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DNA methylation is an essential epigenetic modification for multiple biological processes.
DNA methylation in mammals acts as an epigenetic mark of transcriptional repression.
Aberrant levels of DNA methylation can be observed in various types of tumor cells. Thus,
DNA methylation has attracted considerable attention among researchers to provide new
and feasible tumor therapies. Conventional studies considered single-gene methylation
or specific loci as biomarkers for tumorigenesis. However, genome-scale methylated
modification has not been completely investigated. Thus, we proposed and compared
two novel computational approaches based on multiple machine learning algorithms
for the qualitative and quantitative analyses of methylation-associated genes and their
dys-methylated patterns. This study contributes to the identification of novel effective
genes and the establishment of optimal quantitative rules for aberrant methylation
distinguishing tumor cells with different origin tissues.

Keywords: methylation signature, dys-methylated pattern, cell line, rule, classification

INTRODUCTION

DNA methylation is an essential epigenetic modification for multiple biological processes (Gao
et al,, 2017). It is characterized by the formation of 5-methylcytosine in the CpG site with the
control of DNA methyltransferases (Moore et al., 2013). Recent studies have discovered that non-
CpG methylation functions as an expression regulator in mammals (Guo et al.,, 2014; Zhang
et al., 2017). However, the primary role of this process in mammals remains elusive. Since DNA
methylation was considered a regulator in gene expression in the 1970’s (Holliday and Pugh, 1975),
numerous studies have investigated methylation-associated mechanisms, and functions. Ample
solid evidence suggests that DNA methylation is involved in essential developmental events, such as
X-chromosome inactivation and genomic imprinting. Current knowledge is that DNA methylation
in mammals acts as an epigenetic mark of transcriptional repression.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1

May 2020 | Volume 8 | Article 507


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2020.00507
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2020.00507&domain=pdf&date_stamp=2020-05-26
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tohuangtao@126.com
mailto:cai_yud@126.com
https://doi.org/10.3389/fbioe.2020.00507
https://www.frontiersin.org/articles/10.3389/fbioe.2020.00507/full
http://loop.frontiersin.org/people/866888/overview
http://loop.frontiersin.org/people/552744/overview
http://loop.frontiersin.org/people/979441/overview
http://loop.frontiersin.org/people/326927/overview
http://loop.frontiersin.org/people/777635/overview
http://loop.frontiersin.org/people/576896/overview
http://loop.frontiersin.org/people/979598/overview
http://loop.frontiersin.org/people/979442/overview
http://loop.frontiersin.org/people/552766/overview
http://loop.frontiersin.org/people/103860/overview

Zhang et al.

Methylation of Tumor Cell Lines

During pathologic progression, tumors are deemed to be a
genetic, and epigenetic disease. Classic genetic and epigenetic
alterations co-determine tumor initiation and progression (Zhou
et al, 2016). Aberrant levels of DNA methylation can be
observed in various types of tumor cells. With the increasing
recognition of tumorigenesis, altered DNA methylation has
been described as a basic “cancer driver” event (Campan
et al, 2011) that can be divided into two types, namely,
hypomethylation and hypermethylation. In general, the over-
activation of proto-oncogenes caused by DNA hypomethylation
is a major dysfunctional process during tumorigenesis (Renaud
et al., 2015, 2016; Good et al., 2018). Meanwhile, abnormal
hypermethylation in CpG islands of tumor suppressor gene
promoter (e.g., PTEN and p16) could lead to gene silencing and
tumor initiation (Marzese et al., 2014; Cui et al., 2015; De La Rosa
et al., 2017). The methylation abnormally and indirectly induces
tumorigenesis in other DNA regions, such as repetitive sequences
(Hur et al., 2014; Burns, 2017; Chen et al., 2017¢). Hence, studies
on DNA methylation are warranted to provide new and feasible
tumor therapies.

Divergent methylation patterns are intensely associated with
cell differentiation (Farlik et al., 2016). Even in a single cell line,
methylation patterns may be dynamic among different stages
(Kaaij et al., 2013; Petell et al,, 2016), and this situation is
common for tumor cells. In accordance with the initial original
organs and tissues, tumors can be divided into different subtypes
with different genome-wide methylation patterns. Therefore, a
part of particular methylation patterns should be recognized
as epigenetic marks for specific tumor sites (Sahm et al,
2017). For example, mucin is a macromolecular glycoprotein
secreted mainly by goblet cells, which act as a protective
barrier (Pelaseyed et al., 2014), and hypomethylation of mucin
gene MUCS5AC is considered a feature in colorectal cancers
(Renaud et al., 2015, 2016). Another research also reveals that
BRCALI, an essential tumor-suppressor gene, is highly associated
with breast and ovarian cancer when the promoter undergoes
hypermethylation (Evans et al., 2018). Hence, DNA methylation
is supposed to emerge as a tumor-specific marker with
large potentiality.

