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Most living organisms possess varying degrees of regenerative capabilities but how

these regenerative processes are controlled is still poorly understood. Naturally occurring

bioelectric voltages (like Vmem) are thought to be playing instructive role in tissue

regeneration, as well as embryonic development. The different distribution of ions

on the either side of the cell membrane results in intra- and extra-cellular voltage

differences, known as membrane potential or Vmem. The relationship between Vmem

and cell physiology is conserved in a wide range of cell types and suggests that

Vmem regulation is a fundamental control mechanism for regeneration related processes

e.g., proliferation and differentiation. In the present study we measured Vmem in three

different cell types (human osteogenic sarcoma cell line (OSC), rat bone marrow derived

mesenchymal stem cells (BM-MSC), and rat dermal fibroblasts) and characterized the

relationship between their Vmem and proliferation. In order to find out if Vmem controls

proliferation, or visa-versa, we blocked and then unblocked Na+/K+-exchanging ATPase

using ouabain and measured the proliferation. Our results demonstrate that Vmem can be

pharmacologically manipulated to control proliferation in certain cell types like BM-MSC.

Taken together, it is clear that control of bioelectrical properties in non-excitable cells

could prove to be potentially a useful tool in regenerative medicine efforts.

Keywords: membrane potential, Vmem, cell proliferation, ouabain, mesenchymal stem cells, osteogenic sarcoma

cells, fibroblasts

INTRODUCTION

Current reconstructive treatments aimed at restoring normal form and function to diseased,
injured or missing tissues and/or organs use a patient’s own tissues, tissues and organs transplanted
from donors, or prosthetic devices. While these treatments enjoy varying degrees of success, they
are often associated with drawbacks such as limited donor availability, infection, immunological
rejection, and high costs (Mao and Mooney, 2015). In contrast, regenerative therapies could
potentially restore normal tissue form and function, without these drawbacks (Levin and Stevenson,
2012; Bessonov et al., 2015; Tyler, 2017). While most living organisms possess varying degrees
of regenerative capabilities, the signals that control these processes are still poorly understood.
Naturally occurring bioelectric signals have been shown to play an important role in tissue
regeneration, as well as embryonic development (Gurtner and Chapman, 2016; Tyler, 2017).

Bioelectricity originates at the cell membrane from a constant imbalance in charge between the
intra- and extracellular compartments, caused by the passage of ions (Na+, K+, Ca2+, Cl−, etc..)
through different types of ion pumps and channels. The different distribution of these ions on
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either side of the cell membrane results in intra- and extra-
cellular voltage differences, known as membrane potential or
Vmem (Levin et al., 2019). Such a balance is maintained via
passive and active ion transport through various ion channels
and transporters located within the membrane (Sundelacruz
et al., 2009). Membrane potential forces ions to passively move
in one direction: positive ions are attracted by the “negative”
side of the membrane and negative ions by the “positive” one
(Hammond, 2015). If we suppose that there is no concentration
gradient for any ions (there is the same concentration of
each ion in the extracellular and intracellular media), ions
will diffuse according to membrane potential only positively
charged ions, the cations Na+, Ca2+ and K+, will move from
the extracellular medium to the intracellular one according
to membrane potential. In contrast, anions (Cl−) will move
from the intracellular medium to the extracellular one. Vmem

is expressed relative to the extracellular environment so that a
cell is “depolarized” when its Vmem is less negative, while a cell
is “hyperpolarized” when its Vmem is more negative (Cervera
et al., 2016; Erndt-Marino and Mariah, 2016). Accordingly,
Vmem values of rapidly proliferating embryonic and tumor cells,
generally have high “depolarized” Vmem values, whereas non-
proliferating, terminally differentiated somatic cells, such as,
skeletal muscle cells, neurons and fibroblasts typically have low
“hyperpolarized” Vmem values as shown in Figure 1 (Binggeli
and Weinstein, 1986; Chernet and Levin, 2013; Levin et al., 2019;
Sundelacruz et al., 2019).

