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Recent developments in epidemiology have confirmed that airborne particulates are

directly associated with respiratory pathology and mortality. Although clinical studies

have yielded evidence of the effects of many types of fine particulates on human

health, it still does not have a complete understanding of how physiological reactions

are caused nor to the changes and damages associated with cellular and molecular

mechanisms. Currently, most health assessment studies of particulate matter (PM) are

conducted through cell culture or animal experiments. The results of such experiments

often do not correlate with clinical findings or actual human reactions, and they also

cause difficulty when investigating the causes of air pollution and associated human

health hazards, the analysis of biomarkers, and the development of future pollution

control strategies. Microfluidic-based cell culture technology has considerable potential

to expand the capabilities of conventional cell culture by providing high-precision

measurement, considerably increasing the potential for the parallelization of cellular

assays, ensuring inexpensive automation, and improving the response of the overall

cell culture in a more physiologically relevant context. This review paper focuses on

integrating the important respiratory health problems caused by air pollution today, as

well as the development and application of biomimetic organ-on-a-chip technology. This

more precise experimental model is expected to accelerate studies elucidating the effect

of PM on the human body and to reveal new opportunities for breakthroughs in disease

research and drug development.
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INTRODUCTION

With the development of epidemiology in recent years, scientists have confirmed that airborne
particulate matter (PM) is directly associated with respiratory pathology and mortality (Kim et al.,
2018; Khaniabadi et al., 2019). For every 10 µg/m3 increase in PM10 concentration, respiratory
system-related mortality increases by 0.58% (Analitis et al., 2006), and for every 10 µg/m3 increase
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in PM2.5, the incidence of respiratory-system related diseases
increases by 2.07% (Zanobetti et al., 2009). These studies indicate
that impaired lung function also increases the incidence and
mortality of cardiopulmonary disease (Zanobetti et al., 2009; de
Oliveira et al., 2012). In addition to the problem of increased risk
of respiratory disease caused by compromised lung function, PM
may also increase the incidence of lung cancer (Raaschou-Nielsen
et al., 2016). In a large-scale study conducted in the United States
with a sample of 188,699 non-smokers, each 10 µg/m3 increase
in PM2.5 concentrations increased lung cancer-related mortality
by 15–27% (Turner et al., 2011). Although PM is a global
concern, severe air pollution episodes are often associated with
industrialization, and urbanization. As China’s rapid economic
growth, several recent studies paid attentions to frequent air
pollution episodes (Li et al., 2016; Lin et al., 2018). The air quality
statistics report of Beijing from 2013 to 2015 shows that the 2 year
average PM2.5 concentrations from 69 to 89 µg/m3 and the daily
average concentrations ranged from 3 to 437 µg/m3 (Batterman
et al., 2016). These studies have shown that it is imperative to
address the harmful effects of PM on the human body, in addition
to traditionally known respiratory diseases such as asthma and
chronic obstructive pulmonary disease (COPD) (Hopke et al.,
2019). The incidence of cardiopulmonary disease and lung cancer
are also associated with a high mortality rate (Hamanaka and
Mutlu, 2018). Therefore, it is essential to quickly and accurately
elucidate the effects of PM on the human body, determine the
causes of diseases, and formulate response strategies.

PARTICULATE MATTER AND
RESPIRATORY SYSTEM

PM is one of the most important components of air pollution
that affects human health and disease. It is classified based
on the relative size, which is defined in terms of aerodynamic
equivalent diameter (AED), not directly by the diameter of
their actual particles. In other words, the size of the actual
particles is converted into an equivalent diameter having the
same aerodynamic properties (Raabe, 1976). PM can be divided
into three AED levels based on the deposition and penetration
ability of the particles in the human respiratory system: ≤

10µm, ≤ 2.5µm, and ≤0.1µm (PM10, PM2.5, and PM0.1,
respectively) (Figure 1A). Particles with AED diameters >10µm
have a relatively small half-life in suspension and are mostly
filtered by the nasal and upper respiratory tract, so researchers
have classified PM >10µm into three categories: (i) coarse
PM (PM2.5−10), (ii) fine PM (PM0.1−2.5), and (iii) ultrafine PM
(PM0.1) (Anderson et al., 2012).

