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Machine learning is a promising approach to evaluate human movement based on

wearable sensor data. A representative dataset for training data-driven models is crucial

to ensure that the model generalizes well to unseen data. However, the acquisition

of sufficient data is time-consuming and often infeasible. We present a method to

create realistic inertial sensor data with corresponding biomechanical variables by 2D

walking and running simulations. We augmented a measured inertial sensor dataset with

simulated data for the training of convolutional neural networks to estimate sagittal plane

joint angles, joint moments, and ground reaction forces (GRFs) of walking and running.

When adding simulated data, the root mean square error (RMSE) of the test set of hip,

knee, and ankle joint angles decreased up to 17%, 27% and 23%, the RMSE of knee

and ankle joint moments up to 6% and the RMSE of anterior-posterior and vertical GRF

up to 2 and 6%. Simulation-aided estimation of joint moments and GRFs was limited

by inaccuracies of the biomechanical model. Improving the physics-based model and

domain adaptation learning may further increase the benefit of simulated data. Future

work can exploit biomechanical simulations to connect different data sources in order to

create representative datasets of human movement. In conclusion, machine learning can

benefit from available domain knowledge on biomechanical simulations to supplement

cumbersome data collections.

Keywords: biomechanics, biomechanical simulation and analysis, gait analysis, musculoskeletal simulation,

inertial sensors, optimal control, machine learning, convolutional neural networks - CNN

1. INTRODUCTION

Due to technological advances in wearable computing, it is now possible to measure human
movement outside the lab, in the natural environment (Seshadri et al., 2019). This facilitates
a continuous monitoring of patients and athletes supporting medical diagnosis, performance
assessment in sports, prevention of falling or sport-related injuries, tracking of disease progression
and evaluating the efficiency of treatment. Extracting useful information from sensor data
remains challenging as uncontrolled natural conditions imply variations in sensor placement,
in data quality, and a wide range of movement patterns. Typically, only discrete variables are
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computed from sensor data, such as speed, stride length, and step
frequency (Hannink et al., 2017; Falbriard et al., 2018; Zrenner
et al., 2018). However, a comprehensive biomechanical analysis,
which involves the evaluation of joint angles, joint moments,
muscle forces, and ground reaction forces (GRFs), would be
beneficial to gain a deeper understanding of the movement
mechanics and underlying causes.

However, low-quality sensor data and sparse measurements
make it difficult to achieve a comprehensive analysis that
is comparable to laboratory results, where optical motion
capture (OMC) systems and force plates are available.
Different methods were developed to address the challenge
of extracting the kinematic and kinetic parameters of
movements from sensor data, commonly inertial sensor
data. These methods can be divided into physics-based or
data-driven approaches.

Physics-based approaches use kinematic chain models or
musculoskeletal models in combination with Kalman filters or
global optimization to constrain the solution space (Roetenberg
et al., 2009; Koning et al., 2013; Kok et al., 2014; Miezal
et al., 2017; Karatsidis et al., 2018; Dorschky et al., 2019).
Physical models can act as a filter to the noisy sensor data.
Moreover, reconstructing the movement with a musculoskeletal
model yields a comprehensive analysis including muscle forces,
kinematics, and kinetics. In contrast to data-driven approaches,
no lab measurements are necessary to train the model.
However, global optimization methods require a relatively high
computation time (Kok et al., 2014; Dorschky et al., 2019) and are
thus less suitable for real-time applications. In addition, model
inaccuracies such as simplified ground contact lead to errors in
GRF and joint moment estimations.

Data-driven approaches can directly learn a mapping between
sensor data and target biomechanical variables based on lab
measurements (Wouda et al., 2018; Komaris et al., 2019;
Stetter et al., 2019; Zell and Rosenhahn, 2019). Machine
learning algorithms can reveal hidden relationships between
sensor data and biomechanical variables, in particular, deep
learning is a promising approach to model time series data of
human movement (Halilaj et al., 2018). Trained models can
be exploited in real-time to provide instantaneous feedback
to the patient, athlete, or coach. For example, an early
warning system monitoring the internal joint loads during
sports could potentially prevent catastrophic non-contact knee
injuries (Johnson et al., 2019). Furthermore, low-latency feedback
on joint moments could help gait retraining in osteoarthritis
patients to reduce the knee adduction moment (Preece
et al., 2009). However, training data-based models requires a
representative dataset, which is cumbersome to acquire as it
typically involves synchronized recordings of inertial sensors and
OMC systems. It is often impractical to collect a dataset large
enough to train deep neural networks. Variations in movement
patterns, different sensor positions, and movement or sensor
artifacts can lead to high generalization errors within data-based
models (Wouda et al., 2018).

Strategies like data augmentation and transfer learning
have been applied to improve robustness and generalization
of data-based models. Um et al. (2017) used label-preserving

transformations of the sensor data (e.g., rotations, permutations,
and time-warping) to augment the training dataset. This
improved the robustness of the model with respect to sensor
position and noise, but did not account for variations
in movement patterns as the target variables remained
unchanged. Veiga et al. (2017) and Johnson et al. (2019)
utilized pre-trained deep neural networks from the image
domain as a feature extractor. The former authors used
images showing line curves of sensor signals. However,
characteristic features of one dimensional inertial sensor signals
likely differ from photographic images extracted from the
ImageNet database. Johnson et al. (2019) transformed the
data of five accelerometers into two-dimensional images: one
dimension representing the sensor locations and the other
dimension the normalized time. The acceleration magnitude was
quantized to greyscale or RGB colorspace, what probably caused
information loss.

To learn from sufficient data and incorporate variations
of movement, Johnson et al. (2019) synthesized accelerometer
data via double-differentiation of marker trajectories from their
OMC archive. Huang et al. (2018) also synthesized inertial
sensor data from motion capture datasets using a 3D model
of the human body shape and pose (SMPL) together with a
virtual sensor model. Mundt et al. (2020a,b) used OMC data
from several studies of their lab together with a biomechanical
model to create a large simulated dataset, which was used
for training feedforward neural networks to estimate joint
kinematics and kinetics. One drawback of these approaches is
that additional datasets containing OMC data or SMPL poses
of the movement of interest were required. Notably, Huang
et al. (2018) reported that combining these datasets was non-
trivial. Moreover, each recorded motion trajectory led to only
one synthetic sensor trajectory. An infinite number of random
samples can be generated using statistical modeling. Norgaard
et al. (2018) synthesized inertial sensor data from random
vectors using a generative adversarial network. Their approach
did not include biomechanical constraints to extract physically
plausible samples.

Our goal is to use physical knowledge of biomechanics
to alleviate the issue of data limitation. We contribute a
new method to expand a training dataset via biomechanical
simulations created by solving optimal control problems. We
simulated musculoskeletal models to follow walking and running
trajectories which were randomly sampled from a “small”
measured training dataset. In principle, an infinite number of
simulations could be obtained with matching inertial sensor
data and biomechanical variables. The constraints in the optimal
control problem ensured that simulated motions were physically
possible and dynamically consistent.