The relationship between Vmem and –cell physiology is
conserved in a wide range of cell types (precursor and mature
cells; proliferative and quiescent cells; normal and cancerous
cells) and suggests that Vmem regulation is a fundamental control
mechanism for regeneration related processes e.g., proliferation
and differentiation (Sundelacruz et al., 2008, 2009). From this
arises the intriguing possibility of being able to control a cell’s
proliferative and/or regenerative capabilities by manipulating
its Vmem. In other words, by increasing the Vmem of a
normally non-proliferative fibroblasts, one could stimulate it to
proliferate. Or conversely, by lowering the Vmem of a tumor
cell one could reduce its proliferation and arrest its growth.
In the present study we measured Vmem in three different
cell types (osteogenic sarcoma cell line (OSC), bone marrow
derived mesenchymal stem cells (BM-MSC), and fibroblasts)
whose normal proliferative states are relatively high, medium
and low, in order to characterize the relationship between
their Vmem and proliferation. In order to investigate whether
Vmem controls proliferation, or vise-versa, we blocked and
then unblocked Na+/K+-exchanging ATPase and measured
the proliferation.

MATERIALS AND METHODS

All experiments were performed in accordance with guidelines
established by our animal care and oversight committed at the
Johann Wolfgang Goethe University in Frankfurt am Main,
according to German animal welfare act §4 and EU Act 2010/63
for the protection of laboratory animals.

Cell Preparation and Culture
Rat BM-MSC were purchased from Cyagen Biosciences (Santa
Clara, CA, USA Cat. No. RASMD-01001), fibroblasts were
extracted from the skin of already euthanized rats (Seluanov et al.,
2010) received from different project (German animal welfare
act §4 and EU Act 2010/63), and human OSC cell line was
purchased from the DMSZ-Cell bank (Braunschweig, Germany,
Cell line: SAOS-2). All cells were stored in liquid nitrogen at
−196◦C, then, on the day of the experiment they were thawed,
cultured, and expanded to reach the desired number. To achieve
the appropriate number, cells were cultured until they reached
80% confluency and then expanded over 6–8 passages. Cells were
then seeded in normal cell growth medium (Dulbecco’s Modified
Eagle Medium, GlutaMAX 1 g/L D-Glucose, 10% Fetal Calf
Serum, and 1% Penicillin/Streptomycin (10 U/ml), all obtained
from GibcoR (Gaithersburg, MD, USA), in 6-well cell culture
plates (TPP, Trasadingen, Switzerland) at a density of 50,000
cell/cm2. All cells were cultured for 14 days in a humidified
incubator at 37◦C with 5% CO2, and culture medium was
changed every 3 days.

Na+/K+-Exchanging ATPase Blocker
Na+/K+-exchanging ATPase blocking was achieved using
ouabain (10µM, Sigma-Aldrich) which was added to the
medium from a fresh stock solution in distilled water. This
blocking effect was reversed (unblocked) by washing the cells 5
times with 1X PBS.

Experimental Design
Each cell type was divided into two groups, (1) Cells with no
blocker (control); (2) Cells with Na+/K+-exchanging ATPase
blocker (ouabain). All cells/groups were cultured for 14 days
during which time measurements were performed on days 0, 3,
5, 7, 10, and 14.

Vmem Measurements
To visualize and measure Vmem changes at predetermined
measurement time points (0, 3, 5, 7, 10, and 14 days) during
proliferation, cells were dyed with the anionic voltage-sensitive
dye, Bis-(1,3-diethylthiobarbituricacid) trimethine Oxonol
[DiBAC4(3), Invitrogen, Carlsbad, CA, USA], whose uptake by
cells is voltage dependent. Higher dye uptake is seen in more
depolarized cells (Adams and Levin, 2014; Bhavsar et al., 2019).
Vmem changes were visualized and measured using fluorescence
microscopy, as described by Adams and Levin (2014). For each
measurement a fresh solution of 10mM DiBAC4(3), in DMSO
was prepared and diluted to 0.5mM in Hank’s Buffered Salt
Solution (HBSS, Invitrogen, Carlsbad, CA, USA). After adding
the dye, the cells were left for 30min in an incubator at 37◦C,
then washed two times using PBS at room temperature and
imaged using a Nikon Eclipse Ti-E Inverted Microscope (Nikon,
Tokyo, Japan). The DiBAC4(3) dye was excited with a 420 nm
light and the fluorescence images were captured at 520 nm by a
non-descanned photomultiplier tube, controlled by NIS Element
Software. The captured images were saved as bright field (BF)
images and for every BF image, a flatfield image (FF) (made
by defocusing the image) and a dark field (DF) image (made
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FIGURE 1 | Depolarized (above) and Hyperpolarized (below) cells with ion