Although the effects of PM exposure depend on individual
physical characteristics, such as the pattern and rate of breathing,
weight, and age, the size of the particles has been identified
as a direct cause of health problems (Brown et al., 2013).
Generally, the smaller the particles, the faster they penetrate and
deposit in the deeper levels of the respiratory system. In nasal
breathing, cilia and mucous membranes are very effective in
filtering most particles larger than 10µm in diameter. Because
of the rapid deposition of PM with larger particle size, they tend

to remain in the trachea or bronchi (upper respiratory tract).
They initially accumulate in the nose and throat, and the body
will eliminate these invasive PM through some reactive processes
such as sneezing and coughing. Up to now, particles <10µm
in diameter are considered to have the greatest impact on
human health, and because of their high penetration ability, they
can evade the protective mechanisms of the upper respiratory
tract and enter the alveoli deep in the lungs (Löndahl et al.,
2006; Kim et al., 2015). Computer simulations have shown that
particles with diameters between 1 and 10µm are primarily
deposited in the nasopharyngeal and laryngeal of upper airway
regions, and particles with diameters between 1 and 100 nm
are deposited in the lower bronchial and alveolar region, where
gas exchange occurs (Tsuda et al., 2013) (Figure 1B). However,
particles smaller than 1µm tend to behave like gas molecules,
so it is extremely easy for them to penetrate into the alveoli and
affect gas exchange in the lungs and even penetrate the barrier
of the lungs and enter the circulatory system, further migrating
to other cells, tissues, or circulatory and metabolic systems and
leading to serious health problems (Table 1).

Currently, there have been many studies on the biological
mechanism and effects of PM on the respiratory system (Xing
et al., 2016), which primarily involve the following aspects:
(1) Functional injury caused by free radical peroxidation.
Studies have shown that free radicals, metals, and organic
components in PM2.5 can induce the free radical formation,
cause oxidation of lung cells, and also cause the production
of reactive oxygen species (ROS), resulting in DNA damage
and cell death (Donaldson et al., 1996; Lodovici and Bigagli,
2011). (2) Imbalance of intracellular calcium regulation (calcium
homeostasis). Calcium ion is a physiological index of cell
function regulation. However, free radical and ROS reactions
induced by PM2.5 can cause abnormal intracellular calcium
concentrations, which lead to apoptosis and necrosis (Li et al.,
2015; Al Hanai et al., 2019). (3) Inflammatory injury. This
is also the most extensive part of current studies. PM2.5 can
cause significant immune responses and inflammation in lung
cells (Nadeau et al., 2010; He et al., 2017). These inflammatory
responses to Th1 and Th2 triggered by Toll-like receptor (TLRs)
pathways can lead to activation of neutrophils, T cells, and
alveolar macrophages, which is also associated with asthma and
COPD (Nemmar et al., 2013) (Figure 1C). Although studies
on PM and its biological mechanisms are currently ongoing,
an important future research direction is to elucidate the
inflammatory response to PM in the lungs.

PARTICULATE MATTER AND
CARDIOVASCULAR EFFECTS

With the development of epidemiology in recent years, scientists
have validated the effects of long-term PM exposure on the
respiratory system. PM can penetrate deep into the trachea
and bronchi and can even deposit in alveolar tissue. Hydroxyl
radicals (·OH) produced from reactive oxygen species (ROS)
through activatedmetals are the main factors that cause oxidative
damage to DNA. If damaged DNA is not repaired in a timely
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FIGURE 1 | The transport and health effects of PM in human lung and cardiovascular. (A) Classification of PM size by aerodynamic equivalent diameter (AED). (B) PM

deposition curves in the extrathoracic, bronchial, and alveolar regions for adult humans. Reproduced with permission from Tsuda et al. (2013). (C) The schematization

of the immune responses and inflammation in lung cells by inhaled PM. Reproduced with permission from Nemmar et al. (2013). (D) There are three main hypotheses

that PM can cause biological pathways for cardiovascular impairment. Reproduced with permission from Ngoc et al. (2018).

matter, it can induce cancer or lead to other irreversible damage
(Valavanidis et al., 2005). Environmental exposure to this fine
PM not only causes respiratory disease but also affects heart
rate, blood pressure, vascular tone, blood coagulation, and
formation of atherosclerotic lesions (Suwa et al., 2002; Bennett
et al., 2018; Huang et al., 2018). In addition, there is a positive
correlation between fine PM and the incidence and mortality
of cardiopulmonary disease. The World Health Organization
(WHO) reported that 3.7 million deaths in 2012 were due to
air pollution, which accounted for 6.7% of deaths worldwide.
Of these, 16% were deaths due to lung cancer, 11% were due to
chronic obstructive pulmonary disease and associated diseases,
29% were due to heart disease and stroke, and about 13% were
due to respiratory infections. In addition, fine PM in the air that is
inhaled into the lungs can translocate to the bloodstream and be
transported to the blood vessels and the heart, which can induce
arrhythmia and reduce myocardial contractility and coronary
blood flow (Nemmar et al., 2003). The possible mechanisms for

