 2015).
Endophytic microorganisms are a depot of new metabolites
that can be used as antimicrobial, antiarthritic, anticancer,
immunosuppressant, and anti-insect drugs (Jalgaonwala et al.,
2011; Godstime et al., 2014). As at present, just a few plants have
been studied for endophytes diversity and ability to produce
bioactive secondary metabolites. Recent studies have reported
that novel bioactive compounds produced by most endophytic
microorganisms are important in overcoming the problem
of antibiotic resistance by most pathogenic microorganisms
(Godstime et al., 2014). Numerous bioactive compounds
like vinblastine, amptothecin, hypericin, podophyllotoxin,
camptothecin among others produced by endophytes have
already been commercialized and have been found useful in
agriculture and pharmacology (Joseph and Priya, 2011; Zhao
et al., 2011).

ANTICANCER ACTIVITY AND
COMPOUNDS

Cancer is a disease identified by the uncontrolled multiplication
of abnormal cells which results in death in human beings
when not controlled. Globally cancer prevalence is said to have
increased to 9.6 million deaths and 18.1 million cases in the year
2018 (Toghueo, 2019). All over the world, those who survive
cancer disease within 5 years of its detection are approximated
as 43.8 million (Toghueo et al., 2019). In 2004 cancer was
said to be responsible for about 13% (estimated to be 7.4
million) of the world death (Gouda et al., 2016). The drugs used
in the treatment of cancer show non-specific toxicity for the
multiplying normal cells have many side effects and many are
still not active in the treatment of some cancer forms (Pasut
and Veronese, 2009). The discovery of metabolites with cytotoxic
properties has given insights in anticancer therapy for some
decades (Pimentel et al., 2011). Endophytes have been reported
to have the ability to produce novel metabolites that can serve
as anticancer agents (Rajamanikyam et al., 2017). A summary
of related studies on the anticancer properties of endophytes is
presented in Table 2.

ANTIOXIDANT ACTIVITY AND
COMPOUNDS

The major significance of antioxidant compounds is the
fact that they are very active in controlling diseases linked
to the presence of oxygen-derived free radicals and ROS,
which may be responsible for the degeneration of cells,
DNA damages, and carcinogenesis (Mishra et al., 2014).
Antioxidants are now considered as promising alternatives
in the treatment and prevention of diseases linked with ROS
such as Diabetes mellitus, cancer, hypertension, Alzheimer’s
disease, Parkinson’s disease, ischemia, and atherosclerosis.
Most antioxidants have antiatherosclerotic, anti-carcinogenic,
anti-inflammatory, antitumor, and antimutagenic activities both
in small and large quantities (Hood and Shew, 1996; Mishra
et al., 2014).

A phenolic metabolite identified as Graphislactone A,
produced by Cephalosporium species, also, IFB-E001 found
insideTrachelospermum jasminoideswas found to have the ability
to search for free radical and it exhibited stronger antioxidant
properties than ascorbic acid and butylated hydroxytoluene
(BHT) coassayed in the research (Suryanarayanan et al., 2009).
Shoeb et al. (2014) also reported that an endophytic fungus
Penicillium thiomii produced an antioxidant identified as
terminatone. The crude extracts of Rhodiola spp. were also
reported to scavenge DPPH, O−

2 , and OH radicals, and also in
chelating Fe2+ (Cui et al., 2015). EtOAc extract of Diaporthe
spp. was found to produce a strong antioxidant (Toghueo,
2019).

A novel compound called sesquiterpene isolated from
Acremonium sp. also showed strong antioxidant activity (Elfita
et al., 2012). Ethyl acetate extract of endophytic fungus Fennellia
nivea had a notable quantity of total phenolics which might be
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TABLE 2 | Summary of studies on the anticancer prospects of endophytes.

