
ORIGINAL RESEARCH
published: 19 June 2020

doi: 10.3389/fbioe.2020.00547

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 June 2020 | Volume 8 | Article 547

Edited by:

Marco Pellegrini,

Italian National Research Council

(CNR), Italy

Reviewed by:

Vijaykumar Muley,

National Autonomous University of

Mexico, Mexico

Andras Szilagyi,

Hungarian Academy of Sciences

(MTA), Hungary

*Correspondence:

Huajun Zhang

huajunzhang@zjnu.cn

Jialiang Yang

yangjl@geneis.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Bioinformatics and Computational

Biology,

a section of the journal

Frontiers in Bioengineering and

Biotechnology

Received: 06 January 2020

Accepted: 06 May 2020

Published: 19 June 2020

Citation:

Zhu L, Zhang J, Zhang Y, Lang J,

Xiang J, Bai X, Yan N, Tian G,

Zhang H and Yang J (2020) NAIGO:

An Improved Method to Align PPI

Networks Based on Gene Ontology

and Graphlets.

Front. Bioeng. Biotechnol. 8:547.

doi: 10.3389/fbioe.2020.00547

NAIGO: An Improved Method to Align
PPI Networks Based on Gene
Ontology and Graphlets

Lijuan Zhu 1†, Ju Zhang 2†, Yi Zhang 3, Jidong Lang 4, Ju Xiang 5,6, Xiaogang Bai 3, Na Yan 4,

Geng Tian 4, Huajun Zhang 1* and Jialiang Yang 4*

1College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China, 2 Institute of Infectious

Diseases, Beijing Ditan Hospital, Capital Medical University, and Beijing Key Laboratory of Emerging Infectious Diseases,

Beijing, China, 3Department of Mathematics, Hebei University of Science & Technology, Shijiazhuang, China, 4Geneis Beijing

Co., Ltd., Beijing, China, 5Neuroscience Research Center & Department of Basic Medical Sciences, Changsha Medical

University, Changsha, China, 6 School of Computer Science and Engineering, Central South University, Changsha, China

With the development of high throughput technologies, there are more and more

protein–protein interaction (PPI) networks available, which provide a need for efficient

computational tools for network alignment. Network alignment is widely used to

predict functions of certain proteins, identify conserved network modules, and study

the evolutionary relationship across species or biological entities. However, network

alignment is an NP-complete problem, and previous algorithms are usually slow or less

accurate in aligning big networks like human vs. yeast. In this study, we proposed a

fast yet accurate algorithm called Network Alignment by Integrating Biological Process

(NAIGO). Specifically, we first divided the networks into subnets taking the advantage

of known prior knowledge, such as gene ontology. For each subnet pair, we then

developed a novel method to align them by considering both protein orthologous

information and their local structural information. After that, we expanded the obtained

local network alignments in a greedy manner. Taking the aligned pairs as seeds, we

formulated the global network alignment problem as an assignment problem based

on similarity matrix, which was solved by the Hungarian method. We applied NAIGO

to align human and Saccharomyces cerevisiae S288c PPI network and compared the

results with other popular methods like IsoRank, GRAAL, SANA, and NABEECO. As a

result, our method outperformed the competitors by aligning more orthologous proteins

or matched interactions. In addition, we found a few potential functional orthologous

proteins such as RRM2B in human and DNA2 in S. cerevisiae S288c, which are related

to DNA repair. We also identified a conserved subnet with six orthologous proteins EXO1,

MSH3, MSH2, MLH1, MLH3, and MSH6, and six aligned interactions. All these proteins

are associated with mismatch repair. Finally, we predicted a few proteins of S. cerevisiae

S288c potentially involving in certain biological processes like autophagosome assembly.
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INTRODUCTION

With the development of high-throughput techniques, such as
yeast two-hybrid system (Uetz et al., 2000; Ito et al., 2001) and
coimmunoprecipitation coupled to mass spectrometry (Krogan
et al., 2006), a large amount of protein–protein interaction
(PPI) networks in many species (e.g., human, yeast, and mouse)
have been reported. Their nodes vary from hundreds to tens
of thousands. Within a PPI network, each node denotes a
protein, and each edge denotes an interaction between the two
proteins connected. Interspecies network alignment is important
for predicting protein functions (Dutkowski and Tiuryn, 2007;
Singh et al., 2008) and understanding the PPI network evolutions
(Flannick et al., 2006; Kuchaiev and PrŽulj, 2011). Many
network alignment tools have been proposed. According to their
comparison range, they could be categorized into local alignment
and global alignment. The goal of local alignment is to find
subnets conserved in two or more species, which are usually
limited to a relative small range and involve only proteins with
specific functions (Berg and Lässig, 2004, 2006; Brian et al., 2004;
Sharan et al., 2005; Liang et al., 2006; Ciriello et al., 2012; Mina
and Guzzi, 2014). On the contrary, the global alignment aims
to find mappings traversing all nodes (Klau, 2009; Liao et al.,
2009; Zaslavskiy et al., 2009; Milenković et al., 2010; Patro and
Kingsford, 2012; Neyshabur et al., 2013; Faisal et al., 2015).

