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One of the most important factors limiting the success of chemotherapy in cancer

treatment is the phenomenon of drug resistance. We have recently introduced a

framework for quantifying the effects of induced and non-induced resistance to

cancer chemotherapy (Greene et al., 2018a, 2019). In this work, we expound on

the details relating to an optimal control problem outlined in Greene et al. (2018a).

The control structure is precisely characterized as a concatenation of bang-bang and

path-constrained arcs via the Pontryagin Maximum Principle and differential Lie algebraic

techniques. A structural identifiability analysis is also presented, demonstrating that

patient-specific parameters may be measured and thus utilized in the design of optimal

therapies prior to the commencement of therapy. For completeness, a detailed analysis

of existence results is also included.

Keywords: drug resistance, chemotherapy, phenotype, optimal control theory, singular controls

1. INTRODUCTION

The ability of cancer chemotherapies to successfully eradicate cancer populations is limited by
the presence of drug resistance. Cells may become resistant through a variety of cellular and
micro-environmental mechanisms (Gottesman, 2002). Thesemechanisms are exceedingly complex
and diverse, and remain to be completely understood. Equally complex is the manner in which
cancer cells obtain the resistant phenotype. Classically resistance was understood to be conferred
by random genetic mutations; more recently, the role of epigenetic phenotype switching was
discovered as another mediator of resistance (Pisco et al., 2013). Importantly, both of these
phenomena were seen as drug-independent, so that the generation of resistance is functionally
separate from the selection mechanism (e.g., the drug). However, experimental studies from the
past ten years suggest that drug resistance in cancer may actually be induced by the application of
chemotherapy (Sharma et al., 2010; Pisco et al., 2013; Goldman et al., 2015; Doherty et al., 2016;
Shaffer et al., 2017).

In view of the multitude of ways by which a cancer cell may become chemoresistant, we
have previously introduced a mathematical framework to differentiate drug-independent from
drug-dependent resistance (Greene et al., 2019). In that work, we demonstrated that induced
resistance may play a crucial role in therapy outcome, and also discussed methods by which a
treatment’s induction potential may be identified via biological assays. An extension of the work
was outlined in the conference paper (Greene et al., 2018a), where a formal optimal control
problem was introduced and an initial mathematical analysis was performed. The aim of this work
is to formalize the parameter identifiability properties of our theoretical model, to establish the
existence of the optimal control introduced in Greene et al. (2018a), and to precisely classify the
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FIGURE 1 | Visualization of interactions considered in system (1).

optimal control structure utilizing the Pontryagin Maximum
Principle and differential-geometric techniques. A numerical
investigation of both the control structure and corresponding
objective is also undertaken as a function of patient-specific
parameters, and clinical conclusions are emphasized.

The work is organized as follows. In section 2, we briefly
review the mathematical model together with the underlying
assumptions. Section 3 restates the optimal control problem,
and the Maximum Principle is analyzed in section 4. A
precise theoretical characterization of the optimal control
structure is summarized in section 5. In section 6, we compare
theoretical results with numerical computations, and investigate
the variation in control structure and objective as a function
of parameters. Conclusions are presented in section 8. We also
include additional properties, including details on structural
identifiability and existence of optimal controls, in Section 7.

2. MATHEMATICAL MODELING OF
INDUCED DRUG RESISTANCE

We briefly review the model presented in Greene et al.
(2019) and analyzed further in Greene et al. (2018a). In
that work, we have constructed a simple dynamical model
which describes the evolution of drug resistance through
both drug-independent (e.g., random point mutations, gene
amplification, stochastic state switching) and drug-dependent
(e.g., mutagenicity, epigeneticmodifications)mechanisms. Drug-
induced resistance, although experimentally observed, remains
poorly understood. It is our hope that a mathematical analysis
will provide mechanistic insight and produce a more complete
understanding of this process by which cancer cells inhibit
treatment efficacy.

A network diagram of the model under consideration is
provided in Figure 1. Specifically, we assume that the tumor
being studied is composed of two types of cells: sensitive (x1)
and resistant (x2). For simplicity, the drug is taken as completely
ineffective against the resistant population, while the log-kill
hypothesis (Traina and Norton, 2011) is assumed for the
sensitive cells. Complete resistance is of course unrealistic, but
can serve as a reasonable approximation, especially when toxicity
constraints may limit the total amount of drug that may be
administered. Furthermore, this assumption permits a natural

metric on treatment efficacy that may not exist otherwise (see
section 3). The effect of treatment is considered as a control agent
u(t), which we assume is a locally bounded Lebesgue measurable
function taking values in R+. Here u(t) is directly related to
the applied drug dosage D(t), and in the present work we
assume that we have explicit control over u(t). Later, during the
formulation of the optimal control problem (section 3), we will
make precise specifications on the control set U. Even though an
arbitrary dosage schedule is unrealistic as a treatment strategy,
our objective in this work is to understand the fundamental
mathematical questions associated with drug-induced resistance,
so we believe the simplification is justified. Furthermore, our
results in section 5 suggest that the applied optimal treatment
should take a relatively simple form, which may be approximated
with sufficient accuracy in a clinical setting. Sensitive and
resistant cells are assumed to compete for resources in the
tumor microenvironment; this is modeled via a joint carrying
capacity, which we have scaled to one. Furthermore, cells are
allowed to transition between the two phenotypes in both a
drug-independent and drug-dependent manner. All random
transitions to the resistant phenotype are modeled utilizing a
common term, ǫx1, which accounts for both genetic mutations
and epigenetic events occurring independently of the application
of treatment. Drug-induced deaths are assumed of the form
du(t)x1, where d is the drug cytotoxicity parameter relating to
the log-kill hypothesis. Drug-induced transitions are assumed
to be of the form αu(t)x1, which implies that the per-capita
drug-induced transition rate is directly proportional to the
dosage [as we assume full control on u(t), i.e. pharmacokinetics
are ignored]. Of course, other functional relationships may
exist, but since the problem is not well-studied, we consider it
reasonable to begin our analysis in this simple framework. The
above assumptions then yield the following system of ordinary
differential equations (ODEs):

dx1

dt
=
(

1− (x1 + x2)
)

x1 − (ǫ + αu(t))x1 − du(t)x1

dx2

dt
= pr

(

1− (x1 + x2)
)

x2 + (ǫ + αu(t))x1.

(1)

All parameters are taken as non-negative, and 0 ≤ pr < 1.
The restriction on pr emerges due to (1) already being non-
dimensionalized, as pr represents the relative growth rate of the
resistant population with respect to that of the sensitive cells.
The condition pr < 1 thus assumes that the resistant cells divide
more slowly than their sensitive counterparts, which is observed
experimentally (Shackney et al., 1978; Lee, 1993; Brimacombe
et al., 2009). As mentioned previously, many simplifying
assumptions are made in system (1). Specifically, both types
of resistance (random genetic and epigenetic) are modeled as
dynamically equivalent; both possess the same division rate
pr and spontaneous (i.e., drug-independent) transition rate ǫ.
Thus, the resistant compartment x2 denotes the total resistant
subpopulation.

The region

� = {(x1, x2) | 0 ≤ x1 + x2 ≤ 1, x1, x2 ≥ 0} (2)
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in the first quadrant is forward invariant for any locally bounded
Lebesgue measurable treatment function u(t) taking values in
R+. Furthermore, if ǫ > 0, the population of (1) becomes
asymptotically resistant:

(

x1(t)
x2(t)

)

t→∞
−−−→

(

0
1

)

. (3)

For a proof, see Theorem 2 in SI A in Greene et al. (2019). Thus
in our model, the phenomenon of drug resistance is inevitable.
However, we may still implement control strategies which, for
example, may increase patient survival time. Such aspects will
inform the objective introduced in section 3. For more details on
the formulation and dynamics of system (1), we refer the reader
to Greene et al. (2019).

3. OPTIMAL CONTROL FORMULATION

As discussed in section 2, all treatment strategies u(t) result in
an entirely resistant tumor: x̄ : = (x̄1, x̄2) = (0, 1) is globally
asymptotically stable for all initial conditions in region �. Thus,
any chemotherapeutic protocol will eventually fail, and a new
drug must be introduced (not modeled in this work, but the
subject of future study). Therefore, selecting an objective which
minimizes tumor volume (x1+x2) or resistant fraction [x2/(x1+
x2)] at a fixed time horizon would be specious for our modeling
framework. However, one can still combine therapeutic efficacy
and clonal competition to influence transient dynamics and
possibly prolong patient life, as has been shown clinically utilizing
real-time patient data (Gatenby et al., 2009).

Toxicity as well as pharmacokinetic constraints limit the
amount of drug to be applied at any given instant. Thus, we
assume that there exists some numberM > 0 such that u(t) ≤ M
for all t ≥ 0. Any Lebesgue measurable treatment regime u(t) is
considered, so that the control set is U = [0,M] and the set of
admissible controls U is

U = {u :[0,∞) → [0,M] | u is Lebesgue measurable}. (4)

Recall that all cellular populations have been normalized to
remain in [0, 1]. We assume that there is a critical tumor
volume Vc, at which treatment, by definition, has failed. Our
interpretation is that a tumor volume larger than Vc interferes
with normal biological function, while x1 + x2 ≤ Vc indicates a
clinically acceptable state. Different diseases will have differentVc

values. For technical reasons needed in section 5 we assume that
Vc < 1 − ǫ. This is a mild assumption, since genetic mutation
rates ǫ are generally small (Loeb et al., 1974), and our interest is
on the impact of induced resistance. Thus

Vc ∈ (0, 1− ǫ) . (5)

Define tc as the time at which the tumor increases above size Vc

for the first time. To be precise,

tc(u) : = max{T | x1(t)+ x2(t) ≤ Vc for all t ∈ [0,T]}. (6)

Since all treatments approach the state (0, 1), tc(u) is well-defined
for each treatment u(t). For simplicity, denote tc = tc(u) in
the remainder of the work. The time tc is then a measure of
treatment efficacy, and our goal is then to find those controls u∗
which maximize tc. Writing in standard form as a minimization
problem, we have the following objective:

min
u∈U

{J(u)} = min
u∈U

{

−

∫ tc

0
1 dt

}

. (7)

We are thus seeking a control u∗(t) ∈ U which maximizes tc,
i.e. solves the time-optimal minimization problem (7) restricted
to the dynamic state equations given by the system described
in (1) and the condition x1(t) + x2(t) ≤ Vc for all 0 ≤ t ≤ tc.
Note that the above is formulated (using the negative sign) as a
minimization problem to be consistent with previous literature
and results related to the Pontryagin Maximum Principle
(PMP) (Ledzewicz and Schättler, 2012). Note that maximization
is still utilized in section 7.2 and section 4.1, and we believe that
the objective will be clear from context. To be consistent with
notation utilized later, we denote the system (1) as

ẋ = f (x)+ u(t)g(x), (8)

where

f (x) =

(

(1− (x1 + x2))x1 − ǫx1
pr(1− (x1 + x2))x2 + ǫx1

)

, (9)

g(x) =

(

−(α + d)
α

)

x1 (10)

and x(t) = (x1(t), x2(t)). By continuity of solutions, the time tc
must satisfy the terminal condition (tc, x(tc)) ∈ N, where N is the
line x1 + x2 = Vc in�, i.e.,

N = ψ−1(0) ∩�, (11)

where

ψ(x1, x2) : = x1 + x2 − Vc. (12)

With this notation, the path-constraint

ψ(x1(t), x2(t)) ≤ 0 (13)

must also hold for 0 ≤ t ≤ tc. Equation (13) ensures that
the tumor remains below critical volume Vc for the duration of
treatment. Equivalently, the dynamics are restricted to lie in the
set�c ⊆ �, where

�c : = {(x1, x2) | 0 ≤ x1 + x2 ≤ Vc, x1, x2 ≥ 0}, (14)

for all times t such that t ∈ [0, tc]. The initial state

x0 = (x01, x
0
2) (15)

is also assumed to lie in �c. Except for section 7.1 where we
restrict to the case x02 = 0, the remainder of the work allows for
arbitrary x02 ∈ [0,Vc).
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4. MAXIMUM PRINCIPLE

We dedicate the present section to characterize the optimal
control utilizing the Pontryagin Maximum Principle (PMP). The
subsequent analysis is strongly influenced by the Lie-derivative
techniques introduced by Sussmann (1982, 1987a,b,c). For an
excellent source on both the general theory and applications to
cancer biology, see the textbooks by Ledzewicz and Schättler
(2012) and Schättler and Ledzewicz (2015).