We evaluated if learning on simulated data can decrease
generalization errors, how much simulated data is necessary,
and what happens in the case of even smaller training datasets.
Therefore, we trained convolutional neural networks (CNNs) to
map inertial sensor data of walking and running cycles to joint
angles, joint moments and GRFs. We compared the performance
of the CNNs for training on only measured data with training on
measured and simulated data.
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FIGURE 1 | We trained CNNs to estimate sagittal lower body kinematics and kinetics from accelerometer and gyroscope data from four inertial sensors which were

placed on the lower body. Therefore, we created simulated data based on the measured training dataset (described in section 2.1): we drew random samples from

measured joint angles, GRFs, and walking/running speeds (see section 2.2), which were then tracked by musculoskeletal models solving optimal control problems

(see section 2.3). Simulated movements yielded biomechanics with matching inertial sensor data using a virtual inertial sensor model.

2. MATERIALS AND METHODS

Figure 1 shows the overview of the proposed methods. We
trained CNNs (LeCun et al., 1989) to estimate sagittal lower
body kinematics and kinetics from accelerometer and gyroscope
data from four inertial sensors which were placed on the
lower body. Therefore, we created simulated data based on
the measured training dataset (described in section 2.1): we
drew random samples from measured joint angles, GRFs, and
walking/running speeds (see section 2.2), which were then
tracked by musculoskeletal models solving optimal control
problems (see section 2.3). Simulated movements yielded
biomechanics with matching inertial sensor data using a virtual
inertial sensor model. We explain the network architecture of the
CNNs in section 2.4 and the evaluation process in section 2.5.

2.1. Measured Data
We used the data recorded by Dorschky et al. (2019), which
consisted of data from 10 subjects (denoted by S01-S10) walking
and running at six different speeds with 10 trials each. The
walking speeds were: 0.9 to 1.0m s−1, 1.2 to 1.4m s−1, and 1.8 to
2.0m s−1. The running speeds were: 3.1 to 3.3m s−1, 3.9 to
4.1m s−1, and 4.7 to 4.9m s−1. The dataset comprises 595 (valid)
walking and running cycles in total. It includes data from
seven custom-built inertial sensors (Portabiles GmbH, Erlangen,

DE) (Blank et al., 2015) including tri-axial accelerometers
(±16 g) and gyroscopes (±2.000 deg/s) sampled at 1.000Hz.
Corresponding lower body joint angles, moments, and GRFs
in the sagittal plane were computed from data measured with
an OMC system with 16 infrared cameras (Vicon MX, Oxford,
UK) and one force plate (Kistler Instruments Corp, Winterhur,
CH), which were sampled at 200 and 1,000, respectively. The
speed was measured by two light barriers at a distance of 2
m. In order to analyze right-sided biomechanics, data from
four inertial sensors were used; located at the lower back,
the lateral right thigh, the lateral right shank, and over the

2nd to 4th metatarsal of the right foot. Sensor positions are
shown in Figure 2. Sensor data was aligned with segmental
axes based on calibrating movements. Eight sagittal plane
biomechanical variables were used as a reference: the right-
side hip, knee, and ankle flexion angles and moments, and
the anterior-posterior (A-P) and vertical GRFs. Biomechanical
variables and sensor data were segmented into isolated segments
of data from initial contact to initial contact and resampled
to 100 time points using linear interpolation. For evaluation
in section 2.5, the data from three subjects (S01, S02, and
S03) were left out for testing and the data of the remaining
subjects (S04-S10) were used for training the CNNs. Simulated
data was created from the measured biomechanics of the
training subjects.
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FIGURE 2 | Conceptual drawing of musculoskeletal model consisting of seven

rigid segments and 16 Hill-type muscles (blue) with seven virtual inertial

sensors (red). The muscles are drawn for the right leg only: 1—iliopsoas,

2—glutei, 3—hamstrings, 4—rectus femoris, 5—vasti, 6—gastrocnemius,

7—soleus, and 8—tibialis anterior. The virtual sensors are drawn for the left leg

only simulating sagittal inertial sensor signals: anterior-posterior accelerations,

longitudinal accelerations, and medial-lateral angular velocities indicated with

red arrows. The figure is taken and modified from Dorschky et al. (2019).

2.2. Random Sampling
We estimated the joint distribution of measured joint angles,
GRFs, and walking and running speeds of individual training
subjects and drew random samples from these distributions.
To achieve this, we concatenated for each walking and running
cycle the 100 time points of right-sided hip, knee, and ankle
joint angle and the A-P and vertical GRF and the corresponding
speed. Thus, every walking and running cycle was described
by a vector of R

501. For each subject Si, the vectors of
the (approximately) 30 walking and 30 running cycles were
stacked to matrices of R

30×501, ZSi ,walking and ZSi ,running, whose
rows represented observations of the random variable vectors
zSi ,walking and zSi ,running, respectively. We assumed multivariate
normal distributions: zSi ,walking ∼ N(µSi ,walking,6Si ,walking) and
zSi ,running ∼ N(µSi ,running,6Si ,walking). Therefore, we computed

the sample means µSi ,walking and µSi ,running ∈ R
501 over the

rows of ZSi ,walking and ZSi ,running and the sample covariance

matrices 6Si ,walking and 6Si ,running ∈ R
501×501 estimating

the covariance between the random variables (the columns of
ZSi ,walking/ZSi ,running). We drew 1,000 random samples from
each distribution to serve as tracking data for the optimal

control simulation in section 2.3 using Matlab R2018a mvnrnd
function (Kotz et al., 2004). Random samples of z were
partitioned into joint angles, GRFs, and speed. Joint angles and
GRFs were parted in the middle such that they could be used as
tracking data for the right and left leg, as only a half symmetric
cycle was simulated.