Since PPI network alignment is usually a generalized
subgraph isomorphism problem, that is NP-hard (Lathrop,
1994), developing heuristic algorithms with good practical
efficiency has become one of the foremost challenges. The
existing network alignment algorithms could be classified into
three categories: heuristic search method based on graph model,
constraint optimization method based on objective function, and
modular method based on the divide and conquer strategy. The
heuristic search methods could establish interspecies alignment
graphs with the orthologous proteins as nodes. They evaluate
the similarity between PPI networks and design heuristic search
algorithms generally adopting the greedy strategy of seed
growth. Following similar ideas, different alignment tools also
use different analytic strategies and algorithms. For example,
MaWISH (Koyuturk et al., 2006) converts the local alignment
into a maximum weight induced subgraph problem. Græmlin
(Flannick et al., 2006) determines the initial matched proteins
based on the log-likelihood ratio probability model and then
gradually searches other similar protein nodes to expand
the alignment graphs. The optimization-based methods could
convert the alignment problem into an optimization problem.
For instance, IsoRank (Singh et al., 2008) calculates the PPI
network similarity with an eigenvalue matrix and extracts the
global alignment from it. MNAligner (Li et al., 2007) converts
the network alignment into an integer quadratic programming
problem, while GRAAL (Kuchaiev et al., 2010) converts it
into a topological structure problem. The other alignment
tool, BinAligner (Yang et al., 2013), constructs a similarity
matrix based on node similarity and “n-neighborhood” (n
≥ 1) subnet similarity and implements alignment by integer
programming. The modular-based methods are also widely used
for alignments, considering the large size of PPI networks

and their modular structures (Hartwell et al., 1999; Silva
and Stumpf, 2005; Sharan and Ideker, 2006; Almaas, 2007;
Srinivasan et al., 2007). For example, Match-and-Split alignment
(Narayanan and Karp, 2007) divides the modules by matching
and splitting, while BiNA (Towfic et al., 2009) divides the original
network into multiple subnets and aligns them by a kernel
function subsequently.

Although many algorithms for PPI network alignment
have been developed, most current tools either have lower
accuracy or fail to align large networks. There is still a need
for a fast and accurate alignment algorithm. In this study,
we propose an improved alignment method, NAIGO, which
integrates divide-and-conquer strategy, optimization modeling,
and graph-based features. It can align PPI networks locally
and globally based on the node similarity, edge similarity,
and topological similarity of the networks. To improve the
calculation efficiency, NAIGO achieves the global alignment
between large networks by expanding prealigned subnets in
a greedy manner. In contrast to other alignment algorithms,
NAIGO could also expand the smaller subnets by referring
to the matched bigger ones and thus predict the unknown
biological process (BP) of proteins. We applied NAIGO
to align the PPI networks of human and Saccharomyces
cerevisiae S288c. Compared with other popular methods
such as GRAAL (Kuchaiev et al., 2010), IsoRank (Singh
et al., 2008), SANA (Mamano and Hayes, 2017), and
NABEECO (Ibragimov et al., 2003), NAIGO has a better
alignment performance.

METHODS

Our algorithm consists of three steps: (1) divide the large
networks into multiple small subnets, (2) align the corresponding
subnets based on the similarity matrix, (3) expand the
interspecies alignment graphs based on the heuristic search idea,
with the best aligned subnets as nodes.

Network Division
Considering that similar proteins participate in the same
biological process in different species, we use the BP information
of Gene Ontology (GO) as the criteria to divide the network. In
our study, BP data was extracted by loading the GO.db package,
and it contained a total of 14,291 GO terms. Based on the
BP terms, we divided the network as follows: if two interacted
proteins both involved in the same term, they will be included
in the subnet (Figure 1A). The division method could avoid
isolated vertices. According to the criteria, the PPI network of
human could be divided into 6,781 non-empty subnets, and the
PPI network of S. cerevisiae S288c could be divided into 1,836
non-empty subnets. Among them, there are 1,771 subnet pairs
under the same terms of the two species. In the corresponding
1,771 terms, except for the biological process term, only one
term pair had containment relationship, and the included term
was removed. Thus, we consider aligning the 1,770 BP subnet
pairs (i.e., align human subnet i to S. cerevisiae S288c subnet i,
i = 1, 2, . . . , 1, 770) (Figure 1B).
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FIGURE 1 | The flowchart of Network Alignment by Integrating Biological Process (NAIGO). The letters, such as (A–C), represent proteins in the figure. (D) Network

alignment expansion.
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Subnet Alignment Based on Similarity
Matrix
A PPI network is an undirected graph G = (V ,E), where
the node set V represents the proteins and the edge set E
represents interactions between proteins. Given two PPI subnets,
G = (V ,E) and H = (U, F), the subnet alignment is defined as a
one-to-one mapping (π) between node set V and U.

π : {i ∈ V} 7→
{

j ∈ U
}

(1)

where π reflects the alignment of proteins, and we define the
mapping value as Equation (2). If we get the πij value of each
protein pair in the two PPI subnets (i ∈ V , j ∈ U) and confirm
the correspondence of each interaction pair based on πij, we will
achieve a subnet alignment.

πij =

{

1, if j = π (i)
0, otherwise

(2)

To get the optimal alignment efficiently, we constructed a
similarity matrix (C) for each PPI subnet pair. We need to
solve the integer linear programming problem to maximize the
alignment score S in Equation (3), which is subject to restrictions
as Equation (4). Hungarian algorithm was adopted to solve
the problem.

S = max
π

∑

i∈V

∑

j∈U

Cijπij (3)

Subject to











∑

i∈V πij = 0 or 1, ∀j ∈ U
∑

j∈U πij = 0 or 1, ∀i ∈ V

πij = 0 or 1, ∀i ∈ V and j ∈ U

(4)

In the above equation, V and U represent the node set of subnet
G and H, respectively.