channels shown schematically. The inward-rectifying channels (inward arrows)

favor hyperpolarization while the outward-rectifying channels (outward arrows)

favor depolarization. Cells physiological state is coinciding with its Vmem,

whereby highly proliferative (cancer, fertilized eggs, stem) cells are depolarized

and mature, terminally differentiated (muscle, fibroblasts, neurons) cells are

hyperpolarized. Image modified from Cervera et al. (2016) and Levin et al.

(2019).

by closing the shutter) were taken. These three images were
later used for corrections and analysis (described in detail in
Bhavsar et al., 2019). All samples were imaged on the same day to
minimize time dependent variations. Since fluorescence intensity
was quantified for each image, the gain, exposure time, and offset
settings of the microscope were kept constant over the duration
of each experiment.

Cell Proliferation
To measure cell proliferation, cell number was evaluated using
PicoGreen assay according to themanufacture’s protocol (Quant-
iTTM PicoGreen, ThermoFisher, Germany) at days 0, 3, 5, 7,
10, and 14. Briefly, cells were washed two times with PBS,
treated with lysis buffer (400mM potassium phosphate buffer,
2% Triton X100, 10mM EDTA, pH 7.0), and cell lysates were
used for DNA content measurements. A serial dilution of a
known number of cells was lysed with lysis buffer and used to
create a calibration curve showing the correlation between cell
number and fluorescence. This latter procedure allowed us to
indirectly determine the number of cells in the cultured wells via
a calibration curve and measurement of DNA content through
fluorescence of Pico-green.

Cell Viability
To measure cell viability, AlamarBlue assay was performed at
days 0, 3, 5, 7, 10, and 14. The AlamarBlue Assay incorporates

an oxidation-reduction (REDOX) indicator that changes color
in response to chemical reduction of growth medium resulting
from cell growth. As cells being tested grow, innate metabolic
activity results in a chemical reduction of AlamarBlue (resazurin)
to resorufin. AlamarBlue assay was performed according to the
manufacturer’s protocol (AlamarBlue R© Cell proliferation assay
Kit, BIORAD). Briefly, the culture medium was completely
aspirated from the wells and cells were washed twice with sterile
PBS. One milliliter of fresh medium was added along with
100 µl of AlamarBlue reagent. Additionally, wells containing
medium and AlamarBlue reagent only (no cells) were used for
blank measurements. Cells and blank samples were incubated
for 4 h (37◦C, 5% CO2). After 4 h incubation, three aliquots
(100 µl) of each sample were pipetted in a 96 well plate and
absorbance was measured at 570 and 600 nm using plate reader
(Infinite 200PROTecan,München, Germany). Absorbancemean
values of triplicates for each sample were calculated and the
percentage of Alamar blue reduction was calculated using a
formula described in the manufacturer’s protocol (AlamarBlue R©

Cell proliferation assay Kit, BIORAD).

Data Analysis and Statistics
All experiments were performed in triplicate and the data
is presented as the box and whisker plots unless otherwise
indicated. The distribution of the data was checked using
Shapiro-wilk test (p < 0.05 = non-parametric, p > 0.05 =

parametric). The statistical significance of differences between
the groups and time points was analyzed by non-parametric
Friedman test and a Bonferroni corrected p < 0.05 was used
to indicate statistical significance. The p-values are indicated
on the plot using asterisks (∗p < 0.05, ∗∗p < 0.01). Statistics
were calculated using the software Bias 11.03 (Epsilon-Verlag,
Darmstadt, Germany).

RESULTS

Vmem Profiles of Different Cell Types
Vmem wasmeasured in the three different cell types using voltage-
sensitive dye DiBAC4(3) at different time points, as shown
in Figure 2. Vmem values (fluorescence intensity) of BM-MSC
increased from day 0 to day 10, significant at day 3 and 10 (p <

0.05). However, Vmem values significantly decreased (p< 0.01) at
day 14. Vmem in fibroblasts, was constant during the entire time
course. Vmem values in OSC increased, throughout, from day 0
to 14, significant at day 3, 7, 10, and 14 day 10 (p < 0.05) (see
Supplementary Table 1 for details).