2.3. Simulated Data
We created seven planar musculoskeletal models (Van den
Bogert et al., 2012), one for each of the training subjects. Each
musculoskeletal model consisted of seven rigid segments (trunk,
thighs, shanks, and feet) connected by six hinge joints (hip,
knee, ankle in each limb) resulting in nine kinematic degrees
of freedom. In addition, each model had 16 Hill-type muscles
which are shown in Figure 2. The segments of the model were
scaled using the bodyweight (BW) and bodyheight (BH) of each
subject according to Winter (2009). The multi-body dynamics
andmuscle dynamics are described in previous publications (Van
den Bogert et al., 2011; Dorschky et al., 2019). The unknowns of
the model, which were the generalized coordinates and velocities,
the muscle activations, muscle lengths, and the contact state,
were summarized in state vector x(t). The control vector u(t)
described the neural excitations of the muscles at time t. The
model was simulated to follow random trajectories m(t) of the
right and left hip, knee, and ankle angles and anterior-posterior
and vertical GRFs while minimizing average muscular effort. We
simulated a half walking/running cycle of duration T assuming
left-right symmetry, to speed up simulation. The simulation was
formulated as the following optimal control problem:

minimize
x(t),u(t)

J(x(t), u(t))

=
1

T

T∫

0

(

1

10

10
∑

j=1

(

sj(t)−mj(t)
)2

σj(t)2

︸ ︷︷ ︸

track random trajectories

+
Weffort

16

16
∑

i=1

ui(t)
2

︸ ︷︷ ︸

muscular effort

)

dt

+WregJreg (1a)

subject to

xL ≤ x ≤ xU (1b)

uL ≤ u ≤ uU (1c)

f(x(t), ẋ(t), u(t)) = 0 (1d)

x(0)+ vTex − x∗(T) = 0. (1e)

The objective function J(x(t), u(t)) consisted of a tracking, an
effort, and a regularization term with the weights Weffort = 0.1
and Wreg = 0.00001. The weighting was chosen empirically so
that tracking and effort term had about the same magnitude and
the regularization term was of lower magnitude. In the tracking
term, the quadratic deviation of simulated trajectory s(t) to the
prescribed trajectory m(t), normalized to the measured variance
σ (t), was minimized. Average muscular effort, the mean squared
value of muscle excitations, was minimized to resolve muscle
ambiguity and to allow the model to deviate from the random
trajectories finding a more efficient and potentially more natural
movement path. In the regularization term, Jreg, the integral of
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TABLE 1 | Architecture of convolutional neural networks with tuned hyperparameters.

Layer Name Hyperparameter Search space Selected value Size of output

1 Convolution-ReLU Kernel_size1, filters1 {3×1, 5×1, 7×1, 3×3, 5×3, 7×3}×{8, 16, 32, 64, 128} 5×3, 64 100×12×64

2 Max-Pooling Pool_size1 {2×1, 2×2} 2×2 50×6×64

3 Convolution-ReLU Kernel_size2, filters2 {3×1, 5×1, 7×1, 3×3, 5×3, 7×3}×{16, 32, 64, 128, 256} 5×3, 128 50×6×128

4 Max-Pooling Pool_size2 {2×1, 2×2} 2×2 25×3×128

5 Flattening - - - 9600

6 Dense-ReLU - - - 100

7 Dense l2_reg {0.01,0.001,0.0001} 0.001 100

TABLE 2 | Hyperparameters related to training the convolutional neural networks.

Parameter Considered values Selected value

Batch size {32,64,128,256,516} 64

Learning rate {0.01,0.001,0.0001} 0.001

Number of epochs {500,1000,2000,3000} 1000

the sum of squares of the time derivatives of all state and control
variables was minimized helping the optimization to converge
more quickly.

Equations (1b) and (1c) were the lower (L) and upper (U)
bounds of the state vector x and the control vector u ∈ [0, 5] [the
same bounds as in Dorschky et al. (2019)]. Dynamic equilibrium
was constrained in Equation 1d. To do so, the dynamic equations,
which were the multi-body dynamics, muscle dynamics, and
contact dynamics (Van den Bogert et al., 2011; Dorschky et al.,
2019), were formulated implicitly. In constraint Equation 1e,
we enforced symmetry of the right and left leg with a forward
translation in direction ex, where v is the randomly sampled
speed (see section 2.2) and x∗ is the mirrored state vector of the
right and left leg. The optimal control problem, Equation (1), was
solved using direct collocation. The state and control vector were
sampled to 50 time points using the Backward Euler method. We
used the open source optimizer IPOPT (Wächter and Biegler,
2006) and ran the simulations on a high performance cluster.

The simulation results were expanded to a whole symmetric
walking/running cycle with 100 time points. We used the
simulated biomechanics of the right leg for training the CNNs
in section 2.5. Given the simulated movements, we could extract
accelerometer and gyroscope signals at any position of the
models. In this work, we used the measured sensor position for
each subject from section 2.1 and calculated virtual inertial sensor
data as introduced in Dorschky et al. (2019). Gyroscope signals
were computed from global trunk orientation and relative joint
angular rates. Accelerometer signals were computed from the
segment accelerations adding gravity and centrifugal acceleration
dependent on sensor position.

2.4. Convolutional Neural Network
We trained CNNs to learn amapping between inertial sensor data
and sagittal plane biomechanical variables for walking/running
cycle defined from initial contact to initial contact sampled

at 100 time points. The sampling was chosen to match the
simulated data. We trained eight separate CNNs, one for
each output variable, namely the right hip, knee, and ankle
angles and moments and A-P and vertical GRFs. As input,
we used the sagittal plane sensor data of the hip sensor, right
thigh sensor, right shank sensor and right foot sensor. We
used two accelerometer axes (A-P and longitudinal) and one
gyroscope axis (medial-lateral) of each sensor, resulting in an
input dimension of 100 × 12. We scaled the data using min-
max normalization.

The CNN architecture is based on previous work
performing gait analysis from inertial sensor data of segmented
strides (Hannink et al., 2017; Zrenner et al., 2018). They used
two or three 1D convolutional layers to extract temporal features
from accelerometer and gyroscope data. We found that 2D
convolutional layers filtering over time and sensor channels
were superior to 1D convolutional layers performing just
temporal convolutions. They estimated single spatio-temporal
gait parameters instead of biomechanical variables over gait
cycles. Thus, the number of output nodes was adapted to 100
time points in our work.

Table 1 provides an overview of the network, which consisted
of two convolutional layers for feature extraction with zero
padding, a stride length of one, and a rectified linear activation
function. After each convolutional layer, max-pooling was
applied. Two convolutional layers seemed to yield superior
performance in comparison to one or three convolutional layers
because underfitting occurred in the first case and overfitting
in the other case. The data was flattened before passing it to
two dense layers for non-linear multivariate regression. The first
dense layer had a non-linear rectified linear activation function
and 100 nodes. The output layer was a dense layer with linear
activation function and 100 nodes. To prevent the model from
overfitting, we used L2 kernel regularization. During cross-
validation (CV), we inspected the learning curves for overfitting
verifying that the validation error did not increase with the
number of iterations. We used the ADAM optimizer (Kingma

and Ba, 2015) and the mean squared error loss function to
train the CNNs. The batch size, learning rate, number of
epochs, and L2 regularization factor were empirically set based
on the measured training dataset considering specifically the
values in Table 2. The number of filters, kernel size, and max-
pooling were tuned using leave-one-subject-out CV within the
seven training subjects (S4-S10) testing the hyperparameters
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FIGURE 3 | Measured (black dotted) and simulated (green solid) accelerometer (acc) and gyroscope (gyro) data in the sagittal-plane of one subject running at fast

speed. The inertial sensors were located at the lower back, the lateral right thigh, the lateral right shank, and at the span of the right foot.

in Table 1. The network was implemented in Python using
Keras with Tensorflow backend (Chollet, 2015; Abadi et al.,
2016). Our implementation of the CNN can be found in the
Supplementary Material.