Endophytes Compound secreted Class of compound Activity Cell active against References

Endophytic fungi

Fusarium oxysporium Vincristine Alkaloids Anticancer – Zhang et al., 2000

Mycellia sterilia Vincristine Alkaloids Anticancer Yang et al., 2004

Enthrophospora infrequens Camptothecin Quinolone alkaloid Anticancer Puri et al., 2005

Phomopsis cassiae 3,12-dihydroxydalene

3,12-dihydroxycalamenene

3,11,12-trihydroxycadalene

Terpenoids Anti-proliferative HeLa cervical cells Silva et al., 2006

Periconia atropurpurea EtOAc extract – Cytotoxicity – Teles et al., 2006

Garcinia sp. EtOAc extract – Antiproliferative and

cytotoxicity

Vero cell lines Phongpaichit et al., 2007

Collentotrichum

gloesporiodes

Taxol Alkaloids Cytotoxicity Human cancer cells

lines BT220, int 407,

H116, HLK 210,

HL251.

Gangadevi and Muthumary,

2008

Aspergillus fumigatus Cytotoxic alkaloids Alkaloids Cytotoxicity Leukemia cancer cell

line

Konecny et al., 2009

C. gloesporiodes Taxol Alkaloids Anticancer Nithya and Muthumary,

2009

Alternaria alternata EtOAc extract – Antitumor and

cytotoxicity

HeLa cells Fernandes et al., 2009

Alternaria sp. Xanalteric acids Phenols Cytotoxicity Kjer et al., 2009

Fusarium solani Camptothecin Quinolone alkaloid Anticancer – Shweta et al., 2010

Lasidiplodia theobromae Taxol Alkaloids Anticancer MCF-7 Pandi et al., 2011

Cephalotheca faveolata Sclerotiorin Polyketides Anticancer Colon cancer

(HCT-116)

Giridharan et al., 2012

Phoma sp. 5-hydroxyramulosin Polyketides Anticancer Santiago et al., 2012

Penicillium sp. Arisugacin Terpenoid derivatives Anticancer HeLa, HL-60, and

K562 cell lines

Sun et al., 2014

A. flavus Solamargine Steriods Cytotoxicity – El-Hawary et al., 2016

Taxomyces andreanae Paclitaxel Alkaloids Anticancer – Alurappa et al., 2018

Chaetomium sp., Alternaria

sp., and Collentotrichum sp.

EtOAc extract – Cytotoxicity HeLa and MCF-7 cells Dhayanithy et al., 2019

Endophytic actinomycetes

Streptomyces

thermoviolaceus TP-A0648

Anicemycin Alkaloids Antitumor – Igarashi, 2004

Streptomyces sp. SUC1 Lansai A-D Alkaloids Anticancer – Tuntiwachwuttikul et al.,

2008

Actinosynnema pretiosum Ansamitocin Polyketides Antitumor – Siyu-Mao, 2013

Micromonospora lupini

Lupac 08

Lupinacidin C Quinones Antitumor Murine colon

carcinoma cells

Igarashi et al., 2011

Streptomyces sp. CS Naphtomycin A Quinones Antitumor P388 and A-549 cell

lines

Lu and Shen, 2007

Streptomyces laceyi MS53 6-alkalysalicilic acids,

salaceyins A and B

Fatty acid derivatives Anticancer – Singh and Dubey, 2018

Endophytic bacteria

Acinetobacter guillouiae EtOAc extract – Anticancer U87MG glioblastoma

and A549 lung

carcinoma cells

Sebola et al., 2019

Bacillus subtilis PXJ-5,

Bacillus sp. CPC3, Bacillus

cereus strain ChST

Camptothecine Alkaloids Anticancer – Shweta et al., 2013

– EtOAc extract – Cytotoxic A549 lung cancer cell

lines

Swarnalatha and Saha,

2016

Pantoea sp. EtOAc extract – Anticancer A549 lung carcinoma

and UMG87

glioblastoma cell lines

Uche-Okereafor et al., 2019

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 May 2020 | Volume 8 | Article 467

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Fadiji and Babalola Endophytes Mechanisms of Plant Protection

responsible for its high antioxidant activity (Saraswaty et al.,
2013). Aspergillus fumigatus SG-17 was found to secrete a
compound called (Z)-N-(4-hydroxystyryl) formamide (NFA), an
equivalent of coumarin which functions as an antioxidant both
in vitro and in vivo. Subsequent analysis through MS and NMR
further established the claim (Qin et al., 2019). A summary of
related studies on the antioxidant properties of endophytes is
presented in Table 3.