Construction of Similarity Matrix
Obviously, the PPI subnet alignments were decided by their
topological structure, as well as the conservation of the proteins
(nodes) and interactions (edges) that mainly influenced by the
protein orthology. Therefore, the similarity matrix C considers
both the protein orthology and network topology as follows.

C = θ1 ∗ (A+ A∗)+ θ2 ∗ B(0 ≤ θ1, θ2 ≤ 1 and θ1 + θ2 = 1)(5)

On the one hand, we define the corresponding protein orthology
matrix as A and satisfies Equation (6). The orthologous file
between S. cerevisiae S288c and human was downloaded from
Ensembl (http://www.ensembl.org/biomart/martview). Besides,
we also lead A∗ into the similarity matrix and define it as
Equation (7), which reflects the contribution of the orthologous
protein pairs to the edge matching. Within it, N(i) is the set of

neighbors of node i,
∣

∣N(i)
∣

∣ is the size of this set, and N(i) × N(j)
is the Cartesian product of sets N(i) and N(j).

A(i, j) =

{

1 if i and j are orthologs
0 otherwise

(6)

A∗(i, j) =
sum

{

A
[

N(i) × N(j)
]}

∣

∣N(i)
∣

∣ ∗
∣

∣N(j)
∣

∣

(7)

On the other hand, we also compare the topological structure
around the nodes during the subnet alignment, which is based
on the graphlet degree (PrŽulj, 2007). A graphlet is a connected
non-isomorphic subgraph of a large network, in which non-
automorphism positions are called orbits. We construct graphlet
matrix Gn×73 based on 30 (2-, 3-, 4-, and 5-node) graphlets with
73 orbits, where n is the number of nodes in the subnet and
G(i, j) is the number of graphlets touched by node i at orbit
j− 1 (j = 1, 2, ..., 73). Furthermore, the graphlet similarity matrix
is defined as B and satisfies

B(i, j) =
1

1+

√

73
∑

k=1

[

G1(i, k)− G2(j, k)
]2

(8)

G1 and G2 represent the graphlet matrices of two species. The
number of rows is the number of proteins in the subnet, and the
number of columns is the number of orbits.

Parameter Setting of Similarity Matrices
As displayed in Equation (5), how to weight the protein orthology
(θ1) and network topology (θ2) is essential for constructing the
similarity matrices. We consider the protein orthology as the
major determinant when there are many orthologous protein
pairs between corresponding subnets. Otherwise, we consider
the topology as the major determinant. We thus calculate the
weighting coefficient as follows (letm be the number of subnets).

θ1 =

{

pi if pi < 1,
mean

j=1,2,...,m
(pj|pj < 1) else. (9)

θ2 = 1− θ1 (10)

where p represents the orthologous protein ratio and is calculated
with Equation (11), where n, n1, and n2 represents the number of
orthologous protein pairs and the number of proteins in two PPI
subnets, respectively.

p =
n

min(n1, n2)
(11)

When pi < 1 in the subnet, the weighting coefficient of the
protein orthology (θ1) is equal to pi; otherwise, θ1 is the mean
value of pi of the other subnets with pi < 1.

Simplification of Similarity Matrices
When the dimension of matrix C is large, we simplify it to
improve the calculation speed without affecting results. Let the
matrix dimension bem× n. Ifm = n, C could not be simplified.
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Otherwise, the simplification principles are as follows, taking
m > n as an example.

(1) Extract the rows with orthologous proteins from C. Let the
number of rows be r1. The extractedmatrix and remainingmatrix
are denoted by Z1 and C1, respectively.

(2) Extract the rows from C1 which include the largest
element of each column. Let the number of rows be r2. The
extracted matrix and remaining matrix are denoted by Z2 and
C2, respectively.

(3) If r1 + r2 ≥ n, [Z1; Z2] is the simplified matrix C. If
r1 + r2 < n, extract the rows from C2 according to the step (2).
Repeat the matrix extraction and test until

∑Q
q=1 rq ≥ n.

The Whole Network Alignment Expansion
After the subnet alignments, we treat the largest aligned subnet
as a seed and expand it with the heuristic search method
until aligning all the nodes. Then, we could achieve the global
alignment between large PPI networks. The expansion steps are
as follows (Figure 1D):

(1) Let the seed of Human be V and its neighbor (i.e., the node
set that interacts with V) be V1; the seed of S. cerevisiae
S288c be U and its neighbor be U1. Remove the repeatedly
occurring proteins in their corresponding seed from V1/U1

(due to the interactions between the proteins in V/U, there
are overlapping proteins in V/U and V1/U1).

(2) Find the alignment between V1 and U1 by resolving the
optimization problem and maximizing the alignment score
S as Equation (12), and thus expand the aligned seed.

(3) Let the neighbor of V1 be V2 and the neighbor of U1 be U2.
Repeat steps (1) and (2) until the seed network expands to n
layers andUn+1 orVn+1 is empty.Merge all results to achieve
the global alignment between two species.

The alignment score S is also the criterion for assessing
alignment. However, we use the scoring scheme of graph
alignment (Berg and Lässig, 2006; Kolár et al., 2008) in the whole
network alignment expansion, comparing to the similaritymatrix
based strategy in the subnet alignment. It is achievable when the
subnet alignment is implemented as a seed and is more accurate.
Briefly, we define S as the sum of the nodes score SV and edge
score SE. In order to maximize S, we resolve the optimization
problemwith the Hungarian algorithm in Equation (12), which is
subject to restrictions as Equation (13). Taking πij as the aligned
seed, we could obtain the πkl value for any k in V and l in U by
resolving assignment problem.