2.5. Evaluation
The chosen hyperparameters were fixed for all further
evaluations. We trained every CNN with 10 random seeds
to test the robustness of results with respect to different random
samples of simulated data and random initializations of CNN
layers. For comparison purposes, we used the same random
seeds for all different training sets. First, we trained the CNNs
using only measured data of subjects S04-S10 (training dataset)
and tested them with the data of subjects S01-S03 (test dataset).
Then, we evaluated how simulated data influences the resulting
evaluation metrics. Therefore, we subsequently added simulated
data to the training dataset (418 samples) to obtain twice
(836 samples), four times (1,672 samples), eight times (3,344
samples), and 16 times (6,688 samples) the amount of training

samples. Simulated data was picked randomly and equally from
the 1,000 simulations of each training subject of the walking
and running simulations. Thus, the same amount of simulated
data was taken from each normal distribution in section 2.2. We
used the Python’s random module to randomly pick simulated
data (Matsumoto and Nishimura, 1998). As we trained every
CNN 10 times with different random samples, we made sure
that results were robust to random sampling. We trained the
networks jointly on simulated and measured training data, which
was randomly shuffled at each epoch.

Secondly, we evaluated the model when using less training
subjects. We used only four subjects (S07-S10) and two subjects
(S09 and S10) for training and tested it with the same three
test subjects (S01-S03). For each amount of training subjects,
we expanded the respective measured dataset to obtain twice,
four times, eight times, and 16 times the amount of training
samples. The simulated data was used from the training subjects
only: from four subjects (S07-S10) and two subjects (S09 and
S10), respectively.
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FIGURE 4 | Simulated biomechanics data (green) created from a measured training dataset of seven subjects (blue). Simulated and measured data were used to train

data-based models which were tested using the measured data of three independent subjects (red). The anterior-posterior (A-P) and vertical ground reaction force

(GRF) are normalized to the bodyweight (BW) of each subject.

For evaluation, we computed the root mean square error
(RMSE) and the Pearson correlation coefficient between
estimated biomechanics and reference biomechanics. The RMSE

was expressed in degrees for joint angles, in BW times BH
in percent for joint moments, and in BW percent for GRFs.
GRFs were only evaluated over the stance phase using the
time points from force plate measurements. For evaluating
individual results, performance metrics were computed using all
100 samples of all walking and running cycles of each individual
subject and the results were averaged over the 10 random seeds.
We used the Fisher-transform to estimate the mean of the
Pearson correlation coefficient. For evaluating overall results,
performance metrics were computed using all test samples

without separating the results of individual subjects and averaged
over the 10 random seeds.

3. RESULTS

Each simulation had a mean CPU time of (3.6± 2.0)min on
Intel Xeon processors E3-1240, whereas multiple simulations ran
in parallel on a cluster. Figure 3 shows the simulated inertial
sensor data and the corresponding measured data. The pattern is
similar, while the simulated data is smoother than the measured
data. Figure 4 shows the joint angles, moments, and GRFs
of measurements and simulations used for training and the
measured data used for testing. The simulated data covers a wider
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range than measured data and is more dense. The simulated
joint moments show more oscillations, especially in the hip
flexion moment. Testing data lies outside of the training data
distribution for hip joint angle for S01, knee angle during stance
for S02 and peak knee moment for S02.

Training all CNNs including the hyperparameter search took
about two weeks on a Nvidia GeForce GTX 1080 Ti. However,
inference time of each CNN was less than 1ms per gait cycle.

Tables 3, 4 summarize the individual results of the test
subjects for training with the data of all seven training subjects
and a different amount of simulated data. In addition, the results
of the leave-one-subject-out CV of the seven training subjects are
presented using the selected hyperparameters from Tables 1, 2.
For all three test subjects, the performance of the CNNs for
joint angles increased adding simulated data to the training
dataset. The estimation of the hip joint moment was best without
using simulated data. Simulated data improved the RMSE of
the knee joint moment for all test subjects, whereas the Pearson
correlation coefficient only slightly improved for test subjects S01
and S03. The A-P and vertical GRF improved for test subject S01
and S02 adding simulated data, while the performance decreased
for test subject S03. Adding more simulated data led to a decrease
in performance. Looking at results of the CV, the RMSE of joint
angles is lower and Pearson correlation coefficients are higher
when simulated data is added. Simulated data did not increase
performance for joint moments and vertical GRFs in the CV.

Figure 5 shows the estimated biomechanics for S03 running
at fast speed using no simulated data and using seven times
more simulated than measured data. The estimated hip angle,
ankle angle, and knee moment are closer to the reference when
simulated data was added to the training dataset. For example, the
peak knee extension moment is higher and the estimated ankle
angle is closer to the reference during swing phase.

Figure 6 summarizes the overall results for the cases where the
number of training subjects was decreased from seven to four
and to two subjects. Reducing the amount of training samples
led to higher RMSE values except for the hip angle when training
with four instead a seven subjects. Simulated data improved the
results for joint angles independent of the amount of training
subjects. When increasing the dataset by 16 times, the RMSE
of hip, knee, and ankle angle decreased by 17 , 27 , and 23%
for training with all seven subjects. In the case of training with
four subjects, the RMSE of the knee joint angle could even be
reduced by 31%. Moreover, the RMSE of the hip and ankle joint
angle was lower when training with simulated andmeasured data
of four subjects compared to training with only measured data
of seven subjects. The RMSE of the knee joint angle was lower
when training with simulated and measured data of two subjects
compared to training with only measured data of seven subjects.
However, hip flexion moment was worse for all training data
configurations using simulated data. The knee extensionmoment
and vertical GRF improved using simulated data for testing all
training data configurations. The RMSE of ankle moment and A-
P GRF improved using simulated data, unless data of only two
subjects was used for training. When doubling the dataset, the
RMSE of knee and ankle moment and vertical GRF decreased by
about 6% for training with all seven subjects. When increasing

the dataset by four times, the RMSE of A-P GRF decreased
by about 2% for training with all seven subjects. Adding more
simulated data worsen the estimation of joint kinetics and GRFs.

We added heat-maps, like Figure 6, for the Pearson
correlation coefficient to the Supplementary Material. When
increasing the dataset by 16 times, Pearson correlation
coefficients increased from 0.967 to 0.975 for the hip angle,
from 0.988 to 0.992 for the knee angle, and from 0.956 to 0.976
for the ankle angle when training with all seven subjects. The
correlations of kinetics were above 0.97 without using simulated
data when training with all seven subjects, except for the hip
moment with 0.94. Correlations above 0.90 can already be
classified as excellent (Taylor, 1990) and are higher than previous
work (Dorschky et al., 2019). Correlation coefficients only
increased for knee joint moment from 0.970 to 0.971 and for
vertical GRF from 0.983 to 0.985 when adding simulated data.