ANTIDIABETIC ACTIVITY

Nature has given us many natural resources which can be used
for medicinal purposes. The hypolipidemic and antidiabetic
prospects of endophytic fungi extracts from Salvadora oleoides
in Wistar albino rats induced with diabetes when loaded with
glucose and alloxan was examined (Dhankhar et al., 2013).
Glucose tolerance test showed that extracts from endophytic
fungi such as Phoma sp. and Aspergillus sp. successfully reduced
the glucose level in the blood of the rats. Akshatha et al. (2014)
assessed antidiabetic prospects of endophyte extracts from the
tissue of Rauwolfia densiflora and Leucas ciliate, two of the most
prominent medicinal plants used in treating diabetes. The result
showed that α-amylase inhibitor slows down the glucose from
dietary complex carbohydrate and retards the rate at which
glucose is absorbed. Also, Kaur (2018) screened endophytic
fungi for their ability to act as for alpha-glucosidase inhibitors.
It was reported for the first time that extracts from Fusarium
sp. and Alternaria sp. act as alpha-glucosidase inhibitors, the
study establishes endophytic fungi as sources of pharmaceutically
important molecules.

Xylariaceae sp. also secreted a coumarone compound purified
as 8-hydroxy-6,7-dimethoxy-3-methylisocoumarine which was
reported to have been active against α-glycosidase (Indrianingsih
and Tachibana, 2017). Pujiyanto et al. (2012) revealed that
the crude extracts of an endophytic bacterium identified
as Streptomyces olivochromogenes which showed potential
antidiabetic activity. Three compounds (S)-(+)-2-cis-4-trans-
abscisic acid, 7′-hydroxy-abscisic acid and 4-des-hydroxyl
altersolanol A secreted by Nigrospora oryzae reported to be
active against α-glycosidase (Uzor et al., 2017). GancidinW (GW)
secreted by Streptomyces paradoxusVITALK03 was also reported
to be active against α-glycosidase (Ravi et al., 2017).

IMMUNOSUPPRESSIVE ACTIVITY

There have been ongoing studies on how to identify
an effective agent for the suppression of immunological
disorders especially autoimmune diseases and graft rejection
(Rajamanikyam et al., 2017). Fusarium subglutinans an
endophytic fungus was found to secrete subglutinol A
and B which act as an immunosuppressive agent. The
drug produced from it is used to avert the problem of
allograft rejection in patients who undergo a transplant
and it is promising in the treatment of autoimmune
diseases like insulin-dependent diabetes and rheumatoid
arthritis (Padhi et al., 2013). An antifungal peptide

compound called Pseudomycins which was reported to be
active against human pathogen Candida albicans found
to contain special amino acids like L-chlorothreonine,
L-diaminobutyric acid, and L-hydroxyl aspartic acid
(Castillo et al., 2003).

Ambuic acid which is a cyclohexenone belongs to the
family of pseudomycins which was secreted by Pestalotiopsis
microspore and found to be active against human pathogens.
A bioactive agent from Streptomyces species identified as
ambuic acid was effective against both gram-negative and
gram-positive bacteria (Suryanarayanan et al., 2003). Crude
extracts of fungi endophyte, Penicillium sp. ZJ-SY2, showed
strong immunosuppressive activity when structural elucidation
was done using 1D, MS, 2D, and NMR data. Compounds
1, 3, 5, and 7 showed strong immunosuppressive activity
using IC50 values ranging from 5.9 to 9.3µg/mL (Liu
et al., 2016). Three novel derivatives of xanthone, including
two earlier reported to contain sulfur as natural products:
sydoxanthone A (1) and sydoxanthone B (2), and 13-O-
acetylsydowinin B (3) were found to be secreted by an endophytic
fungus, Aspergillus sydowii. Structural elucidation was done
by, UV, MS and NMR data to establish the data. In vitro
suppression assay carried out on LPS-induced and Con A
proliferation of splenic lymphocytes of a mouse showed that
the compounds have moderate immunosuppressive activities
(Song et al., 2013).