S = max
∑

k∈V

∑

l∈U

αklπkl+
∑

i,k∈V

∑

j,l∈U

βijklπijπkl (12)

Subject to























∑

i∈V

∑

j∈U
Cijπij =

ˆ
s,

∑

k∈V πkl = 0 or 1, ∀l ∈ U
∑

l∈U πkl = 0 or 1, ∀k ∈ V
πkl = 0 or 1, ∀k ∈ V and l ∈ U

(13)

In the above equation, V and U represent the node set of human
and S. cerevisiae S288c PPI network, respectively. SV scores
protein pairs, in which the sequence similarity score (αkl) is used
to determine the most likely orthologous proteins [l = π(k)]. SE
scores PPI pairs, in which βijkl is used to reward each matched
PPI pair and punish each mismatched PPI pair. Given the nodes
i, k ∈ V and j, l ∈ U, as well as the PPIs ik ∈ E and jl ∈ F,
if j = π(i) and l = π(k), the PPIs ik and jl are matched edges;
otherwise, they are mismatched edges. The parameter values are
settled by Equations (14, 15), according to the reference (Yang
et al., 2013).

αkl =

{

4.4 k and l are orthologs
−1.6 else

(14)

βijkl =

{

1.6 if ik ∈ E and jl ∈ F
−0.3 else

(15)

The Subnet Alignment Expansion
The biological information of human PPI network is more
complete, and the number of proteins in each subnet is greater
than that of S. cerevisiae S288c. Therefore, the potential functions
of many S. cerevisiae proteins could be further annotated
by referring to the human subnets and only expanding the
corresponding S. cerevisiae ones. The expansion steps are as
follows (similar to the whole network expansion) (Figure 1C):

(1) Let the aligned protein set of S. cerevisiae subnet be X and
its neighbor in whole PPI network be X1. If X1 contains the
proteins of X, remove them from X1.

(2) Let the aligned protein set of human subnet be Y and its
neighbor in BP subnet be Y1. Compare X1 and Y1 adopting
the same solution method as the whole network expansion.

(3) According to the alignment results, the new aligned proteins
of X1 are predicted to participate in the corresponding BP.

Performance Assessment of Network
Alignment
Node coverage (NC) has been widely used (Milenković et al.,
2010) to evaluate how well an alignment reconstructs the true
node mapping, and it is defined as the percentage of aligned
orthologs in the node set of the smaller network (U). In addition,
global network aligners often fail to align all the nodes of the
smaller network to the larger one. Thus, we also use global node
coverage (GNC) to evaluate global alignments, which measures
the number of mapped nodes normalized by the number of
nodes in the smaller network (Malod-Dognin et al., 2017). To
measure how well edges are conserved under an alignment,
three measures have been used to date: edge correctness (EC)
(Kuchaiev et al., 2010), induced conserved structure (ICS) (Patro
and Kingsford, 2012), and symmetric substructure score (S3)
(Saraph and Milenković, 2014). S3 has been shown to be superior
to EC and ICS, since, intuitively, not only it penalizes alignments
from sparse graph regions to dense graph regions (as EC does)
but also it penalizes alignments from dense graph regions to
sparse graph regions (as ICS does). Hence, we only focus on S3

(S3 =
|E∗1|

|E1|+
∣

∣

∣
E
′

2

∣

∣

∣
−|E∗1|

, where |E∗1 | is the number of edges from
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smaller network G1 that are conserved by alignment, |E
′

2| is the
number of edges from the induced subnet of G2 with aligned
node set). Besides, the alignment score S is also the criterion for
assessing alignment comprehensively. We use GO correctness
(GC) to evaluate the biological quality of an alignment. GC is
defined as the percentage of aligned protein pairs that share at
least k GO terms (k = 1, 2, . . . ) (Kuchaiev et al., 2010). In our
study, we choose k = 1. Since the subnet pairs are divided by the
BP terms, the GCs of all subnet alignments are 1.

In addition, we also assess the alignment performance by
exploring the functions of aligned proteins. The aligned proteins
with similar functions will get higher evaluation. The other
indicator for alignment quality is the number of found common
subnets representing the conserved functional clusters.

RESULTS

NAIGO Algorithm and Benchmark Datasets
The NAIGO algorithm has integrated divide-and-conquer
strategy, optimization modeling, and graph-based features.
When aligning large networks, it first divides them into multiple
subnets based on the BPs of proteins and then locally aligns the
corresponding subnets by constructing similarity matrices. The
alignment problem is thus formulated as an assignment problem
and could be solved by a polynomial time algorithm called
the Hungarian method. The similarity matrices integrate the
orthologous information and topological similarity information
of the networks. It is worth mentioning that we added the edge
matching information to the orthologous information. After all
the subnet comparisons, we consider the largest interspecies
aligned subgraphs as seeds and use the scoring scheme of graph
alignment to expand them in a greedy manner. Then, we finally
achieve the global alignment of large networks.

To test the NAIGO algorithm, human and S. cerevisiae S288c,
two species separated by a long evolutionary distance, were
picked out to perform the PPI network alignment. Although
their PPIs have been widely explored, there is still a lack of
studies on the PPI alignment between them, whether local or
global. We downloaded the S. cerevisiae S288c data (BIOGRID-
ORGANISM-Saccharomyces_cerevisiae_S288c-3.4.137.tab2.txt,
see Dataset S1), human data (HPRD_PROTEIN_
INTERACTIONS_Build9.txt, see Dataset S1), and the
orthologous file between these two species from BioGRID
(Andrew et al., 2015), Human Protein Reference Database
(HPRD) (Keshava et al., 2009), and Ensembl (http://www.
ensembl.org/biomart/martview), respectively.