Cell Proliferation and Vmem Measurements
Cell proliferation and Vmem in all three cell types were
measured using PicoGreen assay and DiBAC4(3) voltage-
sensitive fluorescent dye, respectively. Further, to determine the
correlation, if any, between the cell proliferation and Vmem,
non-parametric Spearman correlation analysis was performed
(Figures 3A–C). Amoderate correlation between the cell number
and Vmem was observed in BMMSC (ρ = 0.42) and in OSC
(ρ = 0.48). However, no correlation (ρ = −0.2) was found
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FIGURE 2 | Images and graph of BM-MSC, fibroblasts, and OSC Vmem levels. (A) Representative fluorescence images of Vmem in BM-MSC, Fibroblasts and OSC at

days 0, 3, 7, and 14. (B) Vmem (fluorescence intensity), of BM-MSC, (C) fibroblasts and (D) OSC at days 0, 3, 5, 7, 10, and 14 represented using Box and whisker

plots (n = 114–135, 5–10 cells/Image from 15 images). Scale bar = 200µm. Asterisks indicate degree of significant differences between groups at the same time

points, *p < 0.05, **p < 0.01.
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FIGURE 3 | Nonparametric Spearman correlation analysis. Correlation

between cell proliferation (cell number) and Vmem measurements. (A)

BM-MSC, (B) fibroblasts, and (C) OSC proliferation (cell number) measured via

fluorescence intensity (Vmem) at days 0, 3, 5, 7, 10, and 14. The Spearman

correlation coefficient (ρ) is indicated. The Vmem values are taken from

Figures 2B–D.

between the cell number andVmem in fibroblasts (Figure 3B) (see
Supplementary Table 2 for details).

Na+/K+-Exchanging ATPase Blocking and
Cell Proliferation
Na+/K+-exchanging ATPase was blocked, using ouabain, in all
three cell types. During the blocking period, cell proliferation
and viability were measured using PicoGreen and AlamarBlue,

respectively. In the case of BM-MSC, the control group showed
a significant increase (p < 0.01) in proliferation (cell number)
from day 0 through 14, while cells treated with ouabain, showed
neither increase nor decrease in the cell number (Figure 4A,
left graph). In addition, BM-MSC Vmem, blocked with ouabain,
showed a significant reduction (p < 0.01) in cell metabolic
activity at all the time points (Figure 4A, right graph). In
contrasts, fibroblasts treated with ouabain, showed an increase
in the cell number (significant at day 10 and day 14, p < 0.01)
compared to their respective controls (Figure 4B). OSC treated
with ouabain, showed a significant (p < 0.01) decrease in the
cell number, especially at days 3, 5, 7, and 14 (Figure 4C, left
graph). In addition, in ouabain treated OSC metabolic activity
was significantly reduced (p < 0.01) at days 0, 3, 7, 10, and 14
(Figure 4C, right graph). The negligible negative values seen in
OSC treated with Ouabain (Figure 4C, right) at later time points
is due to the cytotoxic effect of Ouabain and drastic reduction
in the cell number at later time points (Figure 4C, left graph).
Apparently, there is almost no cells in these group at Day 10, 14
timepoints and therefore it is only % reduction of the culture
medium. The calculations of % of reduction is always made
against the negative control (medium only) samples and obtained
negative values could be result of differences among mediums
(pH) in samples and negative control wells since AlamarBlue is
influenced by the pH of the cell growth medium (Rampersad,
2012) (see Supplementary Tables 3, 4 for details).

Unblocking Na+/K+-Exchanging ATPase in
BM-MSC
In order to unblock Na+/K+-exchanging ATPase, reversing the
blocking effect of ouabain, BM-MSC were first treated with
ouabain until day 3 and then washed five times using 1X
PBS. The cell number and metabolic activity were visualized
and measured at days 0, 3, 5, and 7 using PicoGreen and
AlamarBlue, respectively. During the blocking phase, cells
displayed significant (p < 0.05) reduction in number at
day 3 with reduced (though not significant) cell metabolic
activity (Figures 5A,B). After unblocking (washing with PBS),
cell numbers were increased at days 5 and significantly at
(p < 0.01) day 7. In addition, cell metabolic activity was
significantly (p < 0.01) increased at day 7 (Figures 5A,B) (see
Supplementary Table 5 for details).