Chloroform (CEEI) and methanolic extracts produced by
Entrophospora infrequens exhibit delayed-type hypersensitivity
(DTH) reactions (Pur et al., 2007). Three compounds isolated
from Pestalotiopsis leucothës were found to be effective on T and
B-cells and monocytes (Kumar et al., 2005). Madagundi et al.
(2013) isolated endophytic fungi from Ocimum sanctum Linn
and assessed their extracts in vitro for immunomodulatory
properties on human polymorphonuclear (PMN) cells
such as phagocytosis. The immunosuppressive assay of
Curtachalasin secreted by an endophytic fungus Xylaria cf.
curta against cell proliferation of concanavalin A (ConA)
induced T lymphocyte cell and lipopolysaccharide (LPS)
induced B lymphocyte cell proliferation was reported by
Wang et al. (2019). The crude extracts of Brevibacterium
sp. YXT131 an endophytic actinobacterium modulated
the immune response by reducing the proinflammatory
cytokines interleukin (IL)-12/IL-23 p40 in the serum of
mice (Wei et al., 2018). The use of bioagents in immune
modulation of some diseases is a current and novel
research area.

ANTIVIRAL ACTIVITY

The discovery of promising antiviral compounds for endophytes
is still novel. There are still limited numbers of compounds
that have been attributed to endophytes. The limiting factor in
the production of antiviral compounds by endophytes is the
fact that no antiviral screening systems exist. Most antibiotics
products from endophytic fungi are known to strongly inhibit
viral growth. The elucidation using mass spectrometry and NMR
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TABLE 3 | Summary of studies of antioxidant properties of endophytes.

Endophytes Host plant Compound secreted Class of compounds References

Endophytic fungi

Strain AcapF3 Tabernaemontana divaricata (L),

Rauvolfia verticillata (Lour.)

– Phenol Huang et al., 2007

Aspergillus sp. Calotropis procera, Catharanthus

roseus, Euphorbia prostrate,

Vernonia amygdalina, and

Trigonella foenum-graecum

Gallic acid Phenol Khiralla et al., 2015

Aspergillus minisclerotigens AKF1

and Aspergillus oryzae DK7

Mangifera casturi Kosterm Dihydropyran and

4H-Pyran-4-one, 5-hydroxy-2-

(hydroxymethyl-(CAS) Kojic

acid

– Nuraini et al., 2019

Rhodiola spp. Alpine plants Salidrosides, p-tyrosol, and

rosavins

Phenolic and flavonoid Cui et al., 2015

Phoma sp., Colletotrichum spiralis,

Chaetomium sp.

– MeOH extract Phenol Singla, 2019

Penicillium citrinum CGJ-C1, P.

citrinum CGJ-C2, Cladosporium sp.

CGJ-D1, and Cryptendoxyla

hypophloia CGJ-D2

Tragia involucrata Linn L-ascorbic acid – Danagoudar et al.,

2018

Aspergillus niger, A. flavus,

Alternaria alternata

Lannea coromendalica EtOAc extract Phenolic compound Premjanu and

Jaynthy, 2014

Chaetomium globosum Adiantum capillus EtOAc extract Phenolic compound Selim et al., 2018

Phyllosticta sp. Guazuma tomentosa EtOH extract Phenol Srinivasan et al.,

2010

Endophytic bacteria

Methylobacterium radiotolerans

MAMP 4754

Combretum erythrophyllum EtOAc extract, Chloroform

extract

Alkaloids, flavonoids,

Phenol and steroids

Photolo et al., 2020

Lactobacillus sp. Adhathoda beddomei EtOAc extract Phenolic compounds Swarnalatha et al.,