Most  conventional studies considered  single-gene
methylation or specific loci as biomarkers for tumorigenesis.
However, the entire genome-scale methylated modification
has not been fully revealed. Tumor is a typical type of disease
with high heterogeneity and individual difference. Thus,
the combination of multiple sites with methylation patterns
can highly increase the accuracy and sensitivity of markers.
Hence, in this study, we proposed and compared two novel
computational approaches involving multiple algorithms,
namely, Monte Carlo feature selection (MCFS; Draminski et al.,
2008), minimum redundancy maximum relevance (mRMR;
Peng et al., 2005), and repeated incremental pruning to produce
error reduction (RIPPER; Cohen, 1995), for the qualitative
and quantitative analyses of methylation-associated genes and
their dys-methylated patterns. This study contributes to the
identification of novel effective genes and the establishment of
optimal quantitative rules for methylation distinguishing tumor
cells with different origin tissues.

TABLE 1 | Sample sizes of 13 tissues.

Index Primary site Sample size
1 Aerodigestive Tract 80
2 Blood 177
3 Bone 38
4 Breast 52
5 Digestive system 105
6 Kidney 33
7 Lung 198
8 Nervous system 96
9 Pancreas 31
10 Skin 59
11 Soft tissue 21
12 Thyroid 17
13 Urogenital system 115

MATERIALS AND METHODS

Dataset

We downloaded the methylation profiles of 1,022 cell lines
from Gene Expression Omnibus under accession number
GSE68379 (lorio et al.,, 2016). In each cell line, the methylation
levels of 485,512 probes were measured. We applied the
KNN method to impute the missing values. The R function
impute.knn from package impute (https://bioconductor.org/
packages/impute/) was used, and K was set to 10. Of note, there
were actually very few missing values in this dataset, where the
highest missing value percentage of the samples was about 0.1%.
Therefore, we used the default parameter of K (10) and did
not try other values. The 1,022 cell lines were from 13 tissues,
and the sample sizes of 13 tissues are listed in Table 1. We
determined whether the cell lines from different tissues differ in
methylation level.

Feature Selection

We proposed two novel feature selection schemes for detecting
specific signatures to distinguish methylation-related genes in
tumor cells. We use mRMR (Peng et al., 2005) and MCES
(Draminski et al., 2008) to evaluate each feature, select the
candidate features, and then use the support vector machine
(SVM; Cortes and Vapnik, 1995) and other alternative algorithms
to train the subsets of features in the incremental feature selection
(IFS; Liu and Setiono, 1998) to identify specific signatures for
screening tumor cells.

Selection of Important Features

Each cell line is represented by more than 480,000 methylation
features. Clearly, it is impossible that all of them are essential
for classifying cell lines into correct tissues. Thus, we first adopt
mutual information (MI) to select essential features. The mutual
information (MI) between x and y is defined as follows:

px,y)
I(x,y) = ,y) log ——="—dxdy,
(%) /fp(x ») ng(x)p(y) xdy (1)
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where p(x) represents marginal probabilistic density of x and p(x,
) indicates joint probabilistic density of x and y. For each feature,
the MI value to class labels is calculated. It is widely accepted
that features with high MI values are highly related to class labels,
thereby giving key contributions for classification. Thus, we can
select important features by setting a threshold for MI value.
Features with MI values higher than the threshold are selected
for further evaluation. They will be assessed by the following two
feature selection methods.

Minimum Redundancy and Maximum Relevance
Remaining features are analyzed by mRMR (Peng et al., 2005). As
a feature filtering method, mRMR requires two optimal targets
on the highest relevance among selected feature subsets, namely,
the maximum relevance between feature sets and labels and the
minimum redundancy between features themselves (Peng et al.,
2005). Such evaluations are all based on MI values. The output
of mRMR contains a feature list, which sorts features according
to maximum relevance and minimum redundancy. The list is
generated by selecting a feature with maximum relevance to
labels and minimum redundancy to already-selected features one
by one and adding it to the current feature list.

Monte Carlo Feature Selection
Remaining features are also evaluated by MCFS (Draminski
et al., 2008). This method has been applied as a classical feature
selection method for dealing with many biological problems.
MCEFS is a random sampling-based feature selection method.
In specific, MCEFS trains multiple decision trees in a bootstrap
sample set and a subset of randomly selected features (e.g., m
features from the original M features, and m << M). For a
specific feature subset, samples with this subset of features can
compose p bootstrap training sets. Thus, p decision trees can
be obtained through training and evaluation. Assuming that
this process is repeated f times, we can finally obtain p x t
decision trees.

Relative importance (RI) is a score used to define how features
are performed in each constructed classifier from the p x ¢t
decision trees. The Rl score for a feature g is calculated as follows:

pt
RI, = Z (wAcc)"IG(ng(1))(

=1

no.in ng(t) o 2

no.in T

where wAcc is the weighted accuracy calculated by the mean
sensitivity of all decision classes, ng(t) is a node involving
feature g in decision tree 7, IG(ng(7)) is the information gain of
ng(7), no.in T is the number of samples in decision tree 7, and
no.in ng(t) is the number of training samples in node ny(7). In
addition, u and v are two different weighting factors for adjusting
different optimal contributions. After features has been assigned
RI scores, a feature list can be generated by the decreasing order
of their RI scores.