cardiopulmonary risk following inhalation of fine PM into the
lungs can be roughly classified into three groups: (1) Stimulating
the production of inflammatory factors: inducing the secretion of
inflammatory factors such as cytokines, activated immune cells,
platelets, and endothelin, from basal cells in the lungs (Kido
et al., 2011; Tsai et al., 2012). (2) Translocation of PM: toxic
effects caused by translocation of PM or its components to the
circulatory system (Nemmar et al., 2002). (3) Neuroendocrine
disorders: the balance of the autonomic nervous system or heart
rate is affected by the binding of PM to receptors located on the
lungs or nerves (Ngoc et al., 2018; Snow et al., 2018) (Figure 1D).

Du et al. summarized recent research results on short- and
long-term exposure to PM2.5 (Du et al., 2016). The results show
that every 10 µg/m3 increase in short-term PM2.5 exposure
concentration increases overall mortality and cardiovascular-
related mortality by 0.4–1.0%, while every 10 µg/m3 increase
in long-term exposure increases overall mortality by 10% and
cardiovascular-related mortality by 3–76%. With respect to
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various cardiovascular diseases, PM2.5 has the greatest impact
on coronary heart disease, moderate impact on heart failure
and stroke, and the smallest impact on peripheral vascular
diseases and arrhythmia. Because these risk factors not only
cause a sharp increase in the risk of cardiovascular disease, and
the metabolic syndrome secondary to it is closely associated
with some of the most significant causes of death worldwide,
including increased risk of Alzheimer’s disease, Parkinson
disease, dementia, and stroke (Fu et al., 2019). Although the
true pathogenic mechanism is currently unknown and the
impairment of cardiopulmonary function due to fine PM is
due to a complex series of effects, the establishment of an in
vitro model that represents the human body in a large number

TABLE 1 | Effects of PM on the human respiratory system.

Diameter

(µm)

Distribution

characteristics

Effects on human physiology

PM10 Deposits in nose and throat Can cause allergic rhinitis, cough,

asthma, and other symptoms

PM2.5−10 Deposits in upper nasal

cavity and deep respiratory

tract

Causes fibrous paralysis, bronchial

mucus hypersecretion, and mucosal

gland hyperplasia leading to reversible

bronchospasm, inhibits deep

breathing and spreading to bronchi

PM2.5 Less than 10% deposits in

bronchi, ∼20–30% deposits

in lungs

Can cause chronic bronchitis,

bronchiole expansion, pulmonary

edema, bronchial fibrosis, or other

symptoms

PM0.1 Deposits inside alveolar

tissue

Promotes significant increase in

macrophages in the lungs, causes

emphysema and alveolar destruction

of studies is an urgent need. It is expected that establishing
an in vitro model of cardiopulmonary function will yield new
possibilities and opportunities for understanding the hazards
and influencing mechanisms associated with environmental
engineering and human health.

ASSESSMENT FOR BIOLOGICAL
TOXICITY OF FINE PARTICULATE MATTER

Epidemiological and clinical studies have linked exposure to
fine PM to adverse health outcomes, which may also be
associated with increased mortality and morbidity in various
cardiopulmonary diseases. Despite much evidence of the effects
of PM on human health, the causes of physiological responses
and the changes and damage to cellular and molecular
mechanisms have not yet been fully explained. There are
currently two main methods for elucidating the mechanisms of
PM toxicity (Fröhlich and Salar-Behzadi, 2014; Yang et al., 2017)
(Figure 2A). One is the use of in vivo animal models to evaluate
the effects of fine PM on the respiratory and cardiovascular
systems (Figure 2B). The other type is in vitro cell experiment
models (Figure 2C); the use of various in vitromodels has proven
valuable for studying the molecular and cellular mechanisms
behind different physiological effects more deeply.