2015

Pseudomonas hibiscicola,

Macrococcus caseolyticus,

Enterobacter ludwigii, Bacillus

anthracis

Aloe vera EtOAc extract Alkaloids and flavonoids Akinsanya et al.,

2015

Pseudocercospora sp. ESL 02 Elaeocarpus sylvestris Terreic acid (1) and

6-methylsalicylic acid

– Prihantini and

Tachibana, 2017

EC3 Carica papaya L. Gallic acid Phenolic compounds Sarjono et al., 2019

Endophytic actinomycetes

Streptomyces aureofaciens

CMUAc130

Zingiber officinale 5,7-Dimethoxy-4-

pmethoxylphenylcoumarin;

5,7-Dimethoxy-4-

phenylcoumarin

Coumarins (Alpha

Benzopyrones)

Taechowisan et al.,

2007

Streptomyces sp. Tc052 Alpinia galanga Kaempferol, Isoscutellarin,

Umbelliferone, and Cichoriin

Flavoniods Singh and Dubey,

2018

Micromonospora sp. PC1052 Puereria candollei S-adenosyl-

Nacetylhomocysteine

Peptides Boonsnongcheep

et al., 2017

Streptomyces sp. MS1/7 – 2-Allyloxyphenol Phenol Singh and Dubey,

2015

methods showed that two cytomegalovirus protease inhibitors
in human and cytonic acids A and B were effective against
the growth of viruses (Harper et al., 2001). Some metabolites
secreted by endophytes from desert plants serve as a promising
source in identifying potent inhibitors in the replication of HIV-1
(Wellensiek et al., 2013).

Alternaria tenuissima QUE1Se was reported to produce an
antiviral compound called Altertoxins which was found to be
effective against HIV-1 virus (Bashyal et al., 2014). Also, many
extracts from endophytic fungi were tested against the replication
of HIV-1 virus in T-lymphocytes, four extracts were found not
to be toxic but inhibited the virus with differences ranging from
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75 to 99%. Three of the extracts were fractionated and the DB-
2 fraction was observed to completely inhibit the replication
of HIV-1 (Wellensiek et al., 2013). Compounds extracted
from Emericella sp. (HK-ZJ), namely aspernidine (A, B),
dehydroaustin, emeriphenolicins (A, D), austinol, emerimidine
(A, B), austin, and acetoxy dehydroaustin were reported to confer
antiviral activity against the influenza A virus (H1N1) (Zhang
et al., 2009). Extracts from endophytic fungi species Aspergillus,
Pestalotiopsis, Fusicoccum, Phomopsis, Guignardia, Penicillium,
and Muscodor were also assessed for their antiviral activity
against Herpes simplex virus type 1 (HSV-1 ATCC VR-260),
many of the fungi species showed weak to moderate antiviral
activity (Phongpaichit et al., 2007). Also, crude extracts from 81
endophytic fungi isolated from many medicinal plants showed
antiviral activity (Rajamanikyam et al., 2017). Recently, extracts
from some endophytic actinomycetes were reported to possess
antiviral properties, for example, metabolites from Streptomyces
sp. GT2002/1503 exhibited antiviral activity against R5 tropic
HIV infection (Ding et al., 2010). Jishengella endophytica 161111
also secreted an antiviral compound, 2-(furan-2-yl)-6-(2S,3S,4-
trihydroxybutyl) pyrazine which was active against influenza A
virus subtype H1N1 (Wang et al., 2014).