Before starting our analysis of the behavior and response of
system (1) to applied treatment strategies u(t) utilizing geometric
methods, we would like to mention that we have not found
a reference for existence of optimal controls for a problem
such as this, due perhaps to the non-standard character of it
(maximization of time, path constraints). For this reason, we have
added a self-contained proof of regarding existence in section 7.2.

4.1. Elimination of Path Constraints
We begin our analysis by separating interior controls from
those determined by the path-constraint (13) (equivalently, x ∈

N). The following theorem implies that outside of the one-
dimensional manifold N, the optimal pair (x∗, u∗) solves the
same local optimization problem without the path and terminal
constraints. More precisely, the necessary conditions of the PMP
(see section 4.2) at states not on N are exactly the conditions
of the corresponding maximization problem with no path or
terminal constraints.

THEOREM 1. Suppose that x∗ is an optimal trajectory. Let t1
be the first time such that x∗(t) ∈ N. Fix δ > 0 such
that t1 − δ > 0, and

ξ = x∗(t1 − δ). (16)

Define z(t) : = x∗(t)|t∈[0,t1−δ]. Then the trajectory z is a local
solution of the corresponding time maximization problem tc with
boundary conditions x(0) = x0, x(tc) = ξ , and no additional
path constraints. Hence at all times t, the path z (together with the
corresponding control and adjoint) must satisfy the corresponding
unconstrained Pontryagin Maximum Principle.

Proof: We first claim that z satisfies the path-constrained
maximization problem with boundary conditions x(0) =

x0, x(tc) = ξ . This is a standard dynamic programming
argument: if there exists a trajectory z̄ such that z̄(τ ) = ξ , τ >
t1 − δ, concatenate z̄(t)|t∈[0,τ ] with x∗(t)|t∈[τ ,tc] at t = τ to obtain
a feasible trajectory satisfying all constraints. This trajectory then
has total time τ + δ + tc − t1 > tc, contradicting the global
optimality of x∗.

Recall that t1 was the first time such that x∗(t) ∈ N. Since z
is compact, we can find a neighborhood of z that lies entirely in
{x | x /∈ N}. As the Maximum Principle is a local condition with
respect to the state, this completes the proof.

Theorem 1 then tells us that for states x = (x1, x2) such
that x1 + x2 < Vc, the corresponding unconstrained PMP
must be satisfied by any extremal lift of the original problem.
(Recall that an extremal lift of an optimal trajectory is obtained

by adding the Lagrange multipliers, or adjoint variables, to the
control and state; see details in Definition 2.2.4, page 95, Chapter
2 of Ledzewicz and Schättler, 2012). We have now demonstrated
that the optimal control consists of concatenations of controls
obtained from the unconstrained necessary conditions and
controls of the form (18). In the next section, we analyze the
Maximum Principle in the region x1 + x2 < Vc. Furthermore,
the constraint (13) has generic order one. In other words,

Lgψ = ∇ψ · g 6= 0. (17)

Therefore, the feedback control (also known as the constrained
control) can be found by differentiating the function (12) to
insure that trajectories remain on the line N:

up(x1, x2) =
1

d

(1− (x1 + x2))(x1 + prx2)

x1
. (18)

Its existence however does not imply its feasibility, which is
discussed below. Specifically, up can be shown to be a decreasing
function of x1 which is feasible on the portion of N satisfying
x∗1 ≤ x1 ≤ Vc, where x∗1 is given in (20), and infeasible
elsewhere. This is proven in Proposition 3, and the geometric
structure is depicted in Figure 2. Propositions 4 and 5 provide
characterizations of the volume dynamics in certain regions of
phase space, and are included here for completeness.

Proposition 2. Suppose that the maximal dosage M satisfies

M >
(1− Vc)(1− pr)

d
. (19)

and the point x∗ = (x∗1 , x
∗
2) ∈ N with coordinates

x∗1 =
pr(1− Vc)Vc

dM − (1− Vc)(1− pr)
,

x∗2 = Vc

(

1−
pr(1− Vc)

dM − (1− Vc)(1− pr)

)

. (20)

Denote by Y(x) = f (x) + Mg(x) the vector field corresponding to
the maximal allowed dosage M [here, f and g are the functions
defined in (9), (10)]. The Lie derivative, for any x ∈ N, of the
volume function V(x) = x1 + x2 with respect to Y is

(a) positive if x1 < x∗1 ,
(b) zero at (x∗1 , x

∗
2), and

(c) negative if x1 > x∗1 .

Proof: We verify the above claims with a direct calculation. Let
LYV(x) denotes the Lie derivative ofV(x) with respect toY . Thus,
for x ∈ N,

LYV(x) = ∇V(x) · Y(x)

=

(

1

1

)

·







[1− Vc − ǫ − (α + d)M]x1

[ǫ + αM − pr(1− Vc)]x1 + pr(1− Vc)Vc







Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 June 2020 | Volume 8 | Article 501

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Greene et al. Control of Cancer Resistance Model

FIGURE 2 | Region in �c where LYV (x) is guaranteed to be positive. That is, applying the maximal dosage M results in an increasing cancer population in the

yellow-shaded region of phase-space.

= [1− Vc − ǫ − (α + d)M]x1

+ [ǫ + αM − pr(1− Vc)]x1

+ pr(1− Vc)Vc

= [(1− Vc)(1− pr)− dM]x1 + pr(1− Vc)Vc.

Assuming M >
(1−Vc)(1−pr)

d
, the sign of LYV(x) is as in the

statement of the proposition.

Proposition 2 implies that if the allowable dosage is large enough
(Equation 9), treatment can at least decrease the tumor in certain
regions of phase space. If this condition was not met, then the
applied drug would generally be ineffective in reducing the tumor
volume V , and hence not be utilized in a clinical scenario.

Proposition 3. Let x be a point on the line N. The feedback control
up is unfeasible if x1 ∈ (0, x∗1), and is feasible if x1 ∈ (x∗1 ,Vc)

Proof: For x ∈ N we compute

up(x) =
(1− Vc)(1− pr)

d
+

(1− Vc)prVc

dx1
≥ 0.

It is straightforward to check that up > M if x1 < x∗1 . In
addition, the feedback control, when restricted to points in N,

is a decreasing function with respect to x1. Thus, it is feasible for
x ∈ N if x1 ∈ (x∗1 ,Vc).

Proposition 4. For x = (x1, x2) ∈ �c with

x2 >
dM − (1− Vc)

pr(1− Vc)
x1, (21)

the Lie derivative LYV(x) is positive.

Proof: As in Proposition 2, we compute LYV(x) directly:

LYV(x) = (1− (x1 + x2))(x1 + prx2)− dMx1

≥ (1− Vc)(x1 + prx2)− dMx1

= [(1− Vc)− dM]x1 + pr(1− Vc)x2

> [(1− Vc)− dM]x1 + pr(1− Vc)
dM − (1− Vc)

pr(1− Vc)
x1

= 0,

where the first inequality utilizes V ≤ Vc, and the second relies
on (21)
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Proposition 5. For

M >
1− ǫ

α + d
,

trajectories corresponding to the maximal dosage M have a
decreasing sensitive cellular population.

Proof: For u(t) ≡ M, the corresponding sensitive trajectory is
given by

ẋ1 = (1− (x1 + x2))x1 − ǫx1 − (α + d)Mx1

< (1− (x1 + x2))x1 − ǫx1 − (1− ǫ)x1

= −(x1 + x2)x2 ≤ 0

Note that we are assuming here that the maximal dosage M
satisfiesM > 1−ǫ

α+d
.

4.2. Maximum Principle and Necessary
Conditions at Interior Points
Necessary conditions for the optimization problem discussed
in section 3 without path or terminal constraints are derived
from the Pontryagin Maximum Principle (Pontryagin, 1987;
Ledzewicz and Schättler, 2012). The corresponding Hamiltonian
function H is defined as

H(λ0, λ, x, u) = −λ0 + 〈λ, f (x)〉 + u8(x, λ), (22)

where λ0 ≥ 0 and λ ∈ R2. Here 〈·, ·〉 denotes the standard inner
product onR2 and, since the dynamics are affine in the control u,
8(x, λ) is the switching function:

8(x, λ) = 〈λ, g(x)〉. (23)

The Maximum Principle then yields the following theorem:

THEOREM 6. If the extremal (x∗, u∗) is optimal, there exists λ0 ≥
0 and a covector (adjoint) λ :[0, tc] → (R2)∗, such that the
following hold:

1. (λ0, λ(t)) 6= 0 for all t ∈ [0, tc].
2. λ(t) = (λ1(t), λ2(t)) satisfies the second-order differential

equation

λ̇(t) =





2x1 + x2 + ǫ − 1 prx2 − ǫ

x1 pr(2x2 + x1 − 1)



 λ(t)

+ u(t)

(

α + d −α

0 0

)

λ(t)

(24)

3. u∗(t)minimizes H pointwise over the control set U:

H(λ0, λ, x∗(t), u∗(t)) = min
v∈U

H(λ0, λ, x∗(t), v).

Thus, the control u∗(t)must satisfy

u∗(t) =

{

0 8(t) > 0,

M 8(t) < 0.
(25)

where

8(t) : = 8(x∗(t), λ(t)). (26)

4. The Hamiltonian H is identically zero along the extremal lift
(x∗(t), u∗(t), λ(t)):

H(λ0, λ(t), x∗(t), u∗(t)) ≡ 0. (27)

Proof: Most statements of Theorem 6 follow directly from
the Maximum Principle, so proofs are omitted. In particular,
items (1), (2), and the first part of (3) are immediate
consequences (Ledzewicz and Schättler, 2012). Equation (25)
follows directly since we minimize the function H, which is
affine in u (see Equation 22). The Hamiltonian vanishes along
(x∗(t), u∗(t), λ(t)) since it is independent of an explicit time
t dependence and the final time tc is free, the latter being a
consequence of the transversality condition.

Proposition 7. For all t ∈ [0, tc], the adjoint λ(t) corresponding
to the extremal lift (x∗(t), u∗(t), λ(t)) is nonzero.

Proof: This is a general result relating to free end time
problems. We include a proof here for completeness. Suppose
that there exists a time t ∈ [0, tc] such that λ(t) =

0. By (22), the corresponding value of the Hamiltonian is
H(λ0, λ(t), x∗(t), u∗(t)) = −λ0. By item (4) in Theorem 6, H ≡

0, which implies that λ0 = 0. This contradicts item (1) in
Theorem 6. Hence, λ(t) 6= 0 on [0, tc].

4.3. Geometric Properties and Existence of
Singular Arcs
We now undertake a geometric analysis of the optimal control
problem utilizing the affine structure of system (8) for interior
states (i.e., controls which satisfy Theorem 6). We call such
controls interior extremals, and all extremals in this section are
assumed to be interior. The following results depend on the
independence of the vector fields f and g, which we use to
both classify the control structure for abnormal extremal lifts
(extremal lifts with λ0 = 0), as well as characterize the switching
function dynamics via the Lie bracket.

Proposition 8. For all x1 ∈ �, x1 > 0, the vector fields f (x) and
g(x) are linearly independent.

Proof: Define A(x) = A(x1, x2) to be the matrix

A(x) =
(

f (x) g(x)
)

=

(

(1− (x1 + x2)− ǫ)x1 −(α + d)x1
pr(1− (x1 + x2))x2 + ǫx1 αx1

)

.
(28)

The determinant of A can calculated as

detA(x) = αx21κ(x)+ pr(α + d)x2x1κ(x)+ ǫdx
2
1 (29)

where

κ(x) : = 1− (x1 + x2). (30)

As x1(t) + x2(t) ≤ 1 for all t ≥ 0, κ(x(t)) ≥ 0, and we see that
detA(x) = 0 in� if and only if x1 = 0, completing the proof.
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The line x1 = 0 is invariant in �, and furthermore
the dynamics in the set are independent of the control u(t).
Conversely, x01 > 0 implies that x1(t) > 0 for all t ≥ 0. We
concern our analysis only in this latter case, and so without loss of
generality, f(x) and g(x) are linearly independent in the region

of interest �c.
We begin by showing that abnormal extremal lifts are easily

characterized. We recall that an extremal lift is abnormal if λ0 =

0, i.e., if the Hamiltonian is independent of the objective.