Studies using animal models have demonstrated the effects
of fine PM exposure on different organs and the incidence of
different diseases. With respect to acute reactions, most studies
have focused on inflammatory responses, and relatively few
researchers have investigated specific responses to disease (Hong
et al., 2016; Wang H. et al., 2017). Conversely, with respect
to chronic reactions, a large number of disease-related findings
have been reported, including DNA damage, lung parenchyma

FIGURE 2 | Two main methods for elucidating the mechanisms of PM toxicity. (A) In vitro and in vivo toxicity assessment of PM. Reproduced with permission from

Yang et al. (2017). (B) In vitro animal experiments exposed to aerosols mainly include nose exposure, intratracheal instillation, and oropharyngeal aspiration.

Reproduced with permission from Fröhlich and Salar-Behzadi (2014). (C) Air–liquid interface (ALI) in vitro models for investigating respiratory research.
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damage, pulmonary fibrosis, and granuloma formation (Xu et al.,
2013; Shadie et al., 2014). Meanwhile, because in vitro models
have demonstrated that cell experiments are the most suitable
model for investigating mechanisms of toxicity, such as initiation
events for inflammatory effects or genotoxicity, these data cannot
be explained because of genetic differences in animal experiments
(Wang J. et al., 2017). In view of this, the genotoxicity and
biological indicators linking disease and cancer have been clearly
recognized in particular, but this is still a challenge in other
applications, which also includes further elucidation of the
mechanism of fine PM toxicity in humans (Vawda et al., 2013).

Although current knowledge does not fully understand the
health effects of PM exposure, studies over the past decade
have suggested the potential cytotoxicity. It has been observed
in cell studies that PM stimulation has caused cell viability
decline, cell death, ultrastructural disruptions, genetic toxicity
(mutagenicity and DNA damage), and oxidative stress (Peixoto
et al., 2017). These mechanisms involved in the inflammatory
response, including the up-regulation of cytokines downstream
of the caspase cascade and the kinase pathway, the up-regulation
of metal-redox sensitive transcription factors NF-κβ and AP-
1 (Øvrevik et al., 2015). In addition, the PM also increases
inflammatory mediator-related gene expression and protein
secretion, such as TNF-α, IL-1β, IL-8, IL-6, andMCP-1 (Fuentes-
Mattei et al., 2010; Ryu et al., 2019). On the other hand, similar
reactions have been observed in animal experiments, showing
DNA damage, oxidative stress and inflammatory mediator-
related protein secretion and recruitment of inflammatory cells in
many organs (de Oliveira et al., 2018). In addition, many studies
have shown association between exposure to PM and chronic
diseases. These adverse health effects include asthma, chronic
obstructive pulmonary disease (COPD), atherosclerosis, diabetes
and allergic sensitization (Guo et al., 2018; Li et al., 2018).

Mammalian cell culture studies are often used as the first
step in toxicity evaluation, cell-based studies are still greatly
limited with respect to the complex structures of physiological
mechanisms in humans, and it is impossible to simulate
the complex conditions and the interrelated physiological
information of the entire organism. Animal experiments play
an important role in PM research, where they allow in
vivo toxicological testing by exposing animals to various PM
environments via the oral and dermal routes. Although animals
can inhale PM and develop comprehensive systemic outcomes,
there is often a large difference between mechanistic and genetic
indicator data and clinical outcomes. This is primarily due to
differences among species and their physiological functions, such
as differences in respiratory rate between experimental mice and
humans (Curbani et al., 2019), as well as the problems of genetics,
low throughput, high cost, and ethical concerns.

As yet, there is currently no ideal experimental model for
study the toxicity of fine particulate matter since both in vitro and
in vivo models have limitations. Notably, the interpretation of
chronic toxicity studies is relatively lacking of information, which
requires consideration of whether the information obtained
from animal studies is similar to human responses. This issue
may be expected to be overcome through the advancement of
biotechnology and biomedical engineering technologies, thereby

obtaining a useful in vitromodel that allow long-term cultivation
of functional responses that express the human organ. In
addition, due to the diversity and regional differences of PM
composition, how to systematically study the toxicology of PM
on the human body (including single components and the
interaction between components) is also the focus of future
research (Jia et al., 2017; Park et al., 2018).

ORGANS-ON-CHIPS

With respect to the effects of PM exposure on the human body,
many studies have demonstrated the relationship between PM
and health risk, but further understanding of the mechanisms of
human toxicity is still lacking. The problems faced are derived
from the major differences in genes and structures between
the species used in animal experiments and humans. Although
biomimetic technology experiments are the most appropriate
model for investigating mechanisms of toxicity, only a complete
description and definition of genotoxicity and indicators between
disease and cancer have been made at present, and other
aspects are still being researched. In this field, improving the
representativeness of in vitro experiments and strengthening the
reference value of data has become important issues in research.
This topic has been discussed by other authors (Vanderburgh
et al., 2017; Ahadian et al., 2018; Costa and Ahluwalia, 2019).
Developments and progress in biomimetic technology will bring
unlimited potential for breaking through the research bottlenecks
faced in this field.