In this study, we used the MCFS program retrieved
from http://www.ipipan.eu/staft/m.draminski/mcfs.html.
Default parameters were used to execute such program, where p
=2000,t=5andu=v=1.

Incremental Feature Selection

In the descending ordered feature list generated by MCFS or
mRMR, we perform IFS to filter out a set of optimal features
for accurately distinguishing different sample groups/classes (Liu
and Setiono, 1998). We construct a series of feature subsets with
an interval of 10 from the ranked feature list F by MCFS or
mRMR. We generate m feature subsets Fi,F},...,FL, where
the i-th feature subset contains the top 10 x i features F! =
[fi,f2> - - -»fix10lin F. All feature subsets are tested by building
and evaluating the SVM classifier (or other alternative methods
such as rule-based approaches) using 10-fold cross-validation.
The feature subset with the best performance is called the optimal
feature subset.

Supervised Classifier

The supervised classifiers for IFS include “black-box” classifier
SVM, interpretable rule learning classifier RIPPER (Cohen,
1995), and PART algorithm (Frank and Witten, 1998).

Support Vector Machine

SVM is a supervised learning algorithm based on statistical
learning theory (Cortes and Vapnik, 1995; Chen et al., 2017b,
2018a; Che et al., 2020; Zhou et al., 2020a,b). It uses kernel
techniques (such as Gaussian kernels) to map the original data
from a low-dimensional non-linear space to a high-dimensional
linear space and then fits the hyperplane in the high-dimensional
space with the largest margin between the two classes of samples
by using a linear function. We use the sequential minimal
optimization (SMO) algorithm in software Weka for SVM
classifier training with default parameters. The kernel was a
polynomial function, the regularization parameter C was one.

Rule Learning Classifier RIPPER

We also use RIPPER (Cohen, 1995), a learner proposed by
William that can generate classification rules to classify samples
from different tumor cells. RIPPER can learn interpretable
classifications for predicting new data in accordance with IF-
ELSE rules. RIPPER learns all rules for each sample class. After
learning rules for one class, RIPPER moves to learn the rules
for the next class. RIPPER starts from the minority sample class
and then to the second minority sample class until the dominant
class. The “JRip” tool, implementing RIPPER algorithm, in Weka
is used. Default parameters are adopted, where the parameter to
determine the amount of data used for pruning is set to three.

Rule Learning Classifier PART

Different from the RIPPER algorithm that builds a full decision
tree, the PART algorithm (Frank and Witten, 1998) learns rules
by repeatedly generating partial decision trees. It uses a separate-
and-conquer strategy to build a rule, removes the instance
covered by this rule, and continues to generate rules recursively
until all instances are covered. Compared with RIPPER, PART is
simpler and does not need any global optimization. To quickly
implement PART algorithm, we directly use the tool “PART”
in Weka.
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SMOTE

As indicated in Table 1, the analyzed dataset consists of different
numbers of cell lines from different tissues; thus, it is an
imbalanced data. Therefore, we use the synthetic minority over-
sampling technique (SMOTE) to obtain approximate balanced
data ahead of classifier construction (Chawla et al, 2002).
SMOTE produces new samples for the minor class iteratively
until the size of the minor class can be equal to that of the major
class. The tool “SMOTE” in Weka is used to produce new samples
for each minor class (tissue); thus, the numbers of cell lines for
all tissues are equal finally, that is, the number of samples in
each class (tissue) is 198. The main parameter that determines
the number of nearest neighbors in the same class for a selected
sample is set to three.

Performance Measurement

As a balanced measurement, the Matthew’s correlation coefficient
(MCC; Matthews, 1975; Gorodkin, 2004) is used to evaluate and
compare the classifier performance. Originally, MCC is designed
for binary classification and has wide applications (Chen et al.,
2017a,b; Zhao et al., 2018, 2019; Cui and Chen, 2019; Li et al,,
2019), as proposed by Matthews in 1975 (Matthews, 1975). We
adopte the multi-class version of MCC proposed by Gorodkin
(Gorodkin, 2004) because our analyzed dataset contains more
than two classes (i.e., tissues), and such MCC is calculated
as follows:

cov(X,Y)
Jeov(X, X) cov(Y, Y)

MCC = (3)

where cov(-, -) stands for the covariance of two matrices, X isa 0-1
matrix indicating the predicted class of each sample, and Y isa 0
1 matrix representing the actual classes of all samples. Such multi-
class version of MCC has been widely used in the performance
evaluation of multi-class classifiers (Salari et al., 2014; Schmuker
et al,, 2014; Zhang et al.,, 2019); thus, the multi-class version

of MCC is still called MCC for convenience. In addition, we
also report the accuracy of each class and over accuracy (ACC)
for reference.

RESULTS

In this study, we analyze the methylation data of cell lines in
13 tissues. The entire procedures are shown in Figure 1. Of
the 485,512 methylation features, we first calculate their MI
values to class labels. By setting the threshold 0.2 to MI value,
20,451 features remain, which are provided in Table S1. Then,
these features are analyzed by mRMR and MCEFS methods,
respectively, producing two feature lists, which are available in
Tables S1, S2, respectively. Then, on the basis of each feature list,
we use IFS combined with a particular classifier to determine the
optimal feature set and related classification models or rules.