We added individual results of all subjects to the
Supplementary Material comparing the RMSE, relative
RMSE (Ren et al., 2008), and the Pearson correlation coefficient
for a different amount of simulated data. We differentiated
between walking and running to allow a better comparison to
other work which only focuses on walking or running.

4. DISCUSSION

In this work, we presented a machine learning approach
to extract joint angles, joint moments, and GRFs from a
combination of simulated and experimental inertial sensor data.
The goal was to combine the benefits of physics-based and data-
driven approaches: We used simulated data from a physics-based
model to reduce exhaustive collection of training data and used
this to train data-driven models which can provide low-latency
feedback on biomechanics.

The simulated data decreased the generalization error (here
RMSE) of the joint angles by up to 31%. Pearson correlation
coefficients of joint angles were already between 0.96-0.99
without using simulated data and were ≥0.98 with simulated
data. Simulated data had a greater effect on RMSE than on
correlation coefficients as the RMSE is more sensitive to outliers,
and simulated data improved especially the results of outlying
subjects. For example, the RMSE of the knee angle improved
by 38% for S03 whose ankle dorsiflexion angle was smaller
at toe-off compared to the other subjects (compare Figure 4

and Figure 5). For joint moments, the simulated data decreased
the generalization error only partly when estimations based on
measured data were above average (i.e., above the mean CV
error). Simulated data worsened the performance for hip joint
moment estimates. This could be explained by the discrepancy
between simulated hip joint moments and its reference. This
difference is visible in Figure 4, which shows noisy oscillating
joint moments for the simulations. One reason may be that only
joint angles and GRFs, and no joint moments, were tracked
by the musculoskeletal model in Equation 1. Thus, the model
tried to follow the predefined joint angles and GRFs using
unrealistic (min-max switching) muscle activation patterns. This
likely led to the noisy joint moment estimations. A higher
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TABLE 3 | The root mean square error (RMSE) of sagittal plane joint angles, joint moments, and anterior-posterior (A-P) and vertical ground reaction force (GRF) is

presented for varying ratios between simulated (sim) and measured (meas) data.

Sim/meas Hip angle Knee angle Ankle angle Hip moment Knee moment Ankle moment A-P GRF Vertical GRF

data degree degree degree BWBH% BWBH% BWBH% BW% BW%

C
V

0 5.38 (1.57) 5.22 (1.22) 5.50 (1.64) 1.62 (0.23) 1.14 (0.13) 1.32 (0.42) 4.33 (0.48) 14.44 (2.08)

1 5.19 (1.36) 4.95 (1.38) 5.00 (1.52) 1.66 (0.20) 1.21 (0.08) 1.38 (0.42) 4.36 (0.49) 14.75 (4.58)

3 5.08 (1.77) 4.81 (1.19) 4.86 (1.53) 1.75 (0.23) 1.27 (0.08) 1.35 (0.39) 4.51 (0.31) 15.28 (3.55)

7 5.17 (1.44) 5.09 (1.65) 4.72 (1.35) 1.76 (0.29) 1.35 (0.16) 1.36 (0.37) 4.35 (0.41) 15.10 (3.06)

15 5.37 (1.57) 4.93 (1.20) 4.60 (1.32) 1.78 (0.30) 1.28 (0.15) 1.39 (0.34) 4.63 (0.52) 16.07 (3.75)

S
0
1

0 9.42 (0.48) 4.45 (0.41) 3.29 (0.25) 1.71 (0.11) 1.21 (0.12) 0.88 (0.12) 4.52 (0.26) 11.74 (0.88)

1 8.98 (0.59) 4.28 (0.55) 3.54 (0.47) 1.88 (0.12) 1.07 (0.07) 0.98 (0.07) 4.70 (0.28) 10.46 (0.86)

3 9.11 (0.26) 3.87 (0.31) 3.23 (0.38) 1.97 (0.13) 1.31 (0.12) 1.00 (0.12) 4.23 (0.18) 9.99 (0.76)

7 8.94 (0.55) 3.57 (0.27) 3.49 (0.23) 2.01 (0.10) 1.30 (0.11) 1.03 (0.10) 4.22 (0.13) 12.33 (0.80)

15 8.77 (0.49) 3.31 (0.34) 2.87 (0.30) 2.07 (0.11) 1.36 (0.15) 1.05 (0.10) 3.76 (0.31) 13.53 (1.04)

S
0
2

0 6.49 (0.59) 10.44 (1.31) 4.40 (0.57) 1.44 (0.10) 2.06 (0.25) 1.86 (0.21) 4.41 (0.38) 13.24 (1.20)

1 6.32 (0.89) 8.69 (0.49) 4.24 (0.28) 1.71 (0.20) 2.04 (0.21) 1.59 (0.14) 4.03 (0.46) 12.16 (0.77)

3 5.39 (0.57) 7.70 (0.44) 4.24 (0.46) 1.81 (0.06) 2.08 (0.20) 1.67 (0.15) 4.21 (0.18) 13.67 (1.01)

7 4.47 (0.46) 7.26 (0.45) 4.47 (0.32) 1.89 (0.10) 2.27 (0.13) 1.78 (0.15) 4.40 (0.30) 12.42 (0.83)

15 3.69 (0.19) 7.29 (0.40) 4.18 (0.50) 1.95 (0.12) 2.39 (0.25) 1.73 (0.17) 4.21 (0.15) 15.34 (1.21)

S
0
3

0 3.71 (0.24) 5.52 (0.56) 6.31 (0.49) 1.32 (0.04) 1.96 (0.08) 1.05 (0.07) 4.29 (0.23) 12.91 (0.62)

1 3.43 (0.31) 4.82 (0.39) 4.43 (0.24) 1.61 (0.13) 1.76 (0.15) 1.11 (0.03) 5.10 (0.29) 13.75 (0.93)

3 3.10 (0.18) 4.47 (0.23) 4.30 (0.31) 1.62 (0.07) 1.79 (0.09) 1.24 (0.11) 4.36 (0.25) 14.25 (1.17)

7 3.00 (0.14) 4.36 (0.34) 4.01 (0.35) 1.72 (0.09) 1.75 (0.13) 1.20 (0.09) 4.83 (0.27) 14.75 (0.72)

15 3.06 (0.19) 4.62 (0.12) 3.94 (0.38) 1.78 (0.11) 1.77 (0.08) 1.21 (0.04) 4.95 (0.21) 16.24 (1.08)

Joint moments and GRFs are normalized to bodyweight (BW) and bodyheight (BH). The first rows show the mean RMSE and its standard deviation of the leave-one-subject-out

cross-validation (CV) on the training dataset for the chosen hyperparameter. The subsequent rows show the mean RMSE and standard deviation over 10 random seeds for the three

test subjects S01-S03 using the data of seven subjects for training. Bold highlighting indicates the lowest mean value in the respective column.

weighting of the effort term in the optimal control simulation
might lead to smoothermuscle activations and thusmuscle forces
and joint moments. Joint moments could also be tracked in
the optimal control simulations. However, the results for joint
angles and GRFs might get worse. Another reason may be that
the reference joint moments are too smooth, as filtering of
marker data and force plate data was applied before computing
joint moments (Dorschky et al., 2019). Overall, the reference
joint moments were not directly measured but estimated using
inverse dynamics. Thus, error accumulation lead to inaccuracies
especially for the hip joint moment.