ANTIARTHRITIS AND
ANTI-INFLAMMATORY ACTIVITIES

The immune system of an individual plays an active role in
certain deadly diseases, a hyperactive immune system may result
in diseases such as arthritis. Rheumatoid arthritis (RA) is an
inflammatory and autoimmune disease that is systemic with
symptoms such as swelling, pain, bone, and cartilage destruction
which can later lead to permanent disability. Surprisingly,
the exact causative agent of the disease is not known. Most
researchers are currently looking for more medicinal agents
from microbes because the present synthetic drugs are very
costly and have many side effects (Choudhary et al., 2015).
An endophytic fungus, Talaromyces wortmannii, isolated from
Aloe vera secreted some bioactive metabolites which showed
active anti-inflammatory activity. This ability is because a
metabolite produced by the organism inhibit the release of
IL-8 by blocking the activation of AP-1 and NF-kB (Pretsch
et al., 2014). Methanolic extracts for Lepidosphaeria sp., an
endophytic fungus, also showed anti-inflammatory activity and
it is promising as a drug which might be adopted for the
treatment of inflammatory diseases like rheumatoid arthritis
(Shah et al., 2015). The main reason for screening endophytes is
to establish new inhibitors for pro-inflammatory cytokines which
are encountered in many immunological pathways. Extracts
of endophytic fungi isolated from Mimusops elengi (bakul),
an important medicinal plant in India also showed strong
anti-inflammatory activity (Deshmukh et al., 2009). Methanolic
extract of Chaetomium globosum was observed to be responsible
for improved arthritis and mobility scores, and was concluded to
possess a strong inhibitory effect on the morphological features
of rheumatoid arthritis in an adjuvant-induced rat model (Abdel-
Azeem et al., 2016).

ANTIMALARIAL ACTIVITY

Malaria is still one of the major causes of mortality and
morbidity in the world with over 3.3 billion people living
with the ongoing risk of transmission (Ateba et al., 2018).
In 2016, about 91 countries reported ∼216 million new
cases of malaria and 445,000 mortalities. The people
most affected by malaria are those people that live in the
subtropical and tropical regions of the world, people from
Southeast Asia and sub-Saharan Africa where ∼80% of
cases of malaria recorded are traceable to Plasmodium
falciparum (Ateba et al., 2018). The recent widespread
of anti-drug resistant malaria parasites makes the search
for alternative and new malarial treatment drugs urgent
(D’alessandro, 2009).

Munumbicins E-4 and E-5 produced by endophytic fungi
showed antimalarial activity, which was found to have double
the effect of chloroquine (Suryanarayanan et al., 2003).
An endophytes Diaporthe miriciae was found to produce
a secondary metabolite called epoxycytochalasin H which
expresses strong antimalarial inhibition against a strain of
Plasmodium falciparum that is resistant to chloroquine (Ferreira
et al., 2017). A report by Ateba et al. (2018) showed
that endophyte species Paecilomyces lilcinus and Penicillium
Janthinellum are storehouse of novel metabolites that are active
against Plasmodium falciparum and promising in the cure
of malaria. Endophytic fungi, Fusarium sp. and Nigrospora
sp. were also reported to secrete bioactive metabolites which
showed antiplasmodial activity against Plasmodium falciparum
(Kaushik et al., 2014).

ANTITUBERCULOSIS ACTIVITY

Tuberculosis (TB) is a globally recognized communicable
disease with the etiological agent as Mycobacterium tuberculosis
which often affects the lungs. It has been one of the major
disease troubling human beings for centuries. Death rate as
a result of TB infection is estimated at two billion globally
with almost nine million new cases emerging every year
(Tsara et al., 2009). Tuberculosis is responsible for more
deaths of otherwise healthy people than diseases that are
infectious such as malaria and AIDS (Corbett et al., 2003).
The challenge with TB is that there is no effective treatment
method for the disease. However, with the advent of Multi-
drug resistance strains of M. tuberculosis, the disease has
established itself as a major source of concern to humans
(Khunjamayum et al., 2017).