Tumor Cell Classification Based on Ranked
Features by mRMR

We initially generate a series of feature subsets from the ranked
feature list by mRMR and then run the IFS with SVM, RIPPER,
and PART to capture optimal features for classifying different
tumor cell samples. The performance these classifiers with
different numbers of features is listed in Table S3. For an easy
observation, an IFS curve is plotted for each classifier with the
number of features as X-axis and MCC as the Y-axis, as shown
in Figure 2. The highest MCC value generated by the SVM is
0.958 when using top-ranked 1,910 features, the optimal MCC
value generated by the PART is 0.741 when using top-ranked
910 features, and the best MCC obtained by RIPPER is 0.703
when using top-ranked 2,810 features. The ACCs corresponding
to above MCCs are 0.963, 0.768, and 0.735, respectively. Above
results are listed in Table 2. Furthermore, we also count the
accuracy of each tissue yielded by above three classifiers, which
are illustrated in Figure 3. All accuracies yielded by SVM are over

mRMR IFS
SVM
@ Methylation
signatures
Methylation Imputation MI values SMOTE RIPPER
data data (>0.2)
MCFS IFS
SVM
@ Dys-methylated
rules
RIPPER
FIGURE 1 | Analysis framework.
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TABLE 2 | Performance of IFS with SVM, PART, and RIPPER based on
A142 : SVM mRMR-ranked features for classifying tumor cells from different tissues.
1 Classifier Number of optimal features ACC MCC
08 :-1_9-11)/_" SVM 1,910 0.963 0.958
1 B
Q 0.6 10.958 | PART 910 0.768 0.741
ad T RIPPER 2,810 0.735 0.703
0.2
0 Aerodigestive Tract

810 1010 1210 1410 1610 1810
Number of features

10 210 410 610

B
PART

0.8 1

0.7 4

0.6 1 \_

P

0.5 1 1 910: '
8] 1
g 04 - 0741,

0.3 4

0.2 4

0.1 4

10 210 410 610 810 1010 1210 1410 1610 1810 20102210 2410 2610 2810
Number of features
C
RIPPER

0.8 1

0.7 4

o6 W

0.5 4 r==<-=
Q 1 2810: -
g 049 ' 0.703 !

034 T T

0.2 4

0.1 4

0

10 210 410 610 810 10101210 1410 1610 18102010 2210 2410 2610 2810
Number of features

FIGURE 2 | IFS curves with SVM, PART, and RIPPER based on
mRMR-ranked features. (A) IFS with SVM. When top 1910 features are used,
SVM gives the best MCC of 0.958. (B) IFS with PART. When top 910 features
are used, PART gives the best MCC of 0.741. (C) IFS with RIPPER. When top
2810 features are used, RIPPER gives the best MCC of 0.703.

0.900, whereas only two and one tissues receive the accuracies
over 0.900 for PART and RIPPER, respectively. All these results
show that the “black-box” classifier SVM performs better than
rule-based classifiers. However, rule-based classifiers can learn
readable rules for making an interpretable prediction. The PART
algorithm generates 72 classification rules, as shown in Table S4,
and RIPPER learns 47 classification rules, as shown in Table S5.

Tumor Cell Classification Based on Ranked
Features by MCFS

We also carry out a similar analysis pipeline on the ranked
features from MCFS. The performance of three classifiers on

Soft Tissue

Nervous System Lung

——SVM —o—PART —e—RIPPER

FIGURE 3 | Radar chart to show the performance of the best SVM, PART and
RIPPER classifiers on 13 tissues based on the feature list yielded by mRMR.

different numbers of features is listed in Table S6. Likewise, an
IFS curve is plotted for each classifier, as shown in Figure 4. The
best MCCs generated by SVM, PART, and RIPPER are 0.963,
0.770, and 0.716 when using top-ranked 3,600, 1,950, and 2,580
features, respectively, as listed in Table 3. The corresponding
ACCs are 0.967, 0.795, and 0.746, respectively (see Table 3).
Furthermore, the performance on 13 tissues of these three
classifiers is shown in Figure 5. All accuracies generated by SVM
are higher than 0.900, whereas for PART and RIPPER, there
are only four and three accuracies over 0.900, respectively. SVM
also outperforms rule learning classifiers PART and RIPPER.
However, one advantage of PART and RIPPER is that they
can learn interpretable rules for human understanding. PART
learns 80 classification rules (Table S7), and RIPPER learns 48
classification rules (Table S8).