The human PPI network consisted of 9,465 proteins and
39,240 interactions, among which there were a total of 2,201 self-
interactions and repeated interactions. We denoted it by a graph
G = (V ,E), in which |V|=9,465 and |E|=37,039 after removing
the self-interactions and repeated interactions. In contrast, the S.
cerevisiae S288c network consisted of 6,470 proteins and 342,123
interactions. We denoted it by H = (U, F), in which |U|=6,470
and |F|=228,703. According to the BPs of proteins, the human
and S. cerevisiae S288c network were divided into 6,781 and
1,836 non-empty subnets, respectively. Among them, there were

TABLE 1 | The influence of balancing parameters on the alignment.

θ1 θ2 Average NC Average S3

0 1 0.01 0.009

0.05 0.95 0.73 0.117

0.1 0.9 0.74 0.119

0.2 0.8 0.74 0.120

0.5 0.5 0.75 0.122

0.9 0.1 0.75 0.122

0.95 0.05 0.75 0.122

0.96 0.04 0.75 0.121

0.999 0.001 0.75 0.121

1 0 0.75 0.120

Defined θ1 Defined θ2 0.75 0.121

1,770 overlapping subnets in the two species after removing the
included subnet.

According to the orthologous file, there were 3,871 ortholog
pairs between V and U. Since many proteins have more than one
ortholog in the other species, we finally confirmed 1,908 non-
overlapping ortholog pairs byHungarian algorithm. Each protein
was involved in up to one non-overlapping ortholog pair, which
guaranteed accurate and efficient alignments.

Effectiveness of Modified Algorithm and
Defined Parameters
In NAIGO, the node and edge matching information were
both introduced into the calculation of orthology (sequence-
edge similarity), which was formulated into the similarity matrix
together with the topological similarity. The parameters θ1 and θ2
were defined to balance contributions of nodes and edges.

This design ensured aligning more orthologous proteins on
the matched edges and thus achieving better results. To evaluate
the effectiveness of the integrative strategy and parameter setting,
we randomly selected 30 subnet pairs. The interaction numbers
of the smaller subnets ranged from 300 to 500. Adopting two
common alignment scoring schemes, NC and S3, we tested
the performances of (1) setting one parameter to one and the
other to zero (i.e., θ1 = 0 and θ2 = 1), (2) setting the
continuously changing parameters (0 < θ1 < 1 and θ2 =

1 − θ1), and (3) defining parameters. The larger NC and S3, the
better the performance. As shown in Table 1, both the sequence-
edge and topological similarities contributed to the node and
edge alignments, and the former played more important roles
in it. Meanwhile, the defining parameters got the better NC
and S3 performance. (For the defining parameters of 30 subnet
pairs, see Table S1). The results demonstrated that the algorithm
modification based on the sequence-edge similarity and defined
parameters led to the good subnet alignment.

Performance Assessment of Local
Alignment
We adopted the shared 1,770 BP subnets in the human and S.
cerevisiae to evaluate the local alignment performance of the
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FIGURE 2 | The conserved subnet. The yellow nodes and edges represent the proteins and interactions only existing in the Saccharomyces cerevisiae S288c, and

the green nodes and edges represent the proteins and interactions only existing in human. The red nodes and edges form the conserved subnet of the two species.

NAIGO algorithm. The mean value (±SD) of the NC is 0.57
(±0.35), and the mean value (±SD) of the S3 is 0.30 (±0.33), the
1770 aligned subnets seeDataset S2 - aligned subnets.

Within them, we achieved the conserved subnets in 1,240
aligned subnet pairs, which included at least two aligned edge
pairs. We randomly selected several conserved subnets as
examples (Figure 2, Figures S1, S2, and Table S2). As shown
in Figure 2, the conserved subnet contained six orthologous
proteins (EXO1, MSH3, MSH2, MLH1, MLH3, and MSH6)
and six aligned interactions (EXO1-MSH3, EXO1-MSH2, EXO1-
MLH1, MSH3-MSH2, MLH3-MLH1, and MSH6-MSH2). Refer
to Figure 3A for the alignment between the subnets where the
conserved subnets are located, and we know that both the human
and S. cerevisiae S288c proteins in conserved subnets are related
to mismatch repair.

We annotated the functions of the six orthologous proteins in
the human and S. cerevisiae S288c (Figures 3B,C), displaying the
similar patterns in the two species. Using ClueGO, a Cytoscape
plugin, the orthologous proteins were annotated into 26 and 13
BP terms in the human and S. cerevisiae, respectively. Within
them, we found that all the six orthologous proteins involved
in the Mismatch repair in the two species. Furthermore, the
BP terms could be classified into five clusters, including three
consistent ones, such as mismatch repair (the enrichment p-
value is 2.52E−16 in human and 5.44E−15 in S. cerevisiae,
respectively), DNA replication (7.09E−10/1.21E−08), and DNA
recombination (1.32E−09/1.19E−09). It should be noted that
the biggest BP cluster in the human, B-cell-mediated immunity,
was not identified in the S. cerevisiae S288c. However, it was
due to the corresponding BP terms mainly correlating to the
somatic diversification of immune receptors/immunoglobulins
via recombination and mutation, which had evolved only in
vertebrates.We also performed Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis on the six orthologous
proteins in the human and S. cerevisiae S288c (Figure S3), and

the results also showed that they were enriched in mismatch
repair pathway. We also performed KEGG enrichment analysis
on conserved subnets in Figures S1, S2 (see Figures S4, S5), and
both subnet pairs had the same enrichment pathways. Therefore,
these results indicated that the conserved subnets were functional
conserved modules, and the NAIGO algorithm performed a
correct local alignment.