THEOREM 9. Abnormal extremal lifts at interior points, i.e.,
extremal lifts corresponding to λ0 = 0, are constant and given by
the maximal (M) or minimal (0) dosage.

Proof: Assume that u∗ switches values at some time t. From (25),
we must have that 8(t) = 0. Since λ0 = 0 and 8(t) =

〈λ(t), g(x∗(t))〉, Equation (22) reduces to

H(t) = 〈λ(t), f (x∗(t))〉 = 0. (31)

Thus, λ(t) is orthogonal to both f (x∗(t)) and g(x∗(t)). Since f
and g are linearly independent (Proposition 8), this implies that
λ(t) = 0. But this contradicts Proposition 7. Hence, no such
time t exists, and u∗(t) is constant. The constant sign of 8 thus
corresponds to u = 0 or u = M (see Equation 25).

The control structure for abnormal extremal lifts is then
completely understood via Theorem 9. To analyze the
corresponding behavior for normal extremal lifts, without
loss of generality we assume that λ0 = 1. Indeed, λ(t) may be
rescaled by λ0 > 0 to yield an equivalent version of Theorem 6.
We thus assume that the Hamiltonian H(t) evaluated along
(λ(t), x∗(t), u∗(t)) is of the form

H(t) = −1+ 〈λ(t), f (x∗(t))〉 + u∗(t)8(t) ≡ 0. (32)

We recall the Lie bracket as the first-order differential operator
between two vector fields X1 and X2:

[X1,X2](z) = DX2(z)X1(z)− DX1(z)X2(z), (33)

where, for example, DX2(z) denotes the Jacobian of X2 evaluated
at z. As f and g are linearly independent in �, there exist γ ,β ∈

C∞(�) such that

[f , g](x) = γ (x)f (x)+ β(x)g(x), (34)

for all x ∈ �. Explicitly, we compute γ and β :

γ (x) = −
(α + d)x21
detA(x)

(

ax1 + bx2 − c
)

, (35)

β(x) =
x21

detA(x)

(

α(1− pr)κ(x)(κ(x)− ǫ)+ ǫd(x1 + prx2

+ κ(x)− ǫ)
)

, (36)

where

a = α

(

(1− pr)+
d

α + d

)

, (37)

b = α(1− pr)+ dpr , (38)

c = α(1− pr)+ ǫd. (39)

Clearly, for parameter values of interest (recall 0 < pr < 1),
a, b, c > 0. The assumption (5) guarantees that β(x) > 0 on
0 < x1 + x2 < Vc.

From (25), the sign of the switching function 8 determines
the value of the control u∗. As λ and x∗ are solutions of
differential equations,8 is differentiable. The dynamics of8 can
be understood in terms of the Lie bracket [f , g]:

8̇(t) =
d

dt
〈λ(t), g(x∗(t))〉 (40)

= γ (x∗(t))〈λ(t), f (x∗(t))〉 + β(x∗(t))8(t). (41)

The last lines of the above follow from (34) as well as the linearity
of the inner product. We are then able to derive an ODE system
for x∗ and8. Equation (32) allows us to solve for 〈λ(t), f (x∗(t))〉:

〈λ(t), f (x∗(t))〉 = 1− u∗(t)8(t). (42)

Substituting the above into (41) then yields the following ODE
for8(t), which we view as coupled to system (8) via (25):

8̇(t) = γ (x∗(t))+
(

β(x∗(t))− u∗(t)γ (x∗(t))
)

8(t). (43)

The structure of the optimal control at interior points may now
be characterized as a combination of bang-bang and singular arcs.
We recall that the control (or, more precisely, the extremal lift)
u∗ is singular on an open interval I ⊂ [0, tc] if the switching
function 8(t) and all its derivatives are identically zero on I.
On such intervals, Equation (25) does not determine the value
of u∗, and a more thorough analysis of the zero set of 8(t) is
necessary. Indeed, for a problem such as ours, aside from controls
determined by the path constraint ψ(x1(t), x2(t)) ≤ 0, singular
arcs are the only candidates for optimal controls that may take
values outside of the set {0,M}. Conversely, times t where8(t) =
0 but 8(n)(t) 6= 0 for some n ≥ 1 denote candidate bang-bang
junctions, where the control may switch between the vertices 0
and M of the control set U. Note that the parity of the smallest
such n determines whether a switch actually occurs: n odd implies
a switch, while for n even u∗ remains constant. Equation (43)
allows us to completely characterize the regions in the (x1, x2)
plane where singular arcs are attainable, as demonstrated in the
following proposition.

Proposition 10. Singular arcs are only possible in regions of the
(x1, x2) plane where γ (x) = 0. Furthermore, as x1(t) > 0 for all
t ≥ 0, the region

{

x ∈ R2 | γ (x) = 0
}

∩� is the line

ax1 + bx2 − c = 0, (44)

where a, b, c are defined in (37–39).

Proof: As discussed prior to the statement of Proposition 10, a
singular arc must occur on a region where both8(t) and 8̇(t) are
identically zero (as well as all higher-order derivatives). Denoting
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FIGURE 3 | Domain in (x1, x2) plane. (A) Region where γ changes sign. We see that inside the triangular region x1 + x2 ≤ 1 of the first quadrant, γ changes sign only

along the line ax1 + bx2 − c = 0. For this line to be interior to �c as depicted, we must be in the parameter regime indicated in (49). X and Y vector fields

corresponding to vertices of control set U. For singular controls to lie in U, X and Y must point to opposite sides along L. (B) Same as in (A), but with α = 0.

by x∗(t) the corresponding trajectory in the (x1, x2) phase plane,
we may calculate 8̇(t) from equation (43):

8̇(t) = γ (x∗(t)). (45)

Note we have substituted the assumption 8(t) = 0. Clearly we
must also have that γ (x∗(t)) = 0, thus implying that x∗(t) ∈

γ−1(0), as desired. The last statement of the proposition follows
immediately from Equation (35).

Proposition 10 implies that singular solutions can only occur
along the line ax1 + bx2 − c = 0. Thus, define regions in the first
quadrant as follows:

�+
c : =

{

x ∈ � | γ (x) > 0
}

, (46)

�−
c : =

{

x ∈ � | γ (x) < 0
}

, (47)

L =
{

x ∈ � | γ (x) = 0
}

. (48)

Recall that�c is simply the region in� prior to treatment failure,
i.e., 0 ≤ V ≤ Vc, x1, x2 ≥ 0. From (35), �c is partitioned as in
Figure 3B. From (35) and (37–39), L is a line with negative slope
−b/a. Furthermore, necessary and sufficient conditions for L to
lie interior to�c are

c
a ,

c
b
≤ Vc. From (37)–(39), this occurs if and

only if

ǫ ≤ min

{

α

α + d
−

1− Vc

d

(

α(1− pr)+
αd

α + d

)

,

pr −
1− Vc

d

(

α(1− pr)+ dpr

)

}

. (49)

As we have assumed that ǫ is small, and that Vc ≈ 1, this
inequality is not restrictive, and we assume it is satisfied for the
remainder of the work. We note an important exception below:
when α = 0 the inequality is never satisfied with ǫ > 0;
for such parameter values, line L is horizontal (Figure 3B). We
note that this does not change the qualitative results presented
below. Of course, other configurations of the line ax1 + bx2 = c

and hence precise optimal syntheses may exist, but we believe
the situation illustrated in Figure 3A is sufficiently generic for
present purposes.

With the existence of singular arcs restricted to the line γ = 0
by Proposition 10, we now investigate the feasibility of such
solutions. Recall that the treatment u(t) must lie in the control
set U = [0,M], for someM > 0 corresponding to the maximally
tolerated applied dosage. Defining the vector field X(x) and Y(x)
as the vector fields corresponding to the vertices of U,

X(x) : = f (x),

Y(x) : = f (x)+Mg(x),
(50)

a singular control takes values in U at x ∈ L if and only if X(x)
and Y(x) point in different directions along L. More precisely,
the corresponding Lie derivatives LXγ (x) and LYγ (x) must
have opposite signs (see Figure 3A). The following proposition
determines parameter values where this occurs.

Proposition 11. Suppose that α > 0, so that drug has the
potential to induce resistance. Also, let the maximally tolerated
dosage M satisfy

M >
α + d

α(α + d)+ αd

(

d

(

α

α + d
− ǫ

)

+ ǫd(pr − α)

− 2αd(1− pr)

)

. (51)

Then the following hold along L:

1. LXγ < 0,
2. LYγ < 0 as (x1, x2) →

(

0, c
b

)

in�,

3. LYγ > 0 at (x1, x2) =
(

c
a , 0
)

, and
4. LYγ is monotonically decreasing as a function of x1.

Thus, L contains a segment L̄ ⊂ L which is a singular arc. Note
that L̄ is precisely the region in L where LYγ is positive.
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FIGURE 4 | Geometry of vector fields X and Y with α > 0 and M

satisfying (51). As in Proposition 11, this can be understood via the

corresponding Lie derivatives of γ . Note that near x2 = 0, X, and Y point to

opposite sides of L, while at (x1, x2) =
(

0, c
b

)

, both X and Y point away from

γ > 0. The line L̄ is the unique singular arc in �c.

Proof: The proof is purely computational.

Note that if inequality (51) is not satisfied, then singular arcs
are not in the domain�c.

The geometry of Proposition 11 is illustrated in Figure 4.
Thus, assuming α > 0 andM as in (51), singular arcs exist along
the segment L̄ ⊂ L. Furthermore, the corresponding control
has a unique solution us, which may be computed explicitly.
Indeed, as the solutionmust remain on the lineL, or equivalently,
ax1 + bx2 = c, taking the time derivative of this equation yields
aẋ1 + bẋ2 = 0, and substituting the expressions (1) we compute
us as

us(t) =
(1− (x1(t)+ x2(t))

)

(

ax1(t)+ prbx2(t)
)

+ ǫ(b− a)x1(t)

2α(1− pr)dx2(t)
,

(52)

where a, b, c are given by (37–39) and x2 and x1 satisfy ax1+bx2 =
c. As discussed previously, x1(t) > 0 for x01 > 0, so this formula is
well-defined. Proposition 11 implies that it is possible to simplify
Equation (52) as a function of x1 (i.e. as a feedback law) for
x1 ∈

(

s̄, ca
)

, for some s̄ > 0, but since its value will not be needed,
we do not provide its explicit form. Note that the maximal dose
M is achieved precisely at x1 = s̄ where vector field Y is parallel
to L. Thus, at this s̄, the trajectory must leave the singular arc,
and enter the region �−

c . As ẋ2 ≥ 0, trajectories must follow L

in the direction of decreasing x1 (see Figure 4). We summarize
these results in the following theorem.

THEOREM 12. If α > 0, and M satisfies (51), a singular arc exists
in the (x1, x2) plane as a segment of the line L. Along this singular
arc, the control is given by Equation (52), where ax1 + bx2 = c.
Therefore, in this case the necessary minimum conditions on u∗

from (25) can be updated as follows:

u∗(t) =











0 8(t) > 0,

M 8(t) < 0,

us(t), 8(t) ≡ 0 for t ∈ I,

(53)

where I is an open interval. Recall again that this is the optimal
control at points interior to�c.

Proof: See the discussion immediately preceding Theorem 12.

In the case α = 0, the line L is horizontal, and as x2 is
increasing, no segment L̄ ⊆ L is admissible in phase space. Thus,
the interior controls in this case are bang-bang; for a visualization
(see Figure 3B).

THEOREM 13. If α = 0, there are no singular arcs for the optimal
time problem presented in section 3. Thus, the interior control
structure is bang-bang.

Outside of the singular arc L̄, the control structure is
completely determined by (25) and (43). The precise result,
utilized later for the optimal synthesis presented in section 5, is
stated in the following theorem. We first introduce a convenient
(and standard) notation. Let finite words on X and Y denote
the concatenation of controls corresponding to vector fields X
(u ≡ 0) and Y (u ≡ M), respectively. The order of application is
read left-to-right, and an arc appearing in a wordmay not actually
be applied (e.g. XY denotes an X arc followed by a Y arc or a Y
arc alone).