To resolve the great differences between animal experiments
and clinical trials, techniques have been developed in recent
years for construction of organs-on-chips, with the goal of
replacing animal experiments and achieving more accurate and
reliable preclinical data (Alépée et al., 2014; Zhang et al., 2017,
2018) (Figure 3A). Currently, organ-on-a-chip development
mostly relies on materials with high biocompatibility for
construction of a 3D microenvironment suitable for cell growth
so that cells can establish cell-to-cell interactions that are not
possible in most 2D cell culture environments, to observe the
phenomena of simulated organs more accurately. In particular,
this new organ-on-a-chip models provide unlimited potential
to replicate critical tissue-tissue responses by reconstructing
dynamic physiological forces, cellular microenvironments, and
3D structures of human organ. The development of organ-on-
chips and in-depth descriptions have been heatedly discussed
in other reviews (Rothbauer et al., 2018; Nawroth et al.,
2019) (Figure 3B). In addition, when combined with the
“induced pluripotent stem cell (iPSCs)” technique in somatic
cells, it is possible to successfully differentiate individualized
target tissues of interest without traumatizing the organs.
Researchers have successfully integrated various iPSC-derived
cells with organ-on-chips, such as blood vessels-on-chip, a
blood–brain barrier-on-chip and heart-on-chip systems. The
different methods for creating organ-on-chips using stem
cells also have been described in depth by other groups
(Geraili et al., 2018; Jodat et al., 2018; Cochrane et al.,
2019).
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FIGURE 3 | Organs-on-chips technology for tissue model development. (A) Organs-on-chips platform provides an in vitro model of various organs. Reproduced with

permission from Zhang et al. (2017). (B) Comparison of experimental strategies for current in vitro, in vivo, and Organs-on-chips models. Adapted with permission from

Nawroth et al. (2019). (C) A lung-on-a-chip microdevice reproduce human physiological respiratory movements. Reproduced with permission from Huh et al. (2010).

(D) Construction of a lung-on-a-chip with tissue/organ-level physical microstructure and microenvironment. Reproduced with permission from Jain et al. (2018).

LUNG-ON-A-CHIP

Although different organs-on-chips have their own
requirements, applications associated with the respiratory
tract are always very strong. For example, when the lungs are
infected by fine PM, bacteria, or viruses, white blood cells
accumulate, and the mucus produced block the airway. These
processes are difficult to observe in animals and further highlight
the importance of developing lung-on-a-chip technology. The
Wyss Institute at Harvard University has been a worldwide
pioneer in the development of in vitro organ-on-a-chip, and
the lung-on-a-chip they developed was the first in the world
(Huh et al., 2010) (Figures 3C,D). It is entirely based on
polydimethylsiloxane (PDMS) material, with an upper and a
lower layer of channels separated by a porous membrane coated
with extracellular matrix. In its internal structure, the upper
layer consists of alveolar epithelial cells that allow gases to pass
through, and the lower layer consists of microvascular epithelial
cells that allow white blood cells to pass through, thus simulating
lung function. In 2016, Benam et al. used this technology to
test smoking and non-smoking conditions, and confirmed
that using the lung-on-a-chip yielded experimental results that
were closer to clinical physiological and inflammatory reactions
compared with those from animal experiments, and previously
undiscovered biomarkers that were even more accurate were
found and analyzed (Benam et al., 2016a). At the same time,
other teams have developed lung chip models with different

design structures and physiological responses (Fishler et al.,
2015; Fishler and Sznitman, 2016; Humayun et al., 2018; Stucki
et al., 2018; Khalid et al., 2020). The lung-on-a-chip have been
developed to demonstrate their importance in drug development
and disease models, but still have several practical challenges
must be overcome if such devices are to be used in toxicology
research and application (Low and Tagle, 2017; Wu et al., 2020).
The aim of overcoming these challenges is to improve the
usability of these devices and to simulate metabolism in the
human body more accurately.