The estimation result of GRFs was already better without
simulated data compared to previous work with Pearson
correlations >0.97. In Dorschky et al. (2019), the RMSE of A-
P and vertical GRF was 5% BW and 15% BW. In this work,
the mean RMSE of A-P and vertical GRF was about 3% BW
and 10% BW using only measured data (analyzing the GRFs
over the complete cycle). The simulations were created using
the same musculoskeletal model as in Dorschky et al. (2019),
who reported errors in the estimation of GRFs and ankle joint
moments due to model inaccuracies, as the foot was modeled
with a single rigid segment. Consequently, simulated data only
partly enhanced the estimation of GRFs and ankle joint moments
in Tables 3, 4.

A direct comparison to previous work is difficult as different
datasets of varying number of sensors, sensor positions, subjects,

and movements were used for evaluation. Machine learning
models dedicated to one single task, for example, for estimating
single joint angles or specialized for walking only, will probably
outperform our machine learning models which were jointly
tuned for different output variables. In order to fairly compare
different approaches, they would all need to be tested using
the same datasets. The presented machine learning approach
outperforms our previous physics-based approach (Dorschky
et al., 2019) evaluated on the same data-set. In contrast to
physics-based approaches, machine learning models require
representative training data. Combining simulated andmeasured
data seems a promising approach (Mundt et al., 2020a). In
this work, we focused on the comparison between learning
on measured and learning on simulated data to evaluate
whether simulations can decrease the generalization error by
incorporating variations of movement. Future work should
expand this method to 3D analysis and evaluate against
state of the art methods (Stetter et al., 2019; Mundt et al.,
2020a). 3D biomechanical optimal control simulations are more
expensive to compute, but are advancing recently (Falisse et al.,
2019).

The network architecture was specialized for pre-segmented
walking and running cycles and a fixed input and output
dimension. The segmentation and sampling was chosen to
match with the simulation with a fixed number of collocation
nodes. We trained the CNNs separately in order reduce
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TABLE 4 | The Pearson correlation coefficient of sagittal plane joint angles, joint moments, and anterior-posterior (A-P) and vertical ground reaction force (GRF) is

presented for varying ratios between simulated (sim) and measured (meas) data.

Sim/meas Hip angle Knee angle Ankle angle Hip moment Knee moment Ankle moment A-P GRF Vertical GRF

data

C
V

0 0.969 0.989 0.962 0.940 0.975 0.981 0.970 0.980

1 0.974 0.990 0.967 0.937 0.969 0.974 0.971 0.979

3 0.973 0.990 0.970 0.931 0.964 0.974 0.968 0.977

7 0.973 0.990 0.972 0.931 0.958 0.972 0.970 0.977

15 0.973 0.990 0.975 0.927 0.958 0.971 0.967 0.975

S
0
1

0 0.953 0.991 0.975 0.920 0.976 0.985 0.979 0.988

1 0.958 0.990 0.981 0.899 0.977 0.983 0.980 0.991

3 0.960 0.992 0.985 0.900 0.970 0.983 0.982 0.991

7 0.962 0.993 0.985 0.880 0.968 0.982 0.980 0.989

15 0.959 0.994 0.987 0.865 0.965 0.982 0.980 0.985

S
0
2

0 0.970 0.989 0.962 0.948 0.947 0.982 0.972 0.979

1 0.972 0.990 0.969 0.932 0.946 0.979 0.966 0.983

3 0.975 0.990 0.975 0.938 0.941 0.973 0.971 0.980

7 0.975 0.992 0.978 0.935 0.946 0.972 0.973 0.981

15 0.975 0.993 0.980 0.936 0.941 0.972 0.974 0.980

S
0
3

0 0.975 0.982 0.910 0.948 0.979 0.978 0.976 0.981

1 0.982 0.988 0.941 0.924 0.981 0.970 0.970 0.981

3 0.984 0.990 0.940 0.918 0.977 0.962 0.971 0.976

7 0.983 0.991 0.948 0.906 0.974 0.961 0.969 0.974

15 0.982 0.990 0.949 0.899 0.973 0.959 0.966 0.974

The first rows show the mean Pearson correlation coefficient of the leave-one-subject-out cross-validation (CV) on the training dataset for the chosen hyperparameter. The subsequent

rows show the mean Pearson correlation coefficient over ten random seeds for the three test subjects S01-S03 using the data of seven subjects for training. Bold highlighting indicates

the lowest mean value in the respective column.

the output dimension and consequently the amount of
trainable parameters in the network to avoid overfitting. It
has been shown that individual CNNs can outperform bigger
networks with multiple output variables (Hannink et al.,
2017). However, the first layers of the different networks,
which act as feature extractors, probably share some common
features such that multi-task learning or transfer learning
might improve results (Caruana, 1997). Future work should
consider different network architectures which avoid pre-
processing (segmentation into walking and running cycles and
resampling) of sensor data like fully (circular) convolutional
networks and allow a continuous estimation of movement
biomechanics using recurrent architectures like long short-
term memory networks (Mundt et al., 2020b). In addition,
the feature extraction using convolutional layers should be
explored. In the CV, two dimensional convolution yielded
superior results compared to one dimensional convolutions over
time which are typically used for inertial sensor data (Hannink
et al., 2017). The 2D convolution was applied over time
and over adjacent sensor axes, where data is likely to be
correlated. The order of sensor axes was not optimized
and data of accelerometers and gyroscopes were not split,
although different feature extractors for different sensor
types may yield better results. As CNNs were tuned on
measured data, we assume that different architectures would not
influence the comparison between learning on measured and
simulated data.

A reality gap was apparent between simulated and measured
inertial sensor data. Simulated inertial sensor data were less noisy
than measured data (e.g., Figure 3 longitudinal acceleration of
foot sensor). We modeled a rigid attachment of virtual sensors
on the musculoskeletal model. In reality, the connection is loose
due to soft tissue, which could be considered by a wobbling
mass model. Another option is to use domain adaptation
learning. For example, generative adversarial networks could be
trained to learn a mapping between simulated and measured
data (Shrivastava et al., 2017). In preliminary work, we
learned a direct mapping between simulated and measured
data using supervised learning. This yielded worse results
which might be explained because end-to-end learning is
typically superior. Further investigations and evaluations are
necessary here.