In addition, the high performance of the NAIGO algorithm in
the local alignment was also validated by annotating the functions
of the non-orthologous protein pairs in the aligned subnets.
We randomly selected five local alignments including 19 non-
orthologous protein pairs and identified their functions by their
BP terms and molecular function information on GeneCards.
We totally found 10 non-orthologous protein pairs with similar
functions (Table 2), indicating that these proteins were correctly
aligned and should play similar roles in the two species.

Performance Assessment of Global
Alignment
We also evaluate the NAIGO performance in the global
alignment of the human and S. cerevisiae PPI networks. A total of
6,440 protein pairs have been aligned with the NAIGO algorithm,
including the orthologous and non-orthologous protein pairs.
It accounted for 68.04 and 99.54% of all proteins in the PPI
networks of human and S. cerevisiae S288c, respectively. The NC
of the global alignment is 0.21, the S3 is 0.02, and the GC is 0.15
(Table 3), the aligned network seeDataset S2 - aligned network.

In addition, the NAIGO algorithm connected several
fragmented subgraphs of the human PPI network by the global
alignment. Within the HPRD database, the human PPI network
consisted of 110 fragmented subgraphs, each of which had
at least one edge, and had no interaction with each other.
Correspondingly, there were two fragmented subgraphs in the
PPI network of the S. cerevisiae S288c, one of which only had
three vertices and three edges. After the global alignment, the
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FIGURE 3 | The subnet alignment and the functional annotation of the six orthologous proteins in the conserved subnets. In the subnet alignment (A), the round and

square nodes represent the orthologous and non-orthologous protein pairs, respectively. If the human protein “A” aligned to the Saccharomyces cerevisiae S288c

protein “B,” then we represent the protein pair as “A/B.” The yellow edges represent the interactions only existing in the Saccharomyces cerevisiae S288c, and the

green edges represent those only existing in human. The red edges are the matched interactions. We colored the nodes in red based on broad GO term mismatch

repair that had the most proteins. ClueGO is used to perform the gene enrichment analysis based on biological process (BP). The annotated BP groups and terms in

(Continued)
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FIGURE 3 | the human (B) and Saccharomyces cerevisiae S288c (C), with the statistical significance (P < 0.05), are displayed separately. Each node represents a BP

term, and each color represents a BP group. The dark green group represents mismatch repair; the light blue group represents DNA replication; the light green group

represents DNA recombination; the dark blue group represents B-cell-mediated immunity; and the yellow group represents meiosis. For simplicity, we only remark the

most significant BP term of each group in the figures. The edges indicate the involved proteins in each functional item.

TABLE 2 | The functions of non-orthologous pairs.

Human/Saccharomyces

cerevisiae proteins

BP terms GeneCards functions

RRM2B/DNA2 DNA repair Related to hereditary external

ophthalmoplegia

LIG3/PIF1 NULL DNA strand-break prevention

and correction

RAD54L/CCT8 NULL Telomere maintenance

RAD54B/REC114 Reciprocal meiotic

recombination

Meiosis

AURKA/REC8 NULL Structural maintenance of

chromosome/spindle

RAD51/SPO11 Reciprocal meiotic

recombination

NULL

TF/SCO1 NULL Transportation

ATG16L1/ATG14 Protein transport

Macroautophagy

Autophagy

GABARAP/ATG13 Autophagy

Autophagosome

assembly

Macroautophagy

Neurotransmission

ARG2/CPS1 NULL Urea metabolism

TABLE 3 | The predicted protein–protein interactions (PPIs) between subgraphs.

Predicted human

interactions

Corresponding

Saccharomyces

interactions

Alignment

type

Experimental

evidence

VPS52-TSSK3 VPS52-AFT1 O-NO Science paper

(Menche et al., 2015)

VPS52-EPM2AIP1 VPS52-ERV41 O-NO Science paper

(Menche et al., 2015)

VPS52-COG3 VPS52-COG3 O-O STRING database

VPS52-RAB6A VPS52-YPT6 O-O STRING database

VPS52-STX16 VPS52-TLG2 O-O STRING database

VPS53-STX16 VPS53-TLG2 O-O STRING database

VPS53-RAB6A VPS53-YPT6 O-O STRING database

USE1-STX5 USE1-SED5 O-O STRING database

USE1-SCFD1 USE1-SLY1 O-O STRING database

UBP1-ARHGAP21 UBP1-BEM2 O-O STRING database

O-O represents the PPI alignment with orthologous protein pairs as both nodes. O-

NO represents the PPI alignment with an orthologous protein pair as one node and a

non-orthologous protein pair as the other node.

aligned PPI graph covered eight and one fragmented subgraphs
of the human and S. cerevisiae, respectively. On the one hand,
we deduced 10 PPIs among the eight human fragmented
subgraphs by comparing with the aligned S. cerevisiae network.
Interestingly, we found the experimental evidences for all the 10

predicted interactions by retrieving them in the String database
(https://string-db.org/) and the PPI network data compiled
by Menche et al. (2015), which contained much more PPIs
(>140,000) than the HPRD database we used. The predicted
interactions are listed in the Table 3, indicating that the PPI
network alignment by NAIGO could correctly deduced unknown
PPIs. On the other hand, the unmatched fragmented subgraphs
in the human PPI network were small, with nodes less than
five and edges less than four. As most of the proteins of the S.
cerevisiae S288c had been aligned to the human ones, we deduced
that those unmatched human subgraphs correlated with the
multicellular organism associated functions that had not evolved
in S. cerevisiae yet. Taken together, we concluded that NAIGO
could achieve the global alignment with high quality and predict
some unknown PPIs accordingly.