THEOREM 14. Consider an extremal lift Ŵ = ((x, u), λ).
Trajectories x remaining entirely in �+

c or �−
c can have at most

one switch point. Furthermore, if x ∈ �+
c , then the corresponding

control is of the form YX. Similarly, x ∈ �−
c implies that u = XY.

Hence multiple switch points must occur across the singular arc L̄.

Proof: If τ is a switching time, so that 8(τ ) = 0, Equation (43)
allows us to calculate 8̇(τ ) as

8̇(τ ) = γ (x(τ )). (54)

Thus, in�+
c where γ > 0, 8̇(τ ) > 0, and hence8must increase

through τ . The expression for the control (25) then implies that
a transition from a Y-arc to an X-arc occurs at τ (i.e., a YX
arc). Furthermore, another switching time cannot occur unless
x leaves �+

c , since otherwise there would exist a τ̄ > τ such that
8(τ̄ ) = 0, 8̇(τ̄ ) < 0 which is impossible in �+

c . Similarly, only
XY-arcs are possible in�−

c .

The structure implied by Theorem 14 is illustrated in Figure 4.
Note that inside the sets �+

c ,�
−
c , and L̄, extremal lifts are

precisely characterized. Furthermore, the results of section 4.1
(and particularly Equation 18) yield the characterization on the
boundary N. What remains is then to determine the synthesis of
these controls to the entire domain �c, as well as to determine
the local optimality of the singular arc L̄. The latter is addressed
in the following section.
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4.4. Optimality of Singular Arcs
We begin by proving that the singular arc is extremal, i.e. that it
satisfies the necessary conditions presented in section 4.2 (note
that it is interior by assumption). This is intuitively clear from
Figure 4, since X and Y point to opposite sides along L̄ by the
definition of L.

THEOREM 15. The line segment L̄ ⊂ L is a singular arc.

Proof: We find an expression for u = u(x) such that the vector
f (x)+u(x)g(x) is tangent to L̄ at x, i.e. we find the unique solution
to

Lf+ug(γ ) = 0 (55)

Note that we can invert (50):

f (x) = X(x)

g(x) =
1

M

(

Y(x)− X(x)
)

(56)

so that f + ug =
(

1− u
M

)

X + u
MY . Thus,

Lf+ug(γ ) =
(

1−
u

M

)

LXγ +
u

M
LYγ

Setting the above equal to zero, and solving for u = u(x) yields

u(x) = M
LXγ (x)

LXγ (x)− LYγ (x)
(57)

As LXγ < 0 and LYγ > 0 on L̄ by Proposition 11, we see that
0 < u(x) < M. We must also verify that the associated controlled
trajectory (57) is extremal by constructing a corresponding lift.
Suppose that x(t) solves

ẋ = f (x)+ u(x)g(x),

x(0) = q,

for q ∈ L̄. Let φ ∈ (R2)∗ such that

〈φ, g(q)〉 = 0, 〈φ, f (q)〉 = 1.

Let λ(t) solve the corresponding adjoint Equation (24) with initial
condition λ(0) = φ. Then the extremal lift Ŵ = ((x, u), λ) is
singular if8(t) = 〈λ(t), g(x(t))〉 ≡ 0. By construction of u(x), the
trajectory remains on L̄ on some interval containing zero, and we
can compute 8̇ as [using (34)]

8̇(t) = 〈λ(t), [f , g](x(t))〉

= γ (x(t))〈λ(t), f (x(t)〉 + β(x(t))〈λ(t), g(x(t))〉

= β(x(t))8(t),

Note that we have used (43) and the fact that γ = 0 by our choice
of u. Since 8(0) = 0 by hypothesis, this implies that 8(t) ≡ 0,
as desired.

The above then verifies that L̄ is a singular arc. Note that an
explicit expression for u = u(x) was given in (52), which can
be shown to be equivalent to (57).

Having shown that the singular arc L̄ is extremal, we now
investigate whether it is locally optimal for our time-optimization
problem. The singular arc is of intrinsic order k if the first 2k− 1
derivatives of the switching function are independent of u and
vanish identically on an interval I, while the 2kth derivative
has a linear factor of u. We can compute [this is standard for
control-affine systems (8)] that

82k(t) = 〈λ(t), ad2kf (g)(x(t))〉 + u(t)〈λ(t), [g, ad2k−1
f (g)](x(t))〉,

(58)

where adZ is the adjoint endomorphism for a fixed vector field Z:

adZ(V) = [Z,V], (59)

and powers of this operator are defined as composition. Fix
an extremal lift Ŵ = ((x, u), λ) of a singular arc of order k.
The Generalized Legendre-Clebsch condition (also known as the
Kelley condition) (Ledzewicz and Schättler, 2012) states that a
necessary condition for Ŵ to satisfy a minimization problem with
corresponding Hamiltonian H is that

(−1)k
∂

∂u

d2k

dt2k
∂H

∂u
(λ0, λ(t), x(t), u(t)) ≥ 0 (60)

along the arc. Note that ∂H
∂u = 8, so that the above is simply

the u coefficient of the 2k-th time derivative of the switching
function (multiplied by (−1)k). The order of the arc, as well as
the Legendre-Clebsch condition, are addressed in Theorem 16.

THEOREM 16. The singular control is of order one. Furthermore,
for all times t such that x(t) ∈ L̄, 〈λ(t), [g, [f , g]](x(t))〉 > 0. Thus,
the Legendre-Clebsch condition is violated, and the singular arc L̄
is not optimal.

Proof: Along singular arcs we must have 8(t), 8̇(t), 8̈(t) ≡ 0,
and we can compute these derivatives using iterated Lie brackets
as follows:

8(t) = 〈λ(t), g(x(t))〉,

8̇(t) = 〈λ(t), [f , g](x(t))〉,

8̈(t) = 〈λ(t), [f + ug, [f , g]](x(t))〉.

(61)

The final of the above in (61) can be simplified as

8̈(t) = 〈λ(t), [f , [f , g]](x(t))〉 + u(t)〈λ(t), [g, [f , g]](x(t))〉 ≡ 0,
(62)

which is precisely (58) for k = 1. Order one is then
equivalent to being able to solve this equation for u(t). Thus,
〈λ(t), [g, [f , g]](x(t))〉 > 0 will imply that the arc is singular
of order one. We directly compute 〈λ(t), [g, [f , g]](x(t))〉 =

〈λ(t), [g, adf (g)](x(t))〉. Using Equation (34) and recalling
properties of the singular arc [γ = 0 and the remaining relations
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FIGURE 5 | Both XY and singular trajectories taking q1 to q2.

FIGURE 6 | XY (solid) and XYXY (dashed) trajectories taking q1 to q2 in the

region γ > 0. The time difference between the two trajectories can again be

related to the surface integral in the region R, where γ < 0. The XY trajectory

can then be seen to be slower in comparison.

in (61), as well as basic “product rule” properties of the Lie
bracket], we can show that

[g, [f , g]] = (Lgγ )f − γ [f , g]+ (Lgβ)g. (63)

Recall that for an extremal lift along the arc L̄,

〈λ(t), g(x(t))〉 ≡ 0,

〈λ(t), [f , g](x(t))〉 ≡ 0

〈λ(t), f (x(t))〉 ≡ 1.

(64)

The first two of the above follow from 8, 8̇ ≡ 0, and the third
is a consequence of H ≡ 0 [see (22)]. Equations (63) and (64)
together imply that

〈λ(t), [g, [f , g]](x(t))〉 = Lgγ 〈λ(t), f (x(t))〉 − γ 〈λ(t), [f , g](x(t))〉

+ Lgβ〈λ(t), g(x(t))〉

= Lgγ (x(t))

=
1

M

(

LYγ (x(t))− LXγ (x(t))
)

.

(65)

FIGURE 7 | Comparison of upYup arc and an arc that remains on N (hence

u ≡ up ) between the points [S(τ1),R(τ1)] and [S(τ2),R(τ2)], assuming that up
remains feasible (that is, up ∈ [0,M]). Note that γ < 0 in the area of interest,

and that a switching of a Y to an X arc is prohibited via the Maximum Principle.

Thus, the only possibility is the curve illustrated, which leaves the boundary N

for a Y arc before up becomes infeasible.

TABLE 1 | Parameter values and initial conditions used throughout section 6,

unless stated otherwise.

Parameters Interpretation Value

x01 Initial sensitive population 10−2

x02 Initial resistant population 0

α Induced resistance rate due to the presence of the drug 10−2

d Drug cytotoxicity parameter 1

ǫ Drug-independent resistance rate 10−6

pr Resistant growth fraction 0.2

t0 Initial time 0

M Maximum drug dosage 5

Vc Tumor volume defining treatment failure 0.9

The last equality follows from the representation in (56).
As LYγ > 0 and LXγ < 0 along L̄ (Proposition 11),
〈λ(t), [g, [f , g]](x(t))〉 > 0, as desired. Furthermore,

−〈λ(t), [g, [f , g]](x(t))〉 < 0, or equivalently (66)

(−1)1
∂

∂u

d2

dt2
∂H

∂u
< 0, (67)

showing that (60) is violated (substituting k = 1). Thus, L̄ is
not optimal.

Theorem 16 then implies that the singular arc is suboptimal, i.e.
that L̄ is “fast” with respect to the dynamics. In fact, we can
compare times along trajectories using the “clock form,” a one-
form on�. As one-forms correspond to linear functionals on the
tangent space, and f and g are linearly independent, there exists a
unique ω ∈ (T�)∗ such that

ωx(f (x)) ≡ 1, ωx(g(x)) ≡ 0. (68)
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FIGURE 8 | Numerical solution of the optimal control problem with d = 0.05, α = 0.005, and the remainder of parameters as in Table 1. (A) Sensitive (x1) and

resistant (x2) temporal dynamics. (B) Control structure of form YXupY . (C) Volume dynamics. Note that the trajectory remains on the line V = Vc for most times, with

corresponding control u = up.

In fact, we compute it explicitly:

ωx =
g2(x)dx

1 − g1(x)dx
2

det(f (x), g(x))
. (69)

Then, along any controlled trajectory (x, u) defined on [t0, t1], the
integral of ω computes the time t1 − t0:

∫

x
ω =

∫ t1

t0

ωx(t)(ẋ(t)) dt

=

∫ t1

t0

ωx(t)(f (x(t))+ u(t)g(x(t)))) dt

=

∫ t1

t0

ωx(t)(f (x(t)) dt +

∫ t1

t0

u(t)ωx(t)(g(x(t)))) dt

=

∫ t1

t0

dt

= t1 − t0.

(70)

We can then use ω and Stokes’ Theorem to compare bang-bang
trajectories with those on the singular arc. See Figure 5 below for
a visualization of a singular trajectory connecting q1, q2 ∈ L̄ and
the corresponding unique XY trajectory connecting these points
in �−

c (note that uniqueness is guaranteed as long as q1 and q2
are sufficiently close).

Let tS denote the time spent along the singular arc, tX the
time spent along the X arc, and tY the time spent along the Y
arc. Denote by 1 the closed curve traversing the X and Y arcs
positively and the singular arc negatively, with R as its interior. As
X and Y are positively oriented (they have the same orientation
as f and g), Stokes’ Theorem yields

tX + tY − tS =

∫

1

ω =

∫

R
dω (71)

Taking the exterior derivative yields the two-form dω see Chapter
2 of (Ledzewicz and Schättler, 2012):

dω = −
γ

det(f , g)
. (72)

As the determinant is everywhere positive (see the proof of
Proposition 8), and R lies entirely in γ < 0, the integral on the
right-hand side of (71) is positive, so that we have

tS < tX + tY (73)

Thus, time taken along the singular arc is shorter than that
along the XY trajectory, implying that the singular arc is locally
suboptimal for our problem (recall that we want to maximize
time). Since local optimality is necessary for global optimality,
trajectories should never remain on the singular arc for a
measurable set of time points. This reaffirms the results of
Theorem 16. A completely analogous statement holds for YX
trajectories in the region γ > 0. We can also demonstrate,
utilizing the same techniques, that increasing the number of
switchings at the singular arc speeds up the trajectory (see
Figure 6). This again reinforces Theorem 16, and implies that
trajectories should avoid the singular arc to maximize the time
spent in�c.