In this work, we jointly learned from simulated and measured
data. In our case, this approach worked better than training
on simulated data and fine-tuning on real data. We assume
that robust features were learned which were invariant to noise
and movement artifacts. However, overfitting to simulated data
was observed, for example for the vertical GRF where the
performance decreased when adding three to fifteen times as
much simulated as measured data. Instead of random sampling
(see section 2.2), simulated data could only be created for
those points where the current model is least certain. Thus,
outliers could be covered with simulated data, whereas the
performance of data that lies within the measurements would
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FIGURE 5 | Results for test subject S03 running at fast speed: reference biomechanics from optical motion capturing (dotted red) compared to estimated

biomechanics from inertial sensor data using no simulated data (blue dashed dotted) and seven times as much simulated as measured data (green solid). The

anterior-posterior (A-P) and vertical ground reaction force (GRF) are normalized to the bodyweight (BW).

ideally not be affected. Future work should consider methods,
where simulated data is generated iteratively during training
within a closed loop. For example, Ruiz et al. (2018) proposed
a meta-learning algorithm to learn how to simulate. The
algorithm should adjust parameters of a simulator to generate
synthetic data such that a machine learning model achieves a
higher accuracy.

Data augmentation is commonly used to artificially expand a
data set for training deep neural networks, but most approaches
use only label-preserving transformations of input data (e.g.,
adding noise or rotating sensor axes, Um et al., 2017). In contrast,
the presented method creates new pairs of input and output data
such that a wider range of movement mechanics is covered. In
this work, we generated the simulated data based on the training
data distribution of the individual training subjects to take into
account intra-subject variability. The simulated data filled the
sparsely populated space of measured training data, as more
variations ofmovements and speeds were included in the training
set. This can be seen in Figure 4 where the simulated data covers
a wider range of biomechanics and less space between curves is

apparent. However, on the one hand not all test data is covered
within the simulated andmeasured data (see e.g., maximum knee
extension moment) because of inter-subject variability. On the
other hand, we surmise that the simulated data was spread too
widely for GRFs as the estimated variance was high especially
for initial contact. When we used simulated data closer to the
mean of measured data for training the CNNs, the estimation of
joint moments and GRFs was slightly better, but the estimation
of joint angles was slightly worse. Future work may consider
to use more light-tailed data distributions than multivariate
normal distributions.

Results depended on the training data distribution. For
example, the hip angle improved when training with four instead
of seven subjects, likely because the testing data distribution
better matched that of the training data distribution of the
four subjects. To cover a wider range of movement variations
and to achieve a representative dataset, different data sources
could be combined using the biomechanical simulation. Public
datasets of movement biomechanics could be tracked with the
musculoskeletal model to obtain corresponding inertial sensor
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FIGURE 6 | Overall results of the root mean square error (RMSE) for the estimated sagittal plane biomechanical variables. The vertical axis indicates the ratio between

simulated (sim) and measured (meas) data used for training. The horizontal axis indicates the number of training subjects whose data were used for training. In

addition, the mean RMSE of the leave-one-subject-out cross-validation (CV) is shown. Joint moments and the anterior-posterior (A-P) and vertical ground reaction

force (GRF) are normalized to bodyweight (BW) and bodyheight (BH).

data. Instead of tracking joint angles and GRFs, video data or
inertial sensor data could be tracked with the model (Heinrich
et al., 2014; Dorschky et al., 2019). This shows the potential
of using optimal control simulations to create labeled training
data (corresponding inertial sensor data and biomechanics).
Simulated inertial sensor data at different sensor positions could
easily be obtained.

While the recording of measured data (without post-
processing) took about two weeks, it only took a few hours
to create the same amount of ready-to-use simulated data
with the implemented simulation framework. As shown in
Figure 6, the estimation of joint angles was even better using

a reduced dataset with simulated data compared to using
all measured data without simulated data. On the one hand,
using simulated data increases the number of samples and
thus minimizes the risk of overfitting. On the other hand,
simulated data includes additional variations of movement
such that unseen data is covered with a higher probability.
Simulated data would be of great advantage for rare events and
abnormal movements where training data is hard to acquire, for
example, for detecting an impending fall. Overall, biomechanical
simulations can supplement time-consuming and expensive
data collections to achieve a better generalization of machine
learning models.
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In summary, we presented a novel approach to generate
an (in principle) infinite set of inertial sensor data with
corresponding biomechanical variables using optimal control
simulations of walking and running. We evaluated training on
simulated data compared to solely learning on measured data.
The simulated data improved the estimation of joint angles. The
simulation-aided estimation of joint moments and GRFs was
limited by inaccuracies of the musculoskeletal model. Improving
the physics-based model or domain adaptation learning may
help to reduce the gap between real and simulated data.
The current method is a first step of using optimal control
simulation for training deep neural networks and was evaluated
for sagittal plane biomechanics only. In future work, this
method should be evaluated for 3D biomechanical analysis. In
addition, different datasets could be combined using the optimal
control simulation in order to create representative datasets of
human movement.

In conclusion, machine learning can benefit from available
domain knowledge on biomechanical simulations to supplement
cumbersome data collections. This enables the training of robust
data-driven models that can provide real-time feedback on
biomechanics “in the wild,” for example, to reduce injury risk,
for rehabilitation movement training, or for controlling active
assisting devices such as exoskeletons.

DATA AVAILABILITY STATEMENT

Please contact the corresponding author to request the datasets.

AUTHOR CONTRIBUTIONS

ED performed the biomechanical simulations and trainings
of the neural networks and wrote the paper. MN and AB
supported the implementation of the biomechanical simulations.
CM supported the conception end evaluation of the machine
learning approach. AK and BE supervised the overall conception
and design of the work. All authors reviewed the paper and
approved the final manuscript.

FUNDING

AK gratefully acknowledges the support of the adidas AG within
her endowed professorship program. BE gratefully acknowledges
the support of the German Research Foundation (DFG) within
the framework of the Heisenberg professorship program (grant
number ES 434/8-1).

ACKNOWLEDGMENTS

The authors thank Jannis Wolf for preliminary work in his
bachelor thesis and Benjamin S., who supported the creation of
figures and proof-read the paper.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbioe.
2020.00604/full#supplementary-material

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al.

(2016). Tensorflow: large-scale machine learning on heterogeneous distributed

systems. arXiv [Preprint]. arXiv:1603.04467.

Blank, P., Kugler, P., and Eskofier, B. M. (2015). “miPod-A wearable sports

and fitness sensor,” in 10th Symposium der DVS Sektion Sportinformatik der

Deutschen Vereinigung für Sportwissenschaft (Wien), 78–79.

Caruana, R. (1997). Multitask learning. Mach. Learn. 28, 41–75.

doi: 10.1023/A:1007379606734

Chollet, F. (2015). Keras. Available online at: https://github.com/fchollet/keras

(accessed April 22, 2020).