DISCUSSION

Established by World Health Organization (WHO), the
classification scheme of tumor has been amended several
times over the past decades. Scholars attempt to analyze the
major characteristic of each type of tumor to provide solid
guidance for clinical diagnosis and to avoid misclassification
with mimic entities. For instance, as the most common digestive
tract malignancies, misdiagnosis of metastatic colorectal
cancer is highly responsible for the primary resistance of
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TABLE 3 | Performance of IFS with SVM, RART, and RIPPER based on
A2 SVM MCFS-ranked features for classifying tumor cells from different tissues.
19 Classifier Number of optimal features ACC MCC
08 1 2600 | SWM 3,600 0.967 0.963
g 0.6 i 0.963 i PART 1,950 0.795 0.770
"""" RIPPER 2,580 0.746 0.716
0.4 1
0.2
Aerodigestive Tract
0 1.000

10 510 1010 1510 2010 2510 3010 3510
Number of features

09 - PART

038
0.7 4
0.6 1 I N

005 - 1 1950:

§O4 | 1 0.770 5
03
02
0.1 4

10 210 410 610 810 10101210 14101610 181020102210241026102810
Number of features

0.8 1 RIPPER

0.7 1
0.6 1

” /
r=—f=-=-1

§0,4 ] ! 2580: |
0.3 :h_027_1_6_.:
0.2 4

0.1 4

0

10 210 410 610 810 10101210 14101610 18102010221024102610 2810
Number of features

FIGURE 4 | IFS curves with SVM, PART, and RIPPER based on MCFS-ranked
features. (A) IFS with SVM. When top 3600 features are used, SVM gives the
best MCC of 0.9683. (B) IFS with PART. When top 1950 features are used,
PART gives the best MCC of 0.770. (C) IFS with RIPPER. When top 2580
features are used, RIPPER gives the best MCC of 0.716.

immune checkpoint inhibitors, displaying microsatellite
instability, or defective mismatch repair (Cohen et al., 2019).
Furthermore, the diagnosis of tumor with the good deal of
insight of DNA methylation should improve the preciseness
compared with traditional methods (Sahm et al., 2017). In
accordance with our approach and analysis, we detected
various methylation patterns of genes and association rules
in different cell lines that can be used as the candidate
signatures to distinguish 13 tumor subgroups corresponding
to particular origin tissues. All predicted candidate signatures
have reported that the aberrant methylations occurred and

Urogenital System

Soft Tissue Breast

Skin Digestive System

Nervous System

Lung
——-SVM —o-PART —e—RIPPER

FIGURE 5 | Radar chart to show the performance of the best SVM, PART, and
RIPPER classifiers on 13 tissues based on the feature list yielded by MCFS.

attributed to tumor initiation and progression. A summary
and discussion on these signatures are presented in the
following section.

Candidate Methylation Signatures
Discriminating Origin Tissues of Tumor

Cells

The first list of genes has been obtained by the MCES
and SVM algorithms. In accordance with the related results,
MIR142 was predicted as one of the most potential genes for
tumor classification. In general, the dysfunctions of MIR142
attribute to tumorigenesis and angiogenesis. MIR142 specifically
expresses and plays a critical role in various hematopoietic
cell lines (Rivkin et al, 2017). Hypermethylation-induced
silencing of MIR142 promotes the progression of hepatocellular
carcinoma via failing to suppress TGF-p expression (Yu et al.,
2017). Similarly, the downregulation of MIR142 induced by
promoter hypermethylation participates in thyroid follicular
tumor initiation (Colamaio et al., 2015). Recent relevant studies
have also confirmed that DNA methylation in MIR142 promoter
can be recognized as a novel biomarker for T cell lymphoma
(Sandoval et al., 2015). BZRAP1 encodes an associated protein of
translocator protein, which regulates the flow of cholesterol into
mitochondria. Translocator protein presents different expression
patterns in different types of tumor (Bhoola et al, 2018).
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Although few studies directly concentrated on the function of
BZRAP1 methylation, BZRAP1 may be a potential marker
for tumor classification considering the relationship between
BZRAP1 and translocator proteins. Another gene, IFFOI, is
widely methylated in ovarian tumor. Compared with normal
blood samples, significant hypo-methylation on IFFO1 promoter
is a potentially high-sensitive biomarker for ovarian tumor
diagnosis. In addition, hyper-methylation of IFFOI represses its
expression in non-small-cell lung cancer (Feng et al., 2017).
Then, we applied another computational algorithm
combining mRMR and SVM to predict differentially methylated
gene candidates. The predictable ability of mRMR has been
validated with high efficacy and accuracy. Recently, the mRMR
algorithm has been applied to identify deriver genes of clear cell
renal cell carcinoma (Li et al., 2018). We actually obtained a
large group of tumor-associated methylated genes through the
mRMR algorithm. Similar to the above MCFS method, BZRAP1
and IFFOL1 also appeared in the feature list. Numerous studies
have revealed the contribution of methylation on tumorigenesis,
implying the accuracy and efficiency of our two analysis
pipelines. On the basis of our results, MARVELD2 was predicted
to show methylation diversity in tumor cells. MARVELD2
encodes an essential tight junction-associated member protein
named “tricellulin.” In general, this protein expresses in
tricellular junctions and contributes to the stability of epithelial
cell layers. Hence, abnormal MARVELD2 expression always
associates with various types of carcinoma pathogenesis. Early
in 2011, the expression of MARVELD?2 is evidently decreased
in every stage of squamous cell carcinoma (Kondoh et al,
2011). Recent studies have further revealed that MARVELD2
is frequently overexpressed in hepatocellular carcinoma cells
but downregulated in pancreatic carcinomas cells (Kojima and
Sawada, 2012; Korompay et al., 2012; Somoracz et al., 2014).
In consideration of the relationship between gene expression
and methylation, this evidence could suggest the methylation
diversity of MARVELD?2 in different tumor types. LDOCI is an
important tumor-suppressor gene that mainly contributes to the
regulation of transcriptional response mediated by the nuclear
factor kappa B (Griesinger et al., 2017). Hyper-methylation
causes LDOCI silencing in multiple tumor types, such as
cervical cancer (Buchholtz et al., 2013), lung cancer (Lee et al.,
2019), and oral squamous cell carcinoma (Lee et al, 2013),
implying the accuracy and efficacy of our prediction. MGAT1, a
member of the glycosyltransferase family, acts as a Medial-Golgi
enzyme that mediates the synthesis of complex N-glycans. A
previous report confirmed that MGAT1 contributes to tumor
migration and invasion (Beheshti Zavareh et al., 2012). As an
important obesity-associated gene (Johansson et al, 2010),
differential methylation of MGAT1 is associated with obesity
risk (Voisin et al, 2015). Considering the strict relationship
between obesity and the digestive system, MGAT1 might act as a
candidate methylated marker for the digestive system. Moreover,
MGAT1 is hyper-methylated in head and neck squamous cell
carcinomas (Hwang et al., 2013). Another splicing regulator gene,
ESRP2, was also predicted to present methylation diversity in
tumor cells. In general, such gene is mainly expressed in various
types of epithelial cells. For its particular methylation status,
ESRP2 is overexpressed as induced by gene hypo-methylation in