5. CHARACTERIZATION OF OPTIMAL
CONTROL

The results of sections 4.1, 4.2, 4.3, and 4.4 may now be combined
to synthesize the optimal control introduced in section 3.

THEOREM 17. For any α ≥ 0, the optimal control to maximize
the time to reach a critical time is a concatenation of bang-bang
and path-constraint controls. In fact, the general control structure
takes the form

(YX)nupY (74)

where (YX)n : = (YX)n−1YX for n ∈ N, and the order should be
interpreted as left to right. Here up is defined in (18).

Proof: Formula (74) is simply a combination of the results
presented previously. Note that singular arcs are never (locally)
optimal, and hence do not appear in the equation. We also
observe that X arcs are not admissible once the boundary N has
been obtained, as an X arc always increases V . A Y arc may bring
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the trajectory back into int(�c), but a YX trajectory is no longer
admissible, as the switching structure in�−

c is XY (Theorem 14).
The only aspect that remains is to show that onceN is reached,

the only possible trajectories are either up given by (18) or Y ,
with at most one switching occurring between the two. That is, a
local arc of the form upYup is either sub-optimal or non-feasible
(equivalently, outside of the control set U). Suppose that such
an arc is feasible, i.e., that for all such points in phase space,
0 ≤ up ≤ M [recall that up is defined via feedback in (18)].
Denote by τ1 and τ2 the times at which the switch onto and off
of Y occurs, respectively. Since up decreases with S, feasibility
implies that up(t) ≤ M for all t ∈ [τ1, τ2]. Thus, we can consider
the alternate feasible trajectory which remains on N between
the points (S(τ1),R(τ1)) and (S(τ2),R(τ2)); see Figure 7 for an

FIGURE 9 | Phase plane corresponding to Figure 8. Trajectory which optimal

control is of the form YXupY with parameter values as in Table 1 except for

α = 0.005 and d = 0.05. The yellow dot in the figure represents the (x∗1, x
∗
2)

point at which Y (x) is tangent to the sliding surface. Here,

(x∗1, x
∗
2) = (0.1059, 0.7941). As proven in Proposition 2, for points on the line N,

the tumor volume will decrease along the Y (x) direction if x1 > 0.1059 and will

increase for x1 < 0.1059.

illustration. Call τ the time for such a trajectory. Then, using
the clock-form ω and the positively-oriented curve 1 which
follows N first and Y (in the reverse direction) second, we obtain
similarly to (71),

τ − (τ2 − τ1) = −

∫

R

γ

det(f , g)
, (75)

where R : = int(1). Recalling that γ < 0 in R (see Figure 4), the
previous equation implies that

τ > τ1 − τ2, (76)

i.e., a longer amount of time is achieved by remaining on the
boundary N. Hence the arc upYup is sub-optimal if it is feasible,
as desired.

The previous argument has one subtle aspect, as we used
results from the Maximum Principle on the boundary set N,
where technically it does not apply. However, the above still
remains true, since we may approximate the boundary line
V = Vc with a curve interior to �c which remains feasible. By
continuity, the time along such a curve can be made arbitrarily
close to τ , and hence is still greater than τ2 − τ1, implying that
upYup is sub-optimal.

Note that in Theorem 17, the switchings must occur across the
singular arc L̄, if it exists (recall that it is not admissible if α = 0).
The control up is determined along the boundary of �c, and
provides the synthesis between interior and boundary controls.

TABLE 2 | Optimal time tc for each of the computed controls appearing in

Figure 11.

d α = 0.001 α = 0.01 α = 0.1

0.001 6.91 7.28 15.83

0.01 7.87 8.34 17.66

0.1 162.53 72.14 30.09

0.5 246.56 140.93 61.81

1 281.25 172.26 82.13

FIGURE 10 | Numerical solution of optimal control problem with d = 0.05, α = 0.1, and the remainder of parameters as in Table 1. (A) Sensitive (x1), resistant (x2),

and volume (x1 + x2) temporal dynamics. (B) Control structure of form Y , i.e., an entirely upper corner control. (C) Phase plane dynamics, plotted with relevant vector

fields.
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FIGURE 11 | Optimal control structures for different α and d values. The blue curve is the computed optimal control, while the red curve is the feedback control along

on the boundary of N, which may or may not be optimal or even feasible.
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FIGURE 12 | Variation in tc as a function of α. (A) Treatment success time tc for d = 0.001 with varying α values. (B) Functional dependence of tc on α for different d

parameters. Note that for small d, tc increases as a function of α, but that this trend is reversed if d is further increased.

We finally include a technical result, which eliminates
the optimality of the constrained (boundary) control up in
certain cases.

Proposition 18. Assume that the maximal dose M is as in
Proposition 2:

M >
(1− Vc)(1− pr)

d
(77)

If the optimal control becomes maximal in �−
c (i.e., u = M in

this region), then the control cannot take the boundary value up
(Equation 18) on an interval. Equivalently, an optimal control
cannot end in the form Yup.

Proof: Note that if u∗ = Y and reaches N at the point x, then the
Lie derivative LYV(x) must satisfy

LYV(x) ≥ 0 (78)

as V must be increasing along the Y vector field, since it reaches
N. But by Proposition 2, this implies that

x1 ≤ x∗1

Proposition 3 then implies that up is unfeasible in this region,
completing the proof.

6. NUMERICAL RESULTS

In this section, we provide numerical examples of the analytical
results obtained in previous sections. All figures in this section
were obtained using the GPOPS-II MATLAB software (Patterson
and Rao, 2014). Parameters and initial values are given in Table 1

shown below, unless stated otherwise.

Theorem 17 characterizes the qualitative form of the
optimal control:

u∗ = (YX)nupY , (79)

where n is the number of interior switches, up the sliding
control (18), and X and Y denote the lower and upper corner
controls u = 0 and u = M, respectively. We begin by
computing sample controls (see Figures 8, 10). Note that the
optimal control in Figure 8B takes the form YXupY , while
that of Figure 10B is an upper corner control Y . The phase
plane dynamics corresponding to Figure 8 are also provided in
Figure 9. In both cases the cytotoxic parameter was fixed at
d = 0.05, while the induced rate of resistance α varies between
α = 0.005 in Figure 8 and α = 0.1 in Figure 10. Note that for the
smaller value of α (Figure 8), a longer period of treatment success
is observed, as the time to treatment failure is approximately 70
time units; compare this with tc = 24.2 in Figure 10. This result
is intuitive, as the treatment less likely to induce resistance is able
to be more effective when optimally applied.

The generality of the previous statement is investigated in

Table 2 and Figures 11, 12. The computed optimal times tc
suggest that when the cytotoxicity of the drug (d) is small,

higher induction rates (α) actually increase treatment efficacy.

For example, for d = 0.001 treatment response increases as α

increases (Figure 12A). This could be explained from the fact

that sensitive cells have a higher growth rate than resistant cells

(assumption pr < 1). Thus, when the chemotherapeutic drug
has a low effectiveness (small d) a larger α value actually helps

to reduce the sensitive population size, and therefore extends the

time tc at which the tumor volume exceeds its critical value Vc.

The situation is reversed when we consider larger values of

d because in this case it would take more time for the tumor to

grow to its critical volume Vc if the drug effectiveness is large

enough; see for example the row d = 0.5 in Table 2, and the

corresponding purple curve in Figure 12B. Figure 12B provides

the critical time as a function of α for multiple cytotoxicities d;

note the qualitative change in tc as d increases.

Examining Figure 11 and Table 2 also suggests that as d

increases, the feedback control up becomes optimal on an interval
[t1, t2] with 0 < t1 < t2 < tc. More numerical results are
provided in section 7.3.
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FIGURE 13 | Computed optimal controls for α = 0.005 and (A) d = 0.0206, (B) d = 0.020624489795918, and (C) d = 0.207959. Note that the control in (A) takes

the form Y , while that in (B,C) is of the form YXup.

FIGURE 14 | Variation in tc as a function of d. (A) tc response for varying d values. Note that treatment efficacy generally increases with increasing d. (B) α = 0.1.

7. ADDITIONAL RESULTS

7.1. Structural Identifiability
For completeness, we discuss the identifiability of system (1).
As our focus in this work has been on control structures based
on the presence of drug-induced resistance, we rely on the
ability to determine whether, and to what degree, the specific
chemotherapeutic treatment is generating resistance.

Ideally, we envision a clinical scenario in which cancer cells
from a patient are cultured in an ex vivo assay (for example,
see Silva et al., 2017) prior to treatment. Parameter values are then
calculated from treatment response dynamics in the assay, and an
optimal therapy regime is implemented based on the theoretical
work described below. Thus, identifying patient-specific model
parameters, specially the induced-resistance rate α, is a necessary
step in determining the control structures to apply. In this
section, we address this issue, and prove that all parameters
are structurally identifiable, as well as demonstrate a specific
set of controls that may be utilized to determine α. A
self-contained discussion is presented; for more details on
theoretical aspects, see Sontag (2017) and the references
therein. Other recent works related to identifiability in the
biological sciences (as well as practical identifiability) can be

found in Eisenberg and Jain (2017) and Villaverde et al.
(2016).

We first formulate our dynamical system, and specify the

input and output variables. The treatment u(t) is the sole input.

Furthermore, we assume that the only clinically observable
output is the net tumor volume V(t):

V(t) : = x1(t)+ x2(t). (80)

That is, we do not assume real-time measurements of the
individual sensitive and resistant sub-populations. We note that
in some instances, such measurements may be possible; however
for a general chemotherapy, the precise resistance mechanism
may be unknown a priori, and hence no biomarker with the
ability to differentiate cell types may be available.

Treatment is initiated at time t = 0, at which we assume an
entirely sensitive population:

x1(0) = x01, x2(0) = 0. (81)

Here 0 < x01 < 1, so that (x1(t), x2(t)) ∈ � for all t ≥ 0. We
note that x2(0) = 0 is not restrictive, and similar results may
derived under the more general assumption 0 ≤ x2(0) < 1.
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The condition x2(0) = 0 is utilized both for computational
simplicity and since x2(0) is generally small (assuming a non-zero
detection time, and small drug-independent resistance parameter
ǫ; see Greene et al., 2019 for a discussion).

As formulated in section 7.2.1, the above then allows us to
formulate our system (1) in input/output form, where the input
u(t) appears affinely:

ẋ(t) = f (x(t))+ u(t)g(x(t)),

x(0) = x0,
(82)

where (as defined on Equations (9) and (10)) f and g are

f (x) =

(

(1− (x1 + x2))x1 − ǫx1
pr(1− (x1 + x2))x2 + ǫx1

)

, (83)

g(x) =

(

−(α + d)
α

)

x1, (84)

and x(t) = (x1(t), x2(t)). As is standard in control theory,
the output is denoted by the variable y, which in this work
corresponds to the total tumor volume:

y(t, p) : = h(x(t), u(t), p)

= x1(t)+ x2(t).
(85)

Note that x1(t), x2(t) depend on both the input u(t) and
parameters p. A system in form (82) is said to be uniquely
structurally identifiable if the map (u(t), p) 7→ (u(t), y(t, p)) is
injective almost everywhere (Meshkat and Seth, 2014; Eisenberg
and Jain, 2017), where p is the vector of parameters to be
identified. In this work,

p = (x01, d,α, ǫ, pr). (86)

Local identifiability and non-identifiability correspond to the
map being finite-to-one and infinite-to-one, respectively. Our
objective is then to demonstrate unique structural identifiability
for model system (82) [or equivalently (1)], and hence recover all
parameter values p from onlymeasurements of the tumor volume
y. We also note that the notion of identifiability is closely related
to that of observability; for details Anguelova (2004), Sontag
(1979) are good references.