Endophytes are capable of secreting some bioactive
compounds that can successfully inhibit the prevalence of
TB caused byM. tuberculosis. Endophytic fungi species, F. solani
and C. gleosporoides isolated from G. glabra showed strong
inhibition against Mycobacterium tuberculosis strain H37Rv
with MIC of 18.5 and 75µg/ml, respectively (Shah et al., 2016).
The crude extracts of endophytic bacteria, Streptomyces sp. and
Bulkholderia fungorum were reported to show great inhibition
against the pathogenic strain of Mycobacterium tuberculosis
and the IC50 values recorded for them were <100µg/ml
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FIGURE 3 | Biological activities of importance to humans present in endophyte’s metabolites.

(Khunjamayum et al., 2017). The diverse biological activities of
endophytes are presented in Figure 3 below.

FUTURE PROSPECTS

Concise studies on a specific population of endophytes active
in a host are required before bulk production can be carried
out which often requires research with advanced technology.
Studies are also needed as regards getting plant-specific inoculum
doses of endophytes, this will help in reducing bulk production
and also enhance productivity by reducing our dependence
on synthetic fungicides, pesticides, and fertilizers. Development
of endophytes that can be sprayed just like most chemical
pesticides will help in the acceptance of endophytes in integrated
pest management.

Future studies will need to take into account the development
of genomic tools and metabolomics tools for further studies
on how endophytes colonize the plant and plant-microbe
interaction. There is still a need to study the compounds
produced by endophytes and their activities in reducing diseases.
This will help in developing efficient markers for some important
and distinct biocontrol agents and assessing the effects of plant
genotypes, innate microbe community, and most importantly
the environment. This structured approach will also help in
discovering new endophytes with important traits.

Molecular study of these endophytes is important in order
to improve drug research. Also, metagenomics study will be
very important in order to showcase the diversity of endophytes
and the functions they are capable of performing through a
detailed analysis of their genes. Molecular biology techniques

can be used for the isolation and identification of the different
types of genes present in the biosynthetic pathways and this
will further open our eyes to new bioactive compounds at a
commercial level as well as in the laboratory. Future studies
should focus on the biosynthetic pathways which might be
responsible for the secretion of numerous important bioactive
compounds by endophytes.

Also, future studies can look into the development of
endophytic nanoparticles which will help in improving the
plant growth. Transfer of genes can also be employed in order
to detect more efficient species. The idea of manipulating
genes can help the host plants in developing new traits like
phytoremediation and herbicide resistance, among others, which
could more suitably regulate metabolism. There is no microbial
technology that can be considered successful until it has been
commercialized. The specificity of endophytes within a plant is
one of the limitations in its large scale production.

CONCLUSION

The study attempts to appreciate the diverse mechanisms
used by endophytes in protecting plants from diseases for
sustainable agriculture. Endophytic microbes support the plant
and accelerate plant growth by employing different mechanisms
of action, both direct and indirect. The major benefit of
embracing such beneficial microorganisms in the field of
agriculture is to bring about reduction in the use of different
agrochemicals such as pesticides, chemical fertilizers, other
artificial chemicals etc. and this would make agriculture more
productive and sustainable. Endophytes can still be very useful
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in the biomedical field because endophytes can synthesize and
secrete chemicals which may be used for the development of
antibiotics of importance for human use. Many studies are still
ongoing toward assessing the ability of endophytes to secrete
novel bioactive compounds which will be of great importance in
the treatment of human diseases.

Besides the numerous applications of endophytes in medicine,
therapeutics, and mining, some novel metabolites may be
useful in sustainable agriculture and in enhancing plant
growth. These metabolites can also confer insecticidal, and pest
control activities, alongside enhance plant nutrient uptake under
extreme conditions such as drought, salinity, and waterlogging.
Taken as a whole, novel bioactive compounds secreted by
endophytes especially endophytic actinomycetes could offer
immense contributions in address the present and future
challenges in agriculture, environment and medicine. Finally,
the application of metagenomics combined with next-generation
sequencing technologies is expected to open up the numerous
unexplored pool of antimicrobials secreted by yet uncultivated
endophytic microbes.
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