HEART-ON-A-CHIP

In addition, evidence from animal studies has shown that
nanoparticles can cross the alveolar-capillary barrier and
subsequently deposit in extrapulmonary organs such as the
vasculature and heart (Choi et al., 2010). Using specific organ
chips, such as heart-on-a-chip to investigate the toxicity of PM
may also have great potential value. The heart-on-a-chip is
mainly used to study electrical stimulation (Xiao et al., 2014),
cardiac electrophysiology (Sidorov et al., 2017) and disease
models (Wang et al., 2014). Marsano et al. recently established
heart-on-a-chip platform integrates mechanical stress and 3D
matrix microenvironment, showing better differentiation and
electromechanical coupling of the iPSC-derived cardiomyocyte
(Marsano et al., 2016). Liu et al. demonstrated the latest
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bioelectronic heart-on-a-chip model, which can regulate the
concentration of oxygen through the microfluidic channel,
and integrated bioelectronic devices to successfully monitor
the cardiac electrophysiology responses to acute hypoxia (Liu
et al., 2020). These examples fully demonstrate that heart-
on-a-chip may provide greater ability to recapitulation the
cellular microenvironment and tissue function. In the future,
it is expected that suitable heart-on-a-chip models can be
selected to investigate the human toxicity investigation of PM
deposition, penetration and metabolism, but it is necessary
to consider whether to choose particles with corresponding
size, composition and complex for stimulation or exposure
assessment. Of particular interest are the mechanisms of PM-
mediated toxicity on the systemic health effects. In recent years,
with the gradual advancement of multi-organ chips technology,
it is expected to provide more clues to accelerate the clarification
of the human toxicity of PM deposition, penetration and
metabolism (Yuancheng et al., 2018; Carvalho et al., 2019),
especially for the specific examples of lung- heart- on chip model,
which could be used to investigate the systemic toxicology of PM
into the human body.

OPPORTUNITIES AND CHALLENGES

It is worth mentioning that the organ-on-a-chip not only shows
the application value in research, but also the establishment
of related companies has started to appear in the past 5 years
(Mastrangeli et al., 2019), such as TissUse GmbH, Emulate,
Inc., MIMETAS Inc., Nortis, Inc., AlveoliX AG., Hesperos Inc..
In addition, the U.S. Food and Drug Administration (FDA)
announced in April 2017 that it had signed a multi-year
cooperation agreement with Emulate Inc. (spinoff from the
Wyss Institute for Biologically Inspired Engineering at Harvard
University), and will begin a series of trials using organ-on-a-chip
technology to develop a testing platform for toxicological safety
assessment (Isoherranen et al., 2019). These results demonstrate
the potential of applying organ-on-a-chip systems to human
health assessments. In the future, the organ-on-a-chip technology
is able to integrate stem cell technology, microenvironment and
personalization parameters (e.g., breathing pattern, heart rate,
substance abuse, etc.) to allow the construction of models of
different genders, regions, ages, and diseases to minute minor
physiological differences, thereby promoting the development of
precision health (van den Berg et al., 2019).

Despite the progress made with organ-on-a-chip models,
there remains a question that the organ-level functional
replication is limited by the source of cells. In the case of
pulmonary alveolar model, the aspect of long-term culture of
primary human alveolar type I and type II epithelial cells is
particularly challenging limitation (Shiraishi et al., 2019; Weiner
et al., 2019). Therefore, the organ-on-a-chip technology faces
limited availability and the inability to expand primary cells,
requiring the establishment of cell cultures directly from donors
and patients, which will increase the cost of experiments and
the difficulty of popularizing the technology. On the other hand,
the most organ-on-a-chip are made of PDMS due to their

high biocompatibility, oxygen permeability, and transparency.
The PDMS chip devices can directly match conventional cell
culture incubators and biological microscopes. However, a large
amount of protein molecules will be adsorbed on the surface
of PDMS (Wong and Ho, 2009; Gokaltun et al., 2017), which
results in that the supplement or stimulating substance of the cell
culture cannot fully interact with the cells. To avoid adsorption
of non-specific proteins, some teams have used polylactic acid
(PLA) (Ongaro et al., 2020), poly (methyl methacrylate) (PMMA)
(Nguyen et al., 2019), polystyrene (PS) (Lee et al., 2018), and
polycarbonate (PC) (Henry et al., 2017), and more advantages
and limitations of PDMS materials also have been introduced in
detail by other teams (Halldorsson et al., 2015; Gokaltun et al.,
2017).