DISCUSSION

The complex processes of tissue development, healing and
regeneration involvemultiple cellular activities like, proliferation,
migration, adhesion and differentiation, all of which are, at
least partially, regulated by Vmem related bioelectric signaling
(Sundelacruz et al., 2008, 2009; Levin et al., 2019). In this
study, we characterized membrane potential (Vmem) profiles
for BM-MSC, fibroblasts, and OSC during proliferation using
the voltage-sensitive fluorescent dye DiBAC4(3). We observed
that changes in Vmem and proliferation coincided, and that
by blocking and unblocking Na+/K+-exchanging ATPase we
were able to control proliferation in BM-MSC. We saw that
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FIGURE 4 | Graphs of BM-MSC, Fibroblasts, and OSC Vmem blocking (Na+-K+ ATPase) and cell proliferation. (A) Left- BM-MSC proliferation (cell number) measured

in ouabain blocked and non-treated controls. Right- BM-MSC cell metabolic activity (% reduction of Alamar blue) measured in ouabain blocked and non-treated

controls. (B) Left- fibroblasts proliferation (cell number) measured in ouabain blocked and non-treated controls. Right- fibroblast cell metabolic activity (% reduction of

Alamar blue) measured in ouabain blocked and non-treated controls. (C) Left- OSC proliferation (cell number) measured in ouabain blocked and non-treated controls.

Right- OSC cell metabolic activity (% reduction of Alamar blue) measured in ouabain blocked and non-treated controls. Asterisks indicate degree of significant

differences between groups at the same time points. **p < 0.01. The cell numbers for control values are taken from Figure 3.

as the cells began to proliferate, their Vmem values shifted
from lower to higher (depolarization), and when they stopped
proliferating, their Vmem shifted from higher to lower values
(hyperpolarization). These observations coincided with those of
others in the literature, which indicate that Vmem depolarization
is required for both G1/S phase and G2/M phase transitions
during cell proliferation (Sundelacruz et al., 2008; Blackiston
et al., 2009; Yang and Brackenbury, 2013). In our experiments,
OSC showed a consistent increase in Vmem during the course

of proliferation. Reports in the literature suggest that cancer
cells tend to be more depolarized than other cell types, due to
a higher concentration of Na+/K+-exchanging ATPase (Yang
and Brackenbury, 2013) and higher intracellular Na+ levels in
comparison to other cell types (Camero et al., 1980; Sparks
et al., 1983). This could explain the increase in Vmem we
observed throughout the course of proliferation. On the other
hand, we saw that fibroblasts Vmem displayed a pattern of
hyperpolarized during the course of proliferation. This could
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FIGURE 5 | Graph of blocked and unblocked Na+/K+-exchanging ATPase of

BM-MSC and proliferation. (A) BM-MSC proliferation (cell number) measured

during blocking (ouabain) at days 3 and 5, and after unblocking (washing) at

days 5 and 7. (B) BM-MSC cell metabolic activity (% reduction of Alamar blue)

measured during blocking (ouabain) of Na+/K+-exchanging ATPase at days 3

and 5 and unblocking (washing) at days 5 and 7. Asterisks indicate degree of

significant differences between groups at the same time points, *p < 0.05,

**p < 0.01.

be due to a lower number of voltage-gated Na+ channels
present in dermal fibroblasts (Estacion, 1991), leading to lower
concentrations of intracellular Na+, lower proliferative capacity
and hyperpolarized Vmem.

Pharmacological blocking of ion channels has been a popular
method to study Vmem function. Using small molecule drugs to
target specific ion channels of cells allows the precise control
of a given cells’ Vmem profile (Blackiston et al., 2009; Levin
et al., 2019). Another advantage of pharmacological blocking
over other methods (knockout, RNAi or morpholinos) is this
approach can reveal membrane potential function per se, which is
not necessarily dependent on any one particular gene (Blackiston
et al., 2009). In this study we used ouabain, that affects Vmem by
specifically blocking Na+/K+-exchanging ATPase or the sodium-
potassium ion pumps in the cell membrane. Ouabain is a plant
derived cardiac glycoside that was traditionally used in Africa as
an arrow poison for hunting (Schoner, 2000). Ouabain blocks
Na+/K+-exchanging ATPase by binding to the α-subunit at the
external end of the ion permeation pathway and inhibits its ion
exchange pump activity. Once ouabain binds to this enzyme, the
pump ceases to function, leading to an reducing the activity of
sodium-potassium ion pump which pumps one calcium ion out
of the cell and three sodium ions into the cell (Shen et al., 2019).