ovarian cancer and breast cancer (Heilmann et al., 2017; Jeong
et al,, 2017). Therefore, ESRP2 methylation might act as a novel
diagnosis standard for these cancer sites, thereby validating the
efficacy and accuracy of our analysis methods.

Candidate Methylation Patterns
Discriminating the Origin Tissues of Tumor

Cells

For the predicted features generated by the mRMR and MCFS
algorithms, we apply two typical decision tree algorithms,
namely, RIPPER and PART, to reveal the potentially associated
methylation rules. For each rule group, we choose a few
representative rules, as listed in Table 4, for detailed discussion
as shown below.

Combining the mRMR and RIPPER algorithms, we obtain
47 associated rules, and ample recent reports can validate the
accuracy and efficacy of these identified rules. For instance, the
combination of three gene methylation status, namely, LAMB3
(cg03977657) and MGAT1 (cg01149192) hypomethylation, and
SPOP (cg25593954) hypermethylation, is a specific feature of
digestive tract and respiratory tract tumor (Rule 1 in Table 4).
LAMBS3 is a component of laminin-5, an essential extracellular
glycoprotein contributing to the most biological processes of
basement membrane, including cell migration (Santamato et al.,
2011), signal transduction (Filla et al., 2014), and tumorigenesis
(Rani et al., 2013). Early in 2011, hypomethylation induced
by abnormal overexpression of LAMB3 contributes to gastric
tumor procession (Kwon et al.,, 2011). SPOP methylation rate
is correlated with colorectal tumor survival (Zhi et al., 2016). A
study on colorectal tumor has validated that the upregulation of
the hedgehog signaling pathway in colorectal tumor mediated
by SPOP hypermethylation promotes tumor migration (Zhi
et al.,, 2016). Another rule (Rule 2 in Table 4) for lung tumor
classification also verifies the efficacy of our results. Three
differentially methylated genes, IFFO1, FOXEl, and PUMI1,
were predicted as signatures for lung tumor. IFFO1 methylation
participates in non-small-cell lung cancer (Feng et al., 2017),
and PUM1 is an RNA-binding protein gene that participates
in multiple biological processes, such as translational regulation
(Lin et al., 2019) and cell development (Lin et al., 2018). Various
recent studies have illustrated that PUMI functions in lung
tumor. PUMI can inhibit the proliferation of non-small-cell lung
cancer cells via targeted by MiR-411-5p (Xia et al., 2018) and can
mediate the interaction between p27 and MiR-221, which leads to
the deterioration of non-small-cell lung cancer (Fernandez et al.,
2015). Therefore, the hypermethylation of PUM1 is an important
epigenetic characteristic for non-small-cell lung cancer diagnosis.

A total of 48 rules are obtained using the MCFS and RIPPER
algorithms. Taking methylation rules for the classification of
digestive system tumor as an example (Rule 3 in Table4),
differentially methylated genes TRIM15 (cg00879790), and
SPG20 (cg22609576) are identified as signatures. TRIM15
is an essential focal adhesion protein mainly distributed in
the duodenum and the small intestine (Fagerberg et al,
2014). In general, such gene function acts as important
regulatory component in biological processes, including focal
adhesion turnover and cell migration (Uchil et al., 2014).
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TABLE 4 | Representative rules for classifying tumor cells from different tissues.