MULTI-ORGAN CHIPS

With the development of organs-on-chips in the past decade,
the establishment of single types of organ-on-a-chip or the
development of disease models on a chip has gradually matured.
Although the organ-on-chips have seen great progress, it is
not enough to rely on a simulation single organ model for
a comprehensive understanding due to the highly complex
interactions between human organs. In 2004, Dr. Shuler and
colleagues first proposed the concept of reproducing human
physiological functions in chip devices (Sin et al., 2004).
The increasing demand for in vitro models, chips integrating
multiple organs have become a major topic in recent years,
and they also represent a major step forward in organ-on-
a-chip technology (Figure 4A). Currently, chips capable of
representing multiple organs in an integrated manner and fully
and accurately simulating human tissue are still being developed
(Skardal et al., 2017; Oleaga et al., 2018; Boos et al., 2019; Sung
et al., 2019; Zhao et al., 2019). For example, a new model for
physiological pharmacokinetics (PKs) and pharmacodynamics
(PDs) has successfully predicted the clinical patient data of
cisplatin PDs. This model is linked through fluidically coupled
vascularized organ chips to investigate PK and PD parameters of
oral and injectable drugs (Herland et al., 2020). It is worth noting
that the experiments of this model have reached an automated
system through robotic fluidic coupling of multiple organ chips,
and maintained the long-term culture of organ-specific functions
for 3 weeks (Novak et al., 2020). The automated multi-organ
chip system integrated with high-throughput screening has the
potential to improve the prediction of drugs (or other foreign
substances) absorption, distribution, metabolism, excretion and
toxicity for clinical trials.

As another example, the device in a recent study mainly
integrates four tissues—liver, heart, muscle, and neurons (Oleaga
et al., 2016). It is composed of the liver (which serves
to process drug metabolites and drug processes drugs or
prodrugs), heart (which is the most important organ in the
human body), skeletal muscle (which is responsible for glucose
storage levels in the body), and neurons (which represent a
particularly sensitive cell system). After culturing this system in
a continuous flow environment for 14 days, its feasibility and
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FIGURE 4 | Integrate multi-organ chip platforms to create complex interactions between human organs. (A) The design concept of the human body chip. One of the

most promising in vitro system for replicating the systemic responses of human body. Reproduced with permission from Huh et al. (2011). (B) Four-organs-on-a-chip

system employed intestine, liver, skin, and kidney tissue that proportionately simulated the physiological environment of the human body. Reproduced with permission

from Maschmeyer et al. (2015).

functionality were demonstrated, and because the cells used in
the system were primary cells and cells derived from iPSCs, they
exhibited the exchange of metabolites and signaling molecules.
In addition, by measuring heart rate, muscle contractility,
neuroelectrophysiology, and production of liver albumin and
urea, it served as an accurate model for predicting toxicity in
multiple human organs. In another study, Maschmeyer et al.
integrated pre-formed bowel and skin models into a hepatic
spheroid and renal epithelial barrier tissue model, establishing
a microchannel system that could support the functions of
four types of organs in a co-culture over a long period of
1 month (Maschmeyer et al., 2015) (Figure 4B). In addition,
this four-organs-on-a-chip system employed a structure that
more proportionately simulated the physiological fluid and tissue
environment of the human body. It simulated drug absorption
and metabolism in the small intestine, metabolism by the liver,
and excretion by the kidneys, which are all key factors that
determine the efficacy and safety of drug treatments. These
systems allow us to further understand metabolic and genetic
analyses and provide an alternative to systemic toxicity testing.
In addition, these examples demonstrate that integrated multi-
organ chips are an important part in the ability to simulate
complex reactions and interactions between tissues, whether in
drug testing, toxicological screening, or construction of organ-
on-a-chip models.

Therefore, integrating multi-organ chips are expected to
replace the inadequacies of traditional in vitromodels, promoting
studies of the effects of air pollution on the body and the early
development of drugs, as these devices are designed to mimic the
physiological structure of internal organs and interactions with
soluble metabolites, thereby achieving in vitro the interactive
effects between organs. However, current multi-organ chip

models are mainly used for systemic processes of oral and
injectable drugs, but lacks models for PM inhalation. In a
recent human inhalation study, Miller et al. investigated the
transport behavior of gold nanoparticle inhaled into the lung
(Miller et al., 2017). The results showed that the blood and
urine of the volunteers still found gold nanoparticle after 3
months of exposure, indicating systemic retention and delayed
urinary excretion. This study clearly understands the ability of
inhaled nanoparticles to penetrate lung tissue, but investigating
the interactions between human organs, especially for the
cardiopulmonary system remains a challenge. Based on the most
direct impact of PM on cardiopulmonary function, in the future,
it is urgent to form an integrated platform by connecting the
organ chips of the lung and heart in the future. Even PM gas
can be exposed to such a platform for discussion. It is hoped
that the cardiopulmonary function model established in vitro
can be used to obtain new possibilities and opportunities for
PM analysis, so that it can more effectively clarify the impact
of PM on the human body in vitro and find out the causes of
cardiopulmonary diseases.