In our experiments, we found that using ouabain to
block Na+/K+-exchanging ATPase significantly decreased
proliferation and reduced cell metabolic activity in BM-MSC.
In order to confirm this finding, we subsequently unblocked
the Na+/K+-exchanging ATPase, reversing Ouabain’s effect
and restoring proliferation and cell metabolic activity to
their pre-blocked levels. This finding demonstrates that, by
increasing or decreasing these cell’s Vmem, in this case using
pharmacological blockers, one can control their proliferative
capacity. In summary, our results suggest that pharmacological
blocking/unblocking of Na+/K+ ATPase may provide a pro-
proliferative environment in therapeutic tissue engineering
applications where BM-MSC are used. Ouabain, that blocks
Na+/K+ ATPase, is commonly used to treat congestive heart
failure and supraventricular arrhythmias (Wu et al., 2015),
however, its use systematically, in tissue engineering (TE)
applications is unlikely. The growing field of TE, employs a large
range of novel strategies, of which local ouabain application
might be considered. For example, pre-treating cells in-vivo
before transplanting them into a defect (Carpizo et al., 2008).
Another approach could be to delivery ouabain into a defect
incorporated in modified scaffolds, which release the drug locally
and in a controlled manor (Kretlow et al., 2007; Garg et al., 2012;
Sengupta and Prasad, 2018). Further animal studies are needed
to determine whether ouabain’s effects are maintained in-vivo
in these conditions, and to demonstrate proof-of-concept using
these approaches.

In dermal fibroblasts we found that using ouabain to block,
initially (days 0–7) had no effect on proliferation, and then
at days 10 and 14 blocking Na+/K+-exchanging ATPase in
the cells caused an increase in proliferation, compared to
controls. This finding coincides with those of others who
reported that lower concentration of ouabain can induce
proliferation in several different cell types, including fibroblasts
(Orlov et al., 1999; Isaev et al., 2000; Nguyen et al., 2007;
Winnicka et al., 2010). These authors propose that at lower
concentrations ouabain can activate mitogen-activated protein
kinase (MEK) and extracellular signal–regulated kinases (ERK)
pathways, which in turn results in the expression of genes
that are involved in cell growth and cell proliferation. Since
ouabain can readily activate proliferation in dermal fibroblasts,
it may have a direct impact on the dermal equivalents and
bilayer skin substitutes which are used to treat a range
of different chronic non-healing wounds in clinical settings
(Wong et al., 2007).

We found that in OSC, blocking Na+/K+-exchanging ATPase
with ouabain induced cell death at the later time points (days
7, 10, 14). In a similar study, Chou et al. (2018) investigated
the effect of ouabain on apoptotic cell death of human
osteosarcoma-derived U-2 OS cells. Based on their finding they
suggest that blocking Na+/K+-exchanging ATPase with ouabain
induced S-G2/M phase cell-cycle arrest in osteosarcoma cells,
which in turn induced apoptotic cell death by activating the
caspase-dependent and -independent pathways, accompanied
also by mitochondrial dysfunction. Our findings support this
and provide important insight into the cytotoxic effects of
ouabain on OSC. It is noteworthy that many studies have
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shown the potential of ouabain as a therapeutic agent against
various cancers (Winnicka et al., 2008; Liu et al., 2013;
Pongrakhananon et al., 2013; Chen et al., 2014; Xiao et al.,
2017; Shen et al., 2019). Our findings confirm this showing that
blocking Na+/K+-exchanging ATPase with ouabain decreased
osteosarcoma cell proliferation, suggesting it could potentially be
used to treat osteosarcoma.

Our in-vitro results demonstrate that Vmem can be
pharmacologically manipulated to control proliferation in
certain cell types like BM-MSC. If reproduced in in-vivo models
this may be used to regulate specific cell behaviors in cell-based
clinical therapies to optimize their effectiveness.
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