To analyze identifiability, we utilize results appearing in,
for example (Hermann and Krener, 1977; Wang and Sontag,
1989; Sontag and Wang, 1991), and hence frame the issue from
a differential-geometric perspective. Our hypothesis is that
perfect (hence noise-free) input-output data is available and in
particular, for differentiable controls, that we can compute y and
its derivatives. We thus, for example, make measurements of

y(0) = h(x(0)),

ẏ(0) =
d

dt

∣

∣

∣

∣

t=0

h(x(t))
(87)

for appropriately chosen inputs, and relate their values to the
unknown parameter values p. If there exist inputs u(t) such that
the above system of equations may be solved for p, the system

is identifiable. The right-hand sides of (87) may be computed
in terms of the Lie derivatives of the vector fields f and g in
system (82). We recall the definition of Lie differentiation LXH
of a Cω function H by a Cω (i.e. real-analytic) vector field X:

LXH(x) : = ∇H(x) · X(x). (88)

Here the domain of both X and H is the first-quadrant
triangular region �, seen as a subset of the plane, and the vector
fields and output function are Cω on an open set containing �
(in fact, they are given by polynomials, so they extend as analytic
functions to the entire plane). Iterated Lie derivatives are well-
defined, and should be interpreted as function composition, so
that for example LYLXH = LY (LXH), and L2XH = LX(LXH).

More formally, let us introduce the observable
quantities corresponding to the zero-time derivatives of the
output y = h(x),

Y(x0,U) =
dk

dtk

∣

∣

∣

∣

∣

t=0

h(x(t)), (89)

where U ∈ Rk is the value of the control u(t) (without loss
of generality, a polynomial of degree k − 1) and its derivatives

evaluated at t = 0: U =
(

u(0), u
′
(0), ..., u(k−1)(0)

)

. Here k ≥ 0,

indicating that the kth-order derivative Y may expressed as a
polynomial in the components of U (Sontag and Wang, 1991).
The initial conditions x0 appear due to evaluation at t = 0. The
observation space is then defined as the span of the elements
Y(x0,U):

F1 : = span
R
{Y(x0,U) | U ∈ Rk, k ≥ 0}. (90)

Conversely, we also define span of iterated Lie derivatives with
respect to the output h and vector fields f (x) and g(x):

F2 : = span
R

{

Li1 . . . Likh(x0) | (i1, . . . ik) ∈ {g, f }k, k ≥ 0
}

.

(91)

Wang and Sontag (1989) proved that F1 = F2, so that the
set of “elementary observables” may be considered as the set
of all iterated Lie derivatives F2. Hence, identifiability may be
formulated in terms of the reconstruction of parameters p from
elements in F2. Parameters p are then identifiable if the map

p 7→
(

Li1 . . . Likh(x0) | (i1, . . . ik) ∈ {g, f }k, k ≥ 0
)

(92)

is one-to-one. For the remainder of this section, we investigate
the mapping defined in (92).
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Computing the Lie derivatives and recalling that x0 = (S0, 0)
we can recursively determine the parameters p:

x01 = h(x0),

d = −
Lgh(x0)

x01
,

α =
L2gh(x0)

dx01
− d,

ǫ =
Lf Lgh(x0)

dx01
+ 1− x01,

pr =
x01

1− x01
+

LgLf h(x0)

αx01(1− x01)
−

(

1+
d

α

)(

1−
x01

1− x01

)

.

(93)

Since F1 = F2, all of the above Lie derivatives are observable
via appropriate treatment protocols. For an explicit set of controls
and corresponding relations to measurable quantities [elements
of the form (89)], see Greene et al. (2019). Thus, we conclude that
all parameters in system (1) are identifiable, which allows us to
investigate optimal therapies dependent upon a priori knowledge
of the drug-induced resistance rate α.

7.2. Existence Results
For the problem presented in section 3, we are going to verify
that the supremum of times tc(u) for u ∈ U [with tc(u) as
defined in Equation (6)] is obtained by some u∗ ∈ U , i.e., that
an optimal control exists. This involves two distinct steps: (1)
proving that the supremum is finite, and (2) that it is obtained
by at least one admissible control. The following two subsections
verify these claims.

7.2.1. Finiteness of the Supremum

We prove that

sup
u∈U

tc(u) <∞ (94)

for the control system introduced in section 3. The result
depends crucially on (3), and the fact that the globally
asymptotically stable state (0, 1) is disjoint from the dynamic
constraint x ∈ �c (see Equation (13)). That is, Vc < 1
is necessary for the following subsequent result to hold, and
generally an optimal control will not exist if Vc = 1 or if the path
constraint (13) is removed.

Our control system has the form

ẋ = f (x)+ u(t)g(x), (95)

where x ∈ �, u ∈ U , and the vector fields f , g :� →

R2 are continuously differentiable. Note that the above vector
field is affine (and thus continuous) in the control u. Fix the
initial condition

x(0) = x0, (96)

with x0 ∈ �. Recall that all solutions of (95) and (96) approach
the fixed point x̄ : = (0, 1) ∈ �. That is, for all u ∈ U ,

xu(t)
t→∞
−−−→ x̄. (97)

Note that we explicitly denote the dependence of the trajectory
on the control u, and the above point x̄ is independent of the
control u.

For any compact subset E of � such that x0 ∈ E, x̄ /∈ E,
we associate to each control (and hence to its corresponding
trajectory) a time tE(u) such that

tE(u) = max{T | xu(t) ∈ E for all t ≤ T}. (98)

The above is well-defined (as a maximum) for each control u,
since by assumption x0 ∈ E and each trajectory asymptotically
approaches x̄ /∈ E, xu is continuous, and E is compact.

THEOREM 19. Define

T∗ = sup
u∈U

tE(u). (99)

With the above construction, T∗ is finite.

Proof: Consider the sets K,V ⊂ R2, with V being an open
neighborhood of the steady state x̄ = (0, 1) and K a compact set
in R2 such that

(0, 1) ∈ V ( K and K ∩ {(x1, x2) ∈ R2
: x1, x2 ≥ 0

and 0 ≤ x1 + x2 ≤ Vc} = ∅.

By contradiction, suppose that T∗ is not finite, so we can find a
sequence of controls {vk}

∞
k=1

in U satisfying

d∞

(

x(t, vk),K
)

≥ ǫ for all t ≤ tk, with tk → ∞. (100)

where d∞ denotes the supremum metric and, for each k ∈ N,
x(t, vk) is the solution of the IVP:

ẋ = f (x)+ vk(t)g(x),

x(0) = x0,
(101)

Our aim is to find a control u ∈ U such that x(t, u), solution
of system (101), does not enter K for any t > 0. Recall that by the
Banach-Alaoglu theorem, the ball

B
(

L∞
(

[0,∞)
))

= {u ∈ L∞
(

[0,∞)
)

: ‖u‖∞ ≤ M} (102)

is a compact set on the weak∗ topology and metrizable. Thus, the
sequence {vk}

∞
k=1

must have a weak∗−convergent subsequence

{uj}
∞
j=1 which converges to a control u ∈ L∞

(

[0,∞)
)

. In other

words, for every ψ ∈ L1
(

[0,∞)
)

lim
j→∞

∫

[0,∞)
ψujdµ =

∫

[0,∞)
ψudµ, (103)

where µ is the usual Lebesgue measure. This means that the
sequence {uj}

∞
j=1 converges to u with respect to the weak∗

topology on L∞
(

[0,∞)
)

as the dual of L1
(

[0,∞)
)

.
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We next prove that limj→∞ ‖x(t, u) − x(t, uj)‖∞ = 0 for all
t ∈ [tk−1, tk] and all k ∈ N. In order to do so define

xk−1 = x0 +

∫ tk−1

0
[f (x(s))+ u(s)g(x(s))]ds

for any tk−1 ∈ [0,∞), where x solves the IVP

ẋ = f (x)+ vk(t)g(x),

x(tk−1) = xk−1.
(104)

Notice that the fact that the equilibrium (0, 1) is globally
asymptotically stable on {(x1, x2) ∈ R2

: x1, x2 ≥ 0 and 0 <
x1 + x2 ≤ Vc} implies that xk−1 is well-defined for any k ∈ N.

The integral form of (104) is given by

F(t, x, vk) = xk−1 +

∫ t

tk−1

[f (x)+ vk(s)g(x)]ds. (105)

With the help of the tk’s from (100) and assuming (without
loss of generality) that tk increases as k goes to infinity, we write
the set [0,∞) as the countable union of finite closed intervals:

[0,∞) =
⋃

k∈N

[tk−1, tk] where t0 = 0.

Let wj,k and w denote the functions uj and u restricted to
the interval [tk−1, tk], respectively. Thus, the sequence {wj,k}

∞
j=1

converges weakly* to w on [tk−1, tk]:

lim
j→∞

‖x(t,w)− x(t,wj,k)‖∞

= lim
j→∞

‖F(t, x,w)− F(t, x,wj,k)‖∞ (106)

= lim
j→∞

∥

∥

∥

∥

∥

∫ t

tk−1

w(s)g(x)ds−

∫ t

tk−1

wj,k(s)g(x)ds

∥

∥

∥

∥

∥

∞

(107)

= lim
j→∞

∥

∥

∥

∥

∥

∫ t

tk−1

[wj,k(s)− w(s)]g(x)ds

∥

∥

∥

∥

∥

∞

(108)

= 0 for all t ∈ [tk−1, tk]. (109)

Since this result is independent of k, this implies that

d∞

(

x(t, u),K
)

= lim
j→∞

d∞

(

x(t, uj),K
)

≥ ǫ for all

t ∈ [tk−1, tk], independently of k ∈ N. (110)

The corresponding trajectory x(t, u) thus never enters K,
contradicting the the global stability of x̄. Hence, T∗ must be
finite, as desired.

For the system and control problem defined in sections 2
and 3, the above theorem implies that supu∈U tc(u) is finite by
taking E = �c.

7.2.2. Supremum as a Maximum

Here we provide a general proof for the existence of optimal
controls for systems of the form (95), assuming the set of
maximal times is bounded above, which we have proven
for our system in section 7.2.1. For convenience, we make
the proof as self-contained as possible (one well-known
result of Filippov will be cited), and state the results in
generality which we later apply to the model of induced
resistance. Arguments are adapted primarily from the textbook of
Bressan and Piccoli (2007).

Consider again general control systems as in section 7.2.1.
Solutions (or trajectories) of (95) will be defined as absolutely
continuous functions for which a control u ∈ U exists such that
(x(t), u(t)) satisfy (95) a.e., in their (common) domain [a, b].

It is easier and classical to formulate existence with respect to
differential inclusions. That is, define the multi-function

F(x) = {f (x)+ ωg(x) | ω ∈ U}. (111)

Thus, the control system (95) is clearly related to the inclusion

ẋ ∈ F(x). (112)

The following theorem (see Filippov, 1967 for a proof) makes this
relationship precise.

THEOREM 20. An absolutely continuous function x :[a, b] 7→

R2 is a solution of (95) if and only if it satisfies (112) almost

everywhere.

We first prove a lemma demonstrating that the set of trajectories
is closed with respect to the sup-norm || · ||∞ if all the sets of
velocities F(x) are convex.

LEMMA 21. Let xk be a sequence of solutions of (95) converging to
x uniformly on [0,T]. If the graph of (t, x(t)) is entirely contained
in �, and all the sets F(x) are convex, then x is also a solution
of (95).

Proof: By the assumptions on f , g, the sets F(x) are uniformly
bounded as (t, x) range in a compact domain, so that xk are
uniformly Lipschitz, and hence x is Lipschitz as the uniform limit.
Thus x is differentiable a.e., and by Theorem 20, it is enough to
show that

ẋ(t) ∈ F(x(t)) (113)

for all t such that the derivative exists.
Assume not, i.e., that the derivative exists at some τ , but ẋ(τ ) /∈

F(x(τ )). Since F(x(τ )) is compact and convex, and ẋ(τ ) is closed,
the Hyperplane Separation Theorem implies that there exists a
hyperplane separating F(x(τ )) and ẋ(τ ). That is, there exists an
ǫ > 0 and a (without loss of generality) unit-vector p ∈ R2

such that

〈p, y〉 ≤ 〈p, ẋ(τ )〉 − 3ǫ, (114)
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for all y ∈ F(x(τ )). By continuity, there exists δ > 0 such that for
|x′ − x(τ )| ≤ δ

〈p, y〉 ≤ 〈p, ẋ(τ )〉 − 2ǫ, (115)

for all y ∈ F(x′). Since x is differentiable at τ , we can choose
τ ′ > τ such that

∣

∣

∣

∣

x(τ ′)− x(τ )

τ ′ − τ
− ẋ(τ )

∣

∣

∣

∣

< ǫ,

∣

∣x(t)− x(τ )
∣

∣ < δ,

(116)

for all t ∈ [τ , τ ′]. Equation (116) and uniform convergence then
implies that, as p is a unit vector,

〈

p,
xk(τ

′)− xk(τ )

τ ′ − τ

〉

k→∞
−−−→

〈

p,
x(τ ′)− x(τ )

τ ′ − τ

〉

≥
〈

p, ẋ(τ )
〉

− ǫ.