OUTLOOK

In addition to well-known respiratory diseases such as COPD,
fine PM in the air that is inhaled into the lungs are translocated to
the bloodstream and transported to the blood vessels and heart,
where they induce arrhythmia, reduce myocardial contractility,
and reduce coronary blood flow, thereby increasing the incidence
and mortality of cardiopulmonary diseases. Related studies
have shown that the harmful effects of fine PM on health
may reach an uncontrollable point by 2030. Therefore, it is
essential to quickly and accurately elucidate their effects on the
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FIGURE 5 | The potential value of organ-on-a-chip biomimetic technology for PM toxicity. Its 3D microenvironment and biomimetic circulating air/liquid dynamic

environment are expected to be used for PM health assessment.

human body, determine the causes of disease, and formulate
response strategies.

Although epidemiological and clinical studies have produced
much evidence of the effects of fine PM on human health, it
has not yet been fully explained how physiological responses
and cellular and molecular mechanisms of change and injury
are caused. Currently, most health evaluation studies of fine
PM are conducted through cell culture or animal experiments.
Cell-based studies are still greatly limited compared to the
complex structures of physiological mechanisms in humans, and
it is impossible to simulate the complex conditions and the
interrelated physiological information of the entire organism.
Animal experiments play an important role in studies on
fine PM, where they allow in vivo toxicological testing by
exposing animals to various fine PM environments via the
oral and dermal routes. Although animals can inhale fine
PM and develop comprehensive systemic outcomes, there
is often a large difference between mechanistic and genetic
indicator data and clinical outcomes. This is primarily due
to differences among species and their physiological functions,
such as differences in respiratory rate between experimental
mice and humans, as well as the problems of genetics, low
throughput, high cost, and ethical concerns. These reasons
have caused difficulty when investigating the causes of air
pollution and associated human health hazards, the analysis of
biomarkers, and the development of future pollution control
strategies. Organ-on-a-chip biomimetic technology will bring
unlimited potential for breaking through the bottlenecks faced in
previous studies.

Reviewing the current development of organ-on-chips, most
research focuses on drug development and disease models (Huh

et al., 2012; Esch et al., 2015; Benam et al., 2016b). Except for
the toxicological applications of lung-on-a-chip and cigarette
smoking, other integrated studies related to environmental PM
have not been extensive. According to previous reviews (see
the section on Particulate matter and respiratory system and
Particulate matter and cardiovascular effects), there are several
clues worthy of attention such as DNA damage, inflammatory
injury and PM translocation. For these research topics, it is
believed that there is a great opportunity to obtain more
undiscovered information by applying current organ-on-chips
and multi-organ chips technology. For example, DNA damage
and inflammatory injury could refer to related research on
drug toxicity testing, translocation of PM could refer to related
research on nanoparticle drug delivery, and further research on
chronic toxicology could refer to the multi-organ chips model
with PKs and PDs parameters. On the other hand, organ-
on-a-chip systems have been shown to be closer to clinical
physiology and inflammatory response, compared to traditional
experimental model approaches. It has the potential to be a useful
in vitromodel for investigating the relationship between PM and
related diseases. Therefore, the successful development of in vitro
chips for simulating organs is a necessary avenue toward modern
assessment of the health effects of air pollution. Its rapid and
efficient screening capabilities are expected to help governmental
agencies and the clinical sector move toward the correct policy
and drug development routes, reduce costs, and significantly
shorten the process of drug and foreign substance toxicity testing
(Ronaldson-Bouchard and Vunjak-Novakovic, 2018).

The technology is still evolving from single organ to multi-
organ chips, it is expected to be realized as a long-term and
highly active cardiopulmonary chip. Its 3D microenvironment
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and more biomimetic cyclic dynamic environment combined
with fine PM are expected to be applied to health evaluation,
physiological indicators, creation of cardiopulmonary disease
models, and drug testing. This more precise experimental model
is expected to replace existing cell culture or animal experiments
and accelerate studies elucidating the effect of fine PM on the
human body (Figure 5).
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