Index Feature ranking Rule learning Rule Classified Marker
method algorithm conditions tissues genes

Rule 1 mRMR RIPPER (cg03977657 < 0.099) and (cg01149192 < 0.666) and Aerodigestive tract LAMBS3, MGAT1, SPOP
(cg25593954 > 0.757)

Rule 2 mRMR RIPPER (cg00983904 > 0.833) and (cg24393316 < 0.090) and Lung IFFO1, FOXE1, PUM1
(cg04976330 > 0.777)

Rule 3 MCFS RIPPER (cg22609576 > 0.084) and (cg00879790 < 0.134) Digestive system TRIM15, SPG20

Rule4  MCFS RIPPER (cg20783697 < 0.300) Blood BZRAP1

Rule5  mRMR PART (cg22203219 < 0.460) and (cg16419724 > 0.408) and Nervous system IFFO1, MARVED2, ERICH1,
(cg08454824 > 0.683) and (cg13466284 > 0.577) and SFN, ELMO1, IRF6
(cg16798247 < 0.754) and (cg00989853 > 0.900)

Rule6  mRMR PART (cg20783697 < 0.698) and (cg01951274 < 0.130) Blood BZRAP1, MIR142

Rule7  MCFS PART (902505827 < 0.184) and (cg19519643 < 0.785) and Urogenital system TEAD1, GMFG, MARVELD2
(cg00112091 > 0.118) and (cg05607401 < 0.864)

Rule8  MCFS PART (cg02505827 < 0.150) and (cg23229016 < 0.645) Skin MARVELD2, RPS6KA1

TRIM15 contributes to various types of digestive system
tumor, including colon tumor (Lee et al, 2015) and gastric
adenocarcinoma (Chen et al, 2018b). Moreover, specifically
abnormal hypermethylation on TRIM15 has been detected in
the gastric cancer genome (Cheng et al., 2014), confirming the
potential of TRIM15 methylation as a candidate signature for
gastric cancer diagnosis. Another candidate gene, SPG20, is
a potential epigenetic signature for colorectal cancer (Rezvani
etal, 2017). Hypermethylation-induced SPG20 silencing directly
contributes to the cytokinesis of colorectal cancer cells (Lind
et al., 2011). This evidence validates the efficiency of this rule.
In addition, according to another rule (Rule 4 in Table 4), gene
BZRAP1 was used to contribute to the identification of blood
samples. Hypomethylation of such gene is positively correlated
with the blood samples. BZRAP1 has been identified in various
blood cells especially in monocytes (Yasui et al., 2007; Jyonouchi
et al,, 2011). Therefore, the hypomethylation of such gene as a
biomarker for blood tissues (blood cells) is quite reasonable.
Similarly, 72 rules are generated by the mRMR and PART
algorithms. Substantial evidence supports the accuracy of
these rules. For instance, we extract a rule (Rule 5 in Table 4)
of methylation pattern for nervous system tumor, where
IFFO1 (cg22203219), MARVED2 (cgl6419724), ERICH1
(cg08454824), SFN (cgl3466284), ELMO1 (cgl6798247), and
IRF6 (cg00989853) were identified as candidate signatures.
Among them, SFN and ELMOI1 have been widely reported
to associate with nervous system tumor process. The
hypermethylation of SFN is a reliable biomarker for neuroblastic
tumor diagnosis (Banelli et al.,, 2005, 2010). ELMO1 encodes
a cell motility protein that contributes to glioma cell invasion.
Recent research has also confirmed that ELMO1 presents
abnormal methylated status in glioblastoma (Michaelsen et al.,
2018). Furthermore, a specific rule (Rule 6 in Table 4) for blood
uses two effective parameters, BZRAP1 (cg20783697) and
MIR142 (cg01951274). As for BZRAP1, the hypomethylation
of such gene has been discussed above to be correlated with
blood samples, validating such rule. As for microRNA142, it
and microRNA-29a have been identified as potential biomarkers

for myeloid differentiation and acute myeloid leukemia, which
would be regarded as a potential biomarker for the identification
of blood tissue.

Finally, for the combination use of MCFS and PART
algorithms, 80 rules are generated by the MCFS and PART
algorithms. These rules can be validated by recent publications.
For instance, we use the dys-methylation status of TEADI1
(cg00112091), GMFG (cg05607401), and MARVELD?2
(cg02505827) as the diagnostic signatures for urogenital system
tumor (Rule 7 in Table 4). Methylation of the MARVELD2 gene
could be used to classify multiple different tumor types (Wang
et al., 2009). With regard the relationship between MARVELD?2
and urogenital system tumor, this gene is highly expressed
in the epididymal epithelium and contributes to its integrity
(Mandon and Cyr, 2015). Hence, the mutation on MARVELD?2
may influence urogenital tumorigenesis. Meanwhile, GMFG is
a member of the glia maturation factor family, and it has been
validated to mediate angiogenesis by regulating the expression
of STAT3 and VEGF (Zuo et al.,, 2013). Recent literature has
confirmed that GMFG might contribute to the migration and
invasion of ovarian cancer cells (Zuo et al., 2014). TEADI,
a ubiquitous transcriptional factor, acts as a transcriptional
repressor in placental cells (Kessler et al., 2008). Hence, its
increased level of methylation may lead to transcriptional
alterations, further inducing tumorigenesis. Another specific
rule (Rule 8 in Table 4), involving MARVELD2 (cg02505827)
and RPS6KA1 (cg23229016), contributes to the identification of
skin tissue. As discussed above, MARVELD?2 has been reported
to contribute to the classification of multiple tumor subtypes
at methylation level (Wang et al., 2009), including skin cancer
(Jonckheere and Van Seuningen, 2018). As for RPS6KA1, the
hypomethylation of such gene has also been reported to be
functionally correlated with tumorigenesis in skin by interacting
with gene RB1 (Mcevoy et al., 2014).