(117)

On the other hand, since ẋ(t) ∈ F(x′) for t ∈ [τ , τ ′],
Equation (115) implies that for k sufficiently large,

〈

p,
xk(τ

′)− xk(τ )

τ ′ − τ

〉

=
1

τ ′ − τ

∫ τ ′

τ

〈

p, ẋ(t)
〉

dt ≤
〈

p, ẋ(τ )
〉

− 2ǫ.

(118)

Clearly, (117) and (118) contradict one another, so that (113)
must be true, as desired.

We now restate the optimal control problem associated
to (95). Let S denotes the set of admissible terminal conditions,
S ⊂ R×R2, and φ :R×R2 7→ R a cost function. We would like
to maximize φ(T, x(T)) over admissible controls with initial and
terminal constraints:

max
u∈U ,T≥0

φ(T, x(T, u)),

x(0) = x0, (T, x(T)) ∈ S.
(119)

We now state sufficient conditions for such an optimal control
to exist.

THEOREM 22. Consider the control system (95) and
corresponding optimal control problem (119). Assume the
following:

1. The objective φ is continuous.
2. The sets of velocities F(x) are convex.
3. The trajectories x remain uniformly bounded.
4. The target set S is closed.
5. A trajectory satisfying the constraints in (119) exists.
6. S is contained in some strip [0,T]×R2, i.e. the set of final times

(for free-endpoint problems) can be uniformly bounded.

If the above items are all satisfied, an optimal control exists.

Proof: By assumption, there is at least one admissible trajectory
reaching the target set S. Thus, we can construct a sequence
of controls uk :[0,Tk] 7→ U whose corresponding trajectories
xk satisfy

xk(0) = x0,

(Tk, xk(Tk)) ∈ S,

φ(Tk, x(Tk))
k→∞
−−−→ sup

u∈U ,T̄≥0

φ(T̄, x(T̄, u)).

(120)

Since S ⊂ [0,T] × Rn, we know that Tk ≤ T for all k. Each
function xk can then be extended to the entire interval [0,T] by
setting xk(t) = xk(Tk) for t ∈ [Tk,T].

The sequence xk is uniformly Lipschitz continuous, as f
is uniformly bounded on bounded sets. This then implies
equicontinuity of {xk}

∞
k=1

. By the Arzela-Ascoli Theorem, there
exists a subsequence xnk such that Tnk → T∗, T∗ ≤ T, and
xnk → x∗ uniformly on [0,T∗].

Lemma 21 implies that x∗ is admissible, so that there exists a
control u∗ :[0,T∗] 7→ U such that

ẋ∗(t) = f (t, x∗(t), u∗(t)) (121)

for almost all t ∈ [0,T∗]. Equations (120) imply that

x∗(0) = x0

(T∗, x∗(T∗)) = lim
nk→∞

φ(Tnk , xnk (Tnk )) ∈ S.
(122)

Note that the second of (122) relies on S being closed. Continuity
of φ and (120) implies that

φ(T∗, x∗(T∗)) = lim
nk→∞

φ(Tnk , xnk (Tnk )) = sup
u∈U ,T∗≥0

φ(T∗, x(T∗, u)).

(123)

Thus, u∗ is optimal, as desired.

For the model of drug-induced resistance, the control set U is
the compact set U = [0,M], and for such control-affine systems,
convexity of F(x) is implied by the convexity of U. Existence of
a trajectory satisfying the constraints is clear; for example, take
u(t) ≡ 0. Our objective is to maximize the time to not escape the
set N. Note that N is a closed subset of R2, and that

φ(T̄, x(T̄, u)) = T̄. (124)

is continuous. Lastly, we have seen that all solutions remain in
the closure �̄, so that |x(t)| ≤ 1 for all u ∈ U and hence solutions
are uniformly bounded. Existence is then reduced to Item 6 in
the previous theorem. Since the supremum of time t was shown
to be finite, Theorem 22 together with Theorem 19 imply that the
optimal control for the problem presented in section 3 exists.

7.3. Further Numerical Experiments
In this subsection, we present further numerical experiments
(see section 6). Specifically, we study how the values of the
relative resistant growth rate and critical volume influence
the control structure. We also consider a regularized
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FIGURE 15 | Optimal control structures for different Vc and pr values. The blue curve is the computed optimal control, while the red curve is the feedback control

along on the boundary of N, which may or may not be optimal or even feasible.
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FIGURE 16 | Optimal control structures for Vc = 0.6, and different d and pr values. The blue curve is the computed optimal control, while the red curve is the

feedback control along on the boundary of N, which may or may not be optimal or even feasible.
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FIGURE 17 | Optimal control structures for Vc = 0.3, and different d and pr values. The blue curve is the computed optimal control, while the red curve is the

feedback control along on the boundary of N, which may or may not be optimal or even feasible.
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FIGURE 18 | Different perturbed controls for α = 0.005 and d = 0.05. Here, from (A–H), the value of η is 0, 0.5, 0.7, 0.9, 0.95, 0.999, 0.99999, and 1, respectively.

The maximum relative error is of 4.0338× 10−7 for figure η = 0, the remaining figures have a maximum relative error of 5.5727× 10−7 or smaller.

FIGURE 19 | Visualization of model that includes a reverse phenotype transition from resistant to sensitive. x1 denotes the sensitive cancerous cell population, yi the

drug-induced resistant cancerous cell population, and ys the non-drug-induced resistant cell population.

objective, which suggests that our numerical methods
are converging to (at least local) solutions of the optimal
control problem.

We first investigate the control structure and treatment
outcome as a function of d for a fixed α; these results are
presented in Figures 13, 14. Here α = 0.005 is fixed and d
is varied on the interval [0.001, 0.1]. Figure 13 presents three
of these controls; although none of the controls is of the

form YXY , the figure suggests that there may exist a d∗ ∈

(0.02062, 0.0207959) where the solution trajectory may intersect
the boundary line N only at one point and subsequently
switches into a Y arc, thus providing the existence of a
YXY control. Figure 14 suggests that increasing d for a fixed
α increases the overall effectiveness of the treatment for all
values of α, and that decreasing the induction rate α allows
for longer tumor control. However, for small values of d,
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FIGURE 20 | (A) Example of an arc with feedback control with entry point [x1(t1), x2(t1)] an exit point [x1(t2), x2(t2)] the exit point (B) Example of an arc that does not

slides but reaches the boundary V = Vc at the contact point (x1(t∗), x2(t∗)).

increasing α may provide a better treatment outcome (see, for
example, the intersection of the yellow and purple curves in
Figure 14).

We also investigated how the shape of the optimal control
changes for different values of the resistant growth fraction
(pr) and/or the critical tumor volume (Vc). We run several
simulations for Vc ∈ {0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9}
and pr ∈ {0.2, 0.3, 0.5, 0.7, 0.85, 0.9, 0.95, 0.98, 0.99}. We found
that when the reproduction rate of resistant cells is close to
the reproduction rate of sensitive cells (pr near 1), the best
strategy is to not give any drug at the beginning of treatment.
This is perhaps to prolong the appearance of fast-growing
resistance cells which cannot be eliminated with treatment. A
representative set of the controls for these simulations are shown
in Figure 15.

We further simulated the following parameter sets:
Vc ∈ {0.3, 0.6}, d ∈ {0.01, 0.05, 0.1, 0.5, 0.75, 1} and
pr ∈ {0.2, 0.3, 0.5, 0.7, 0.85, 0.9, 0.95, 0.98, 0.99}. Figure 16

shows some of the controls for these simulations for the case
when Vc = 0.6, while Figure 17 shows some of the controls for
the case Vc = 0.3. In both figures, we observe that independently
of the value of resistant growth rate pr , if the chemotherapeutic
drug has a low effectiveness (d small) then the best strategy is
to give the maximum possible drug dosage during treatment.
However, when d increases past d = 0.1, the control structure
changes qualitatively. When Vc = 0.6 and the resistant
reproduction rate is close to the reproduction rate of sensitive
cells, the best strategy is to start with no drug treatment while for
case Vc = 0.3 (independently of the value of pr) the best strategy
is to give the maximum drug dosage from the start.

Before ending this section, we would like to mention that to
verify the performance of the numerical software, we approached
the original problem by a sequence of regularized problems,
which is done by adding a quadratic term to the Lagrangian.
More precisely, we considered the perturbed performance index:

Jη[u] = −

∫ tc

0

[

1−
(1− η)

2
u2(t)

]

dt for η ∈ [0, 1]. (125)

Notice that Equation (125) represents a family of performance
indexes parameterized by η. The original performance index
corresponds to η = 1. Furthermore, for η 6= 1 the optimal
control problem is regular and solvers such as GPOPS-II (used
here) or SNOPT should provide accurate solutions. Thus, to test
the accuracy to the case η = 1, we investigated the corresponding
control structure in the limit η → 1. An example of different
controls, for η values 0, 0.5, 0.7, 0.9, 0.95, 0.999, 0.99999, and 1,
are shown on Figure 18. For each case we obtained different
relative errors: the largest relative error of 4.0338 × 10−7 occurs
for η = 0, with the remaining values of η having smaller relative
errors. From the values η = 0.95, η = 0.999 and η = 0.99999
in Figure 18 we can see that as η → 1 the computed control
approaches the solution to the original problem (case η = 1).

8. CONCLUSIONS

In this work, we have provided a rigorous analysis of the
optimal control problem introduced in Greene et al. (2018a).
That is, we have formally applied optimal control theory
techniques to understand treatment strategies related to a
model of induced drug resistance in cancer chemotherapy
introduced in Greene et al. (2019). Although the model is
relatively simple, it has recently been found to be highly
successful in matching experimental data (Gevertz et al., 2019;
Johnson et al., 2020), which we believe justifies the careful
analysis presented here. An optimal control problem is then
presented which maximizes a specific treatments therapy
window. A formal analysis of the optimal control structure
is performed utilizing the Pontryagin Maximum Principle
and differential-geometric techniques. Optimal treatment
strategies are realized as a combination of bang-bang and
path-constrained arcs, and singular controls are proved to
be sub-optimal. Numerical results are presented which verify
our theoretical results, and demonstrate interesting and non-
intuitive treatment strategies. We have also shown that a drug’s
level of resistance induction is identifiable, thus allowing for
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the possibility of designing therapies based on individual
patient-drug interactions (see section 7.1).

Under the assumption that sensitive cells have a higher growth
rate than resistant cells, our results (section 6) indicate that
when using a chemotherapeutic drug with low cytotoxicity, the
time at which the tumor volume exceeds its critical value tc
would be larger when the transition rate of the drug is high
(see for example Table 2, on cases d = 0.001 and d = 0.01,
as α has larger values the end time tc becomes larger). The
situation is reversed when we consider larger values of drug
effectiveness because in this case it would take more time for
the tumor to grow to its critical volume whenever the drug
effectiveness is large enough. Also, our simulations indicate that
it is optimal to apply the maximal dosage M subsequent to
sliding along the boundary V = Vc (e.g., Figure 9), prior to
treatment failure.

Clearly, further analysis is required in order to understand
this phenomenon, and its implications for clinical scenarios.
Although our model considers only an idealized scenario
where resistance is unavoidable, we see that induced resistance
dramatically alters therapy outcome, which underscores the
importance of understanding its role in both cancer dynamics
and designing chemotherapy regimes.

Other questions remain open for future work:

♦ Several studies indicate that drug-tolerance is a phenotypic
property that appears transiently under the presence of the
drug (Goldman et al., 2015). A next step to this research is to
incorporate a reverse transition rate (from resistant to sensitive
cells) that represents this phenotype-switching (see Figure 19).