Comparison With Other Algorithms
To further assess the performance of the NAIGO algorithm, we
compared it with four popular network alignment algorithms,
IsoRank (Singh et al., 2008), GRAAL (Sharan et al., 2005),
SANA (Mamano and Hayes, 2017), and NABEECO (Ibragimov
et al., 2003). Within them, IsoRank calculates the network
similarity by eigenvalue matrix and extracts the alignment, and
GRAAL implements alignment only based on network topology
structure. Both of the algorithms have a parameter to balance the
contributions of the nodes and edges. Overall, NAIGOperformed
much better than the two algorithms. For IsoRank, we chose
its default parameter to align the PPI networks of the human
and S. cerevisiae S288c globally. As shown in Table 4, NAIGO
achieved the larger NC/GNC, S3/S and GC than IsoRank. For
GRAAL, we first randomly selected 30 subnet pairs, since it is
hard for GRAAL to align the large networks. These pairs were
the same with those for assessing the effectiveness of the NAIGO
algorithm, with the interaction numbers of the smaller subnets
ranging from 300 to 500. The GRAAL’s parameter was optimized
in steps of 0.1 from zero to one, and the best performance is
listed in Table 4. Comparing with NAIGO, GRAAL’s average NC
performance of the 30 subnet pairs was significantly inferior,
but its average S3 performance was better. Then, we compared
the performances of the two methods only based on topology
information (i.e., θ1 = 0 and θ2 = 1). The average NC of
NAIGO was 0.01, which was better than that of GRAAL (0.002),
but its average S3 (0.009) was worse than GRAAL’s (0.15). The
results reflected the misses of many orthologous protein pairs
due to the better topology performance of GRAAL algorithm,
which should be more obvious in the network alignments with
large size differences. To balance the NC and S3 performances
of GRAAL and thus compare with NAIGO better, we chose
the other 15 subnet pairs. The protein numbers of the smaller
subnets were >11,110, and the protein number differences of
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TABLE 4 | Comparison of five methods on aligning the PPI networks of human

and Saccharomyces cerevisiae S288c.

Method (the whole network pair) NC/GNC S3/S GC

IsoRank 0.19/0.762 0.004/−2.6393E + 09 0.13

SANA 0/1 0.07/−2.6392E + 09 0.14

NAIGO 0.21/0.995 0.02/−2.6392E + 09 0.15

Method (the first set of subnet pairs)

GRAAL 0.002 0.15 1

NABEECO 0.36 0.17 1

NAIGO 0.75 0.12 1

Method (the second set of subnet pairs)

GRAAL 0.05 0.22 1

NAIGO 0.64 0.24 1

TABLE 5 | The computational time of different methods.

Method SANA IsoRank NABEECO GRAAL NAIGO

Time (h) 0.05 1.5 >72 >72 30

the protein pairs were <5. We also optimized the GRAAL’s
parameter in steps of 0.1 and found that GRAAL achieved much
better NC performance without affecting the mean value of S3

(Table 4). Nevertheless, the NAIGO’s NC and S3 performance in
the alignment of these 15 subnet pairs were significantly better
than GRAAL (Table 4). The performances of the two algorithms
in global alignment and two sets of local alignment suggest that
NAIGO performed substantially better than GRAAL.

SANA and NABEECO are recent algorithms. Among them,
SANA is a Simulated Annealing Network Aligner that can
produce the alignment in a short time. NABEECO is a novel
and robust Network Alignment heuristic based on Bee Colony
Optimization. For SANA, we align the PPI networks of the
human and S. cerevisiae S288c globally. SANA’s GNC and S3

performance were better, but its NC and GC were inferior,
especially that it missed all orthologous protein pairs. In
addition, its largest connected component of aligned subgraph
contained 6,118 nodes, while NAIGO contained 6,440 nodes,
which indicated that the alignment result of NAIGO had stronger
connectivity. For NABEECO, we choose the 30 subnet pairs
to compare the performances because it needs to calculate the
graphlet signature vector for long time when the network is large.
Comparing with NAIGO, NABEECO’s average NC performance
of the 30 subnet pairs was significantly inferior, but its average S3

performance was better. It reflected that NABEECO resulted in
high topology but low functional quality.

We compare the computational time of different methods
based on the PPI networks of the human and S. cerevisiae S288c.
The comparison results are shown in Table 5.

Protein Function Deduction by Expanding
Local Alignments
Due to the BP-based subnets, NAIGO could deduce the functions
of certain proteins by expanding the local alignments. It was the

unique advantage of the NAIGO algorithm, which could not be
achieved by most of the existing alignment tools.

For a subnet of S. cerevisiae S288c, we predict that its aligned
neighbor proteins will participate in the corresponding BP; thus,
BP and subnet expansion was achieved. In order to evaluate
the performances of BP and subnet expansion, we randomly
selected 100 BPs and performed David analysis on the original
BPs and the corresponding expanded BPs, of which 13 BPs were
more significant, and 10 BPs had lower P-values. This shows that
the BP proteins of S. cerevisiae S288c that we predicted are of
practical significance.