Limited by the page restrictions of this article, we are unable
to discuss all results. Nevertheless, we have shown the efficiency
of our computational methods for identifying novel tumor-
specific epigenetic signatures. We widely validate the accuracy
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mRMR

MCFS

FIGURE 6 | Venn diagram to show two marker gene sets yielded by mRMR
and MCFS.

or relevance of our highly ranked methylation signatures and
associated rules via literature studies. Our analysis method
provides new insights into the precancerous diagnosis of different
tumor types.

Functional Enrichment Analysis for the

Common Genes From mRMR and MCFS
Based on the feature list yielded by mRMR, SVM with top 1,910
features provides the best performance, whereas SVM with top
3,600 features produces the best performance based on the list
generated by MCFS. A Venn diagram is plotted in Figure 6
to show the difference of these two feature subsets. There are
1,013 common features (methylation sites), corresponding to
470 genes, which are provided in Table S9. For capturing more
biological or pathogen understanding on these common marker
genes, we carry on the functional enrichment analysis on GO and
KEGG. Results are provided in Table S10.

On one hand, for gene ontology enrichment, GO: 0098609
(cell-cell adhesion), GO:0007155 (cell adhesion), and GO:
0022610 (biological adhesion) are the top GO (BP) terms for
the enrichment pattern of common marker genes. According
to recent publications, early in 1998, the inactivation of E-
cadherin-mediated cell adhesion has been reported to participate
in the progression of multiple cancer subtypes (Hirohashi,
1998). Further detailed studies confirm that cell-cell adhesion
plays irreplaceable roles for the tumorigenesis, although the
expression level and detailed contributions are actually not
all the same in various cancer subtypes (Birchmeier et al,
1993), e.g., in primary and metastatic lung cancer (Bohm et al.,
1994). Next, we identify various GO (CC) terms describing
the cell-cell junction, such as GO: 0030054 (cell junction), GO:
0005911 (cell-cell junction), and membrane associated GO terms,
including GO: 0044459 (plasma membrane part), GO: 0031226
(intrinsic component of plasma membrane), and GO: 0005887
(integral component of plasma membrane). As analyzed above,
cell adhesion is a quite important biological processes for
identification and discrimination on different cancer subtypes
(Birchmeier et al, 1993). Considering that cell junction is
functionally correlated with cell-cell adhesion (Kametani and
Takeichi, 2007), it is also reasonable for marker genes to enrich in

these related functions. Plasma membrane has also been reported
to participate in multiple cancer subtypes (Leth-Larsen et al.,
2010), especially in breast cancer (Razandi et al, 2000) and
colon cancer (Kakugawa et al., 2002). Furthermore, for GO (MF)
terms, GTPase function associated GO terms have been widely
screened out, including GTPase regulator activity GO:0005096
(GTPase activator activity), GO:0017048 (Rho GTPase binding),
and GO:0051020 (GTPase binding). GTPase function and its
related biological processes have been identified in multiple
cancer subtypes (Wang et al., 2003; Sethakorn and Dulin, 2013),
and have been confirmed to play different regulatory roles for
tumorigenesis in different cancer subtypes (Wang et al., 2003).

On the other hand, for KEGG pathways, the top KEGG
pathways are just the same as the top biological processes
describing the cell junction and adhesion hsa04520 (adhesions
junction) and hsa04510 (Focal adhesion). There are other key
pathways found, e.g., hsa04015 (Rapl signaling pathway) and
hsa04151 (PI3K-Akt signaling pathway). According to recent
publications (Kooistra et al., 2007), Rapl together with its
regulatory pathways have been identified as a key regulator for
cell-cell junction formation, so that, it is quite reasonable to
regard Rapl signaling pathway as a discriminative pathway for
different cancer subtypes. As for PI3K-Akt signaling pathway, it
is actually one of the most famous tumor associated pathways,
which has been identified to be pathogenic in multiple tumor
subtypes, including breast cancer (Berns et al, 2007), B-cell
lymphoma (Lannutti et al., 2011) and endocrine tumor (Robbins
and Hague, 2016). Many studies confirm that actually in different
tumor subtypes, the activation status and drive contribution of
such pathway on tumorigenesis may be not always the same
(Boyault et al., 2012).

CONCLUSIONS

This study investigates the methylation data of tumor cell
lines from 13 tissues. Several machine leaning algorithms
are employed to provide deep insights into the data. Some
methylation-associated genes and their dys-methylated patterns
are extracted. The genes may be novel biomarkers for
discriminating different tumor cell lines and the patterns can
provide a clear picture on the methylation levels of tumor cell
lines in different tissues. The findings reported in this study may
be novel materials for the study of tumor cell lines.
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