♦ For controls where the trajectory remains on the boundary
V = Vc (up), the feedback control is optimal during a
time interval [t1, t2] with 0 ≤ t1 < t2 < tc. It remains
to understand the point of entry [x1(t1), x2(t1)] and exit
[x1(t2), x2(t2)] (Figure 20A). What is the significance of the
times t1 and t2 with respect to parameter values?

♦ Do there exist conditions, once the trajectory reaches Vc,
under which the optimal trajectory no longer slides? Is it
possible that at the time t∗ the point [x1(t∗), x2(t∗)] is a contact
point (Figure 20B)? Some numerical results suggest that such

a contact point may exist and give rise to a YXY control
structure (Figure 13).

♦ We have shown that an optimal control can switch at most
once in each of the regions �+

c and �−
c . Numerically we

did not observe any bang-bang controls of the form YXY ,
although its existence was strongly suggested. The existence of
a bang-bang junction in�−

c is therefore of interest.
♦ For all examples plotted in Figure 11 with d ≥ 0.1, the entry

time occurs approximately at the same value t1 = 20.03. Is this
a coincidence?Wewould like to understand the dependence of
the entry time t1 and on parameters α, d, pr ,M, and/or ǫ.

♦ We would like to extend models to include multiple, possibly
non-cross resistant, cytotoxic agents. Indeed, clinical practice
generally includes multiple agents applied concurrently and
sequentially, and we plan on investigating strategies when
different types of drugs may be applied. For example,
what control strategies arise when a targeted therapy exists

which targets the resistant sub-population? What order
should the agents be applied, and for how long? Are
intermediate doses now optimal? Mathematically, all of
these questions may be studied, and the results may be
clinically relevant.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This research was supported in part by NSF grants 1716623
and 1849588.

ACKNOWLEDGMENTS

We thank Dr. Anil Rao for technical suggestions regarding
the optimization formulation and the use of GPOPS-II. This
manuscript has been released as a pre-print at bioRxiv (Greene
et al., 2018b).

REFERENCES

Anguelova, M. (2004). Nonlinear Observability and Identifiability: General Theory

and a Case Study of a Kinetic Model for S. cerevisiae. Chalmers University of

Technology.

Bressan, A., and Piccoli, B. (2007). Introduction to mathematical control theory.

AIMS Ser. Appl. Math. Philadelphia

Brimacombe, K. R., Hall, M. D., Auld, D. S., Inglese, J., Austin, C. P., Gottesman,

M. M., et al. (2009). A dual-fluorescence high-throughput cell line system

for probing multidrug resistance. Assay Drug Dev. Technol. 7, 233–249.

doi: 10.1089/adt.2008.165

Doherty, M., Smigiel, J., Junk, D., and Jackson, M. (2016). Cancer

stem cell plasticity drives therapeutic resistance. Cancers 8:8.

doi: 10.3390/cancers8010008

Eisenberg, M. C., and Jain, H. V. (2017). A confidence building exercise in data and

identifiability: Modeling cancer chemotherapy as a case study. J. Theor. Biol.

431, 63–78.

Filippov, A. F. (1967). Classical solutions of differential equations with multi-

valued right-hand side. SIAM J. Control. 5, 609–621.

Gatenby, R. A., Silva, A. S., Gillies, R. J., and Frieden, B. R. (2009). Adaptive

therapy. Cancer Res. 69, 4894–4903. doi: 10.1158/0008-5472.CAN-08-3658

Gevertz, J. L., Greene, J. M., and Sontag, E. D. (2019). Validation of

a mathematical model of cancer incorporating spontaneous and

induced evolution to drug resistance. bioRxiv. doi: 10.1101/2019.12.27.

889444

Goldman, A., Majumder, B., Dhawan, A., Ravi, S., Goldman, D.,

Kohandel, M., et al. (2015). Temporally sequenced anticancer drugs

overcome adaptive resistance by targeting a vulnerable chemotherapy-

induced phenotypic transition. Nat. Commun. 6:6139. doi: 10.1038/

ncomms7139

Gottesman, M. (2002). Mechanisms of cancer drug resistance. Annu. Rev. Med. 53,

615–627. doi: 10.1146/annurev.med.53.082901.103929

Greene, J., Sanchez-Tapia, C., and Sontag, E. (2018b). Mathematical details on a

cancer resistance model. bioRxiv [preprint]. doi: 10.1101/475533

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 26 June 2020 | Volume 8 | Article 501

https://doi.org/10.1089/adt.2008.165
https://doi.org/10.3390/cancers8010008
https://doi.org/10.1158/0008-5472.CAN-08-3658
https://doi.org/10.1101/2019.12.27.889444
https://doi.org/10.1038/ncomms7139
https://doi.org/10.1146/annurev.med.53.082901.103929
https://doi.org/10.1101/475533
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Greene et al. Control of Cancer Resistance Model

Greene, J., Sanchez-Tapia, C., and Sontag, E. D. (2018a). Control structures of

drug resistance in cancer chemotherapy. Proc. IEEE Conf. Decis. Control.

doi: 10.1109/CDC.2018.8618653

Greene, J. M., Gevertz, J. L., and Sontag, E. D. (2019). Mathematical approach

to differentiate spontaneous and induced evolution to drug resistance during

cancer treatment. JCO Clin. Cancer Inform. 3, 1–20. doi: 10.1200/CCI.18.00087

Hermann, R., and Krener, A. (1977). Nonlinear controllability and observability.

IEEE Trans. Automatic Control 22, 728–740. doi: 10.1109/TAC.1977.1101601

Johnson, K. E., Howard, G. R., Morgan, D., Brenner, E., Gardner, A. L., Durrett,

R. E., et al. (2020). Integrating multimodal data sets into a mathematical

framework to describe and predict therapeutic resistance in cancer. bioRxiv

[preprint]. doi: 10.1101/2020.02.11.943738

Ledzewicz, U., and Schättler, H. (2012). Geometric Optimal Control. Theory,

Methods and Examples, 1st Edn. New York, New York: Springer.

doi: 10.1007/978-1-4614-3834-2

Lee, W.-P. (1993). The role of reduced growth rate in the development of drug

resistance of hob1 lymphoma cells to vincristine. Cancer Lett. 73, 105–111.

doi: 10.1016/0304-3835(93)90251-4

Loeb, L. A., Springgate, C. F., and Battula, N. (1974). Errors in DNA replication as

a basis of malignant changes. Cancer Res. 34, 2311–2321.

Meshkat, N., and Seth, S. (2014). Identifiable reparametrizations of linear

compartment models. J. Symbolic Comput. 63, 46–67.

Patterson, M. A., and Rao, A. V. (2014). GPOPS-II: A matlab software for

solving multiple-phase optimal control problems using hp-adaptive Gaussian

quadrature collocation methods and sparse nonlinear programming. ACM

Trans. Math. Softw. 41:1. doi: 10.1145/2558904

Pisco, A. O., Brock, A., Zhou, J., Moor, A., Mojtahedi, M., Jackson, D., et al.

(2013). Non-darwinian dynamics in therapy-induced cancer drug resistance.

Nat. Commun. 4:2467. doi: 10.1038/ncomms3467

Pontryagin, L. S. (1987).Mathematical Theory of Optimal Processes. New York, NY;

London, UK; Paris, Montreux, Tokyo: Gordon and Breach Science Publishers.

Schättler, H., and Ledzewicz, U. (2015). Optimal Control for Mathematical Models

of Cancer Therapies. New York, NY: Springer. doi: 10.1007/978-1-4939-2972-6

Shackney, S. E., McCormack, G. W., and Cuchural, G. J. (1978). Growth

rate patterns of solid tumors and their relation to responsiveness

to therapy: an analytical review. Ann. Intern. Med. 89, 107-121.

doi: 10.7326/0003-4819-89-1-107

Shaffer, S. M., Dunagin, M. C., Torborg, S. R., Torre, E. A., Emert, B., Krepler, C.,

et al. (2017). Rare cell variability and drug-induced reprogramming as a mode

of cancer drug resistance. Nature 546:431. doi: 10.1038/nature22794

Sharma, S., Lee, D., Li, B., and Quinlan, M. E. A. (2010). A chromatin-mediated

reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80.

doi: 10.1016/j.cell.2010.02.027

Silva, A., Silva, M. C., Sudalagunta, P., Distler, A., Jacobson, T., Collins, A., et al.

(2017). An ex vivo platform for the prediction of clinical response in multiple

myeloma. Cancer Res. 77, 3336–3351.

Sontag, E. D. (1979). On the observability of polynomial systems, I: Finite-time

problems. SIAM J. Control Optimization. 17, 139–151. doi: 10.1137/0317011

Sontag, E. D. (2017). Dynamic compensation, parameter identifiability, and

equivariances. PLoS Comput. Biol. 13:e1005447.

Sontag, E. D., and Wang, Y. (1991). “I/O equations for nonlinear systems and

observation spaces,” inDecision and Control, 1991., Proceedings of the 30th IEEE

Conference on (IEEE), 720–725.

Sussmann, H. (1982). “Time-optimal control in the plane,” in Feedback

Control of Linear and Nonlinear Systems, eds D. Hinrichsen and

A. Isidori (Berlin, Heidelberg: Springer), 244–260. doi: 10.1007/

BFb0006833

Sussmann, H. (1987a). Regular synthesis for time-optimal control of single-input

real analytic systems in the plane. SIAM J. Control Optim. 25, 1145–1162.

doi: 10.1137/0325062

Sussmann, H. (1987b). The structure of time-optimal trajectories for single-input

systems in the plane: The C∞ nonsingular case. SIAM J. Control Optim. 25,

433–465. doi: 10.1137/0325025

Sussmann, H. (1987c). The structure of time-optimal trajectories for single-input

systems in the plane: the general real analytic case. SIAM J. Control Optim. 25,

868–904. doi: 10.1137/0325048

Traina, T. A., and Norton, L. (2011). “Log-kill hypothesis,” in Encyclopedia

of Cancer, ed M. Schwab (Berlin, Heidelberg: Springer), 2074–2075.

doi: 10.1007/978-3-642-16483-5_3409

Villaverde, A. F., Barreiro, A., and Papachristodoulou, A. (2016). Structural

identifiability of dynamic systems biology models. PLoS Comput. Biol.

12:e1005153. doi: 10.1371/journal.pcbi.1005153

Wang, Y., and Sontag, E. D. (1989). On two definitions of observation spaces. Syst.

Control Lett. 13, 279–289.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Greene, Sanchez-Tapia and Sontag. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 27 June 2020 | Volume 8 | Article 501

https://doi.org/10.1109/CDC.2018.8618653
https://doi.org/10.1200/CCI.18.00087
https://doi.org/10.1109/TAC.1977.1101601
https://doi.org/10.1101/2020.02.11.943738
https://doi.org/10.1007/978-1-4614-3834-2
https://doi.org/10.1016/0304-3835(93)90251-4
https://doi.org/10.1145/2558904
https://doi.org/10.1038/ncomms3467
https://doi.org/10.1007/978-1-4939-2972-6
https://doi.org/10.7326/0003-4819-89-1-107
https://doi.org/10.1038/nature22794
https://doi.org/10.1016/j.cell.2010.02.027
https://doi.org/10.1137/0317011
https://doi.org/10.1007/BFb0006833
https://doi.org/10.1137/0325062
https://doi.org/10.1137/0325025
https://doi.org/10.1137/0325048
https://doi.org/10.1007/978-3-642-16483-5_3409
https://doi.org/10.1371/journal.pcbi.1005153
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	Mathematical Details on a Cancer Resistance Model
	1. Introduction
	2. Mathematical Modeling of Induced Drug Resistance
	3. Optimal Control Formulation
	4. Maximum Principle
	4.1. Elimination of Path Constraints
	4.2. Maximum Principle and Necessary Conditions at Interior Points
	4.3. Geometric Properties and Existence of Singular Arcs
	4.4. Optimality of Singular Arcs

	5. Characterization of Optimal Control
	6. Numerical Results
	7. Additional Results
	7.1. Structural Identifiability
	7.2. Existence Results
	7.2.1. Finiteness of the Supremum
	7.2.2. Supremum as a Maximum

	7.3. Further Numerical Experiments

	8. Conclusions
	Author Contributions
	Funding
	Acknowledgments
	References