On the other hand, we randomly selected 1 of the 10 expanded
subnets for gene enrichment analysis, the corresponding BP
of which is autophagosome assembly. This subnet contains
7 nodes with 12 edges and 10 nodes with 29 edges after
expansion, whose corresponding BP contains 74 proteins and 77
proteins after expansion. Refer to Figure 4A for the expanded
subnet alignment, and there are three expanded protein pairs.
We predicted that S. cerevisiae S288c proteins ATG8, ATG1,
and ATG4 involved in the biological process autophagosome
assembly, and this is indeed the case that the associated genes
of this term in expanded subnet contain them (see Tables S3,

S4). Based on the term group analysis in Figures 4B,C, we found
that the term percentage of autophagosome assembly group
increased but macroautophagy group reduced. From Figure 5,
it can be seen that a new enrichment term organelle assembly
appeared in the autophagosome assembly group; thereby, the
term percentage of this group increased. This also shows that
our expansion is practical. Besides, it also can be seen that the
number of terms in the macroautophagy group is unchanged but
the overall enriched terms increased, so the term percentage of
this group reduced. Due to the addition of these three proteins,
there are new groups such as late nucleophagy, C-terminal
protein lipidation, and cellular response to nitrogen starvation
that further illustrate that our subnet expansion algorithm is
biologically significant.

DISCUSSION

In the study, we used BP as the standard for PPI network
division, which made a preliminary restriction on the local
alignment. It was helpful for findingmore functional orthologous
proteins and conserved functional modules. The BP associated
PPI subnets were aligned by constructing pairwise similarity
matrices of nodes. Considering that the network differences
were mainly reflected in the node itself and the edge
structure, we constructed the matrices based on the sequence
similarity and graphlets similarity. In the related protein
orthology matrix, we also added the matched edge information,
in order to assess the sequence-edge similarity, and thus
find more orthologous proteins and functional modules. By
tuning the weight coefficients of the sequence-edge similarity
and structure similarity, we found that the sequence-edge
similarity made the major contribution to the local alignment.
Moreover, the aligned proteins were annotated with the
similar functions in the two species. In other words, NAIGO
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FIGURE 4 | The expanded subnet alignment and the term group analysis of subnet in the Saccharomyces cerevisiae S288c. In the expanded subnet alignment

(A), the round and square nodes represent the orthologous and non-orthologous protein pairs, respectively. If the human protein “A” aligned to the Saccharomyces

cerevisiae S288c protein “B,” then we represent the protein pair as “A/B.” The yellow edges represent the interactions only existing in the Saccharomyces cerevisiae

S288c, and the green edges represent those only existing in human. The red edges are the matched interactions. We colored the nodes in red based on broad GO

term autophagosome assembly that had most proteins. In addition, we represent the expanded proteins and interactions in Saccharomyces cerevisiae as light red

nodes and dotted lines, respectively. ClueGO is used to perform the gene enrichment analysis based on biological process (BP). Each annotated BP group and its

corresponding term percentage (the term percentage of a group is the ratio of the number of terms in the group to the number of terms in all groups) of subnet (B)

and expanded subnet (C) are displayed. Each color represents a group, and we remark the most significant BP term of each group in the figures.
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FIGURE 5 | The gene enrichment of subnet in the Saccharomyces cerevisiae S288c. ClueGO is used to perform gene enrichment analysis on subnet (A) and

expanded subnet (B) based on biological process (BP). The enrichment terms with statistical significance (p < 0.05) and the generated groups based on the

relationships between terms are displayed separately. Each node represents a BP term, and each color represents a BP group. We remark the most significant BP

term of each group in the figures. The edges indicate the relationships between the terms based on the similarity of their associated genes.

could achieve good alignments with biological significance
by fully evaluating the orthology of the paired nodes and
their 1-neighborhoods.

Based on the observations, we further expanded the BP-
associated subnets with local alignments, and predicted the
functions of newly aligned proteins accordingly. Because most
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human subnets were larger than the corresponding ones in the
S. cerevisiae S288c, we tried to map the 1-neighborhoods of the
S. cerevisiae subnets to the unaligned proteins in the human
subnets. The result showed that such expansion was functionally
effective. There were two probable reasons: on the one hand, the
bigger human subnets provide references; on the other hand,
we only expanded one layer. Similarly, we expanded the local
alignment of the largest subnets to the global alignment, mapping
the 1-neighborhoods in two species to each other until 1-
neighborhoods of one species was empty. It offered the possibility
to connect the fragmented subgraphs of a PPI network.

Taken together, the NAIGO algorithm could achieve local
alignment by similarity matrix integrating the sequence-edge
similarity and graphlets similarity and achieve global alignment
by expanding the local alignment of the largest subnets. The
PPI network alignments in the human and S. cerevisiae S288c
showed that NAIGO outperformed some popular algorithms by
aligning more orthologous proteins or more protein interactions.
Although we focused on the alignment of two PPI networks
in this study, NAIGO could also compare any other types
of biological networks, such as gene regulatory networks,
metabolic networks, and so on. Our algorithm is suitable
for networks with thousands of nodes and edges without
affecting the alignment results, and the scalability is still
relatively strong.

On the other hand, NAIGO take the advantage of known prior
knowledge for alignment, such as gene ontology and protein
orthologous information, which provide biological references
for the network alignment to a certain extent (Seah et al.,
2014). However, if the alignment method relies on the biological
information very much, it may miss some functional orthologs
for the network pairs with similar sizes and topologies. On the
other hand, if the method only relies on the topology information

for the network pairs with large size differences, it will also
result in the alignments with low functional quality. Thus, finding
the optimal combination of biological information and topology
information is still what we need to explore in the future.
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