Dorschky, E., Nitschke, M., Seifer, A.-K., van den Bogert, A. J., and Eskofier,

B. M. (2019). Estimation of gait kinematics and kinetics from inertial sensor

data using optimal control of musculoskeletal models. J. Biomech. 95:109278.

doi: 10.1016/j.jbiomech.2019.07.022

Falbriard, M., Meyer, F., Mariani, B., Millet, G. P., and Aminian, K. (2018).

Accurate estimation of running temporal parameters using foot-worn inertial

sensors. Front. Physiol. 9:610. doi: 10.3389/fphys.2018.00610

Falisse, A., Serrancolí, G., Dembia, C. L., Gillis, J., Jonkers, I., and De

Groote, F. (2019). Rapid predictive simulations with complex musculoskeletal

models suggest that diverse healthy and pathological human gaits can

emerge from similar control strategies. J. R. Soc. Interface 16:20190402.

doi: 10.1098/rsif.2019.0402

Halilaj, E., Rajagopal, A., Fiterau, M., Hicks, J. L., Hastie, T. J., and Delp,

S. L. (2018). Machine learning in human movement biomechanics: best

practices, common pitfalls, and new opportunities. J. Biomech. 81, 1–11.

doi: 10.1016/j.jbiomech.2018.09.009

Hannink, J., Kautz, T., Pasluosta, C. F., Gaßmann, K.-G., Klucken, J., and

Eskofier, B. M. (2017). Sensor-based gait parameter extraction with deep

convolutional neural networks. IEEE J. Biomed. Health Inform. 21, 85–93.

doi: 10.1109/JBHI.2016.2636456

Heinrich, D., van den Bogert, A. J., and Nachbauer, W. (2014). Relationship

between jump landing kinematics and peak ACL force during a jump in

downhill skiing: a simulation study. Scand. J. Med. Sci. Sports 24, 180–187.

doi: 10.1111/sms.12120

Huang, Y., Kaufmann, M., Aksan, E., Black, M. J., Hilliges, O., and Pons-Moll,

G. (2018). “Deep inertial poser: learning to reconstruct human pose from

sparse inertial measurements in real time,” in SIGGRAPH Asia 2018 Technical

Papers, SIGGRAPH Asia 2018 (New York, NY). doi: 10.1145/3272127.

3275108

Johnson, W. R., Mian, A., Robinson, M. A., Verheul, J., Lloyd, D. G., and

Alderson, J. A. (2019). Multidimensional ground reaction forces and moments

from wearable sensor accelerations via deep learning. arXiv [Preprint].

arXiv:1903.07221.

Karatsidis, A., Jung, M., Schepers, H. M., Bellusci, G., de Zee, M.,

Veltink, P. H., et al. (2018). Predicting kinetics using musculoskeletal

modeling and inertial motion capture. arXiv [Preprint]. arXiv:1801.01668.

doi: 10.1016/j.medengphy.2018.12.021

Kingma, D. P., and Ba, J. L. (2015). “Adam: a method for stochastic optimization,”

in 3rd International Conference on Learning Representations, ICLR 2015 -

Conference Track Proceedings (San Diego, CA), 1–15.

Kok, M., Hol, J. D., and Schön, T. B. (2014). An optimization-based approach to

human body motion capture using inertial sensors. IFAC Proc. Vol. 47, 79–85.

doi: 10.3182/20140824-6-ZA-1003.02252

Komaris, D., Pérez-Valero, E., Jordan, L., Barton, J., Hennessy, L.,

O’Flynn, B., et al. (2019). Predicting three-dimensional ground reaction

forces in running by using artificial neural networks and lower body

kinematics. IEEE Access 7, 156779–156786. doi: 10.1109/ACCESS.2019.29

49699

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 13 June 2020 | Volume 8 | Article 604

https://www.frontiersin.org/articles/10.3389/fbioe.2020.00604/full#supplementary-material
https://doi.org/10.1023/A:1007379606734
https://github.com/fchollet/keras
https://doi.org/10.1016/j.jbiomech.2019.07.022
https://doi.org/10.3389/fphys.2018.00610
https://doi.org/10.1098/rsif.2019.0402
https://doi.org/10.1016/j.jbiomech.2018.09.009
https://doi.org/10.1109/JBHI.2016.2636456
https://doi.org/10.1111/sms.12120
https://doi.org/10.1145/3272127.3275108
https://doi.org/10.1016/j.medengphy.2018.12.021
https://doi.org/10.3182/20140824-6-ZA-1003.02252
https://doi.org/10.1109/ACCESS.2019.2949699
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Dorschky et al. CNN-Based Estimation of Gait Biomechanics

Koning, B. H. W., van der Krogt, M. M., Baten, C. T. M., and Koopman, B.

F. J. M. (2013). Driving a musculoskeletal model with inertial and magnetic

measurement units. Comput. Methods Biomech. Biomed. Eng. 18, 1003–1013.

doi: 10.1080/10255842.2013.867481

Kotz, S., Balakrishnan, N., and Johnson, N. L. (2004). Continuous Multivariate

Distributions, Volume 1: Models and Applications. Hoboken, NJ: John Wiley

& Sons.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,

W., et al. (1989). Backpropagation applied to handwritten zip code

recognition. Neural Comput. 1, 541–551. doi: 10.1162/neco.1989.1.

4.541

Matsumoto, M., and Nishimura, T. (1998). Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator. ACM Trans.

Model. Comput. Simul. 8, 3–30. doi: 10.1145/272991.272995

Miezal, M., Taetz, B., and Bleser, G. (2017). “Real-time inertial lower body

kinematics and ground contact estimation at anatomical foot points

for agile human locomotion,” in Proceedings - IEEE International

Conference on Robotics and Automation (Singapore: IEEE), 3256–3263.

doi: 10.1109/ICRA.2017.7989371

Mundt, M., Koeppe, A., David, S., Witter, T., Bamer, F., Potthast, W., et al.

(2020a). Estimation of gait mechanics based on simulated and measured

IMU data using an artificial neural network. Front. Bioeng. Biotechnol. 8:41.

doi: 10.3389/fbioe.2020.00041

Mundt, M., Thomsen, W., Witter, T., Koeppe, A., David, S., Bamer, F., et al.

(2020b). Prediction of lower limb joint angles and moments during gait

using artificial neural networks. Med. Biol. Eng. Comput. 58, 211–225.

doi: 10.1007/s11517-019-02061-3

Norgaard, S., Saeedi, R., Sasani, K., and Gebremedhin, A. H. (2018). “Synthetic

sensor data generation for health applications: a supervised deep learning

approach,” in Proceedings of the Annual International Conference of the

IEEE Engineering in Medicine and Biology Society, EMBS, 1164–1167.

doi: 10.1109/EMBC.2018.8512470

Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K.,

and Crompton, R. (2009). Activity identification using body-mounted

sensors-a review of classification techniques. Physiol. Meas. 30, R1–R33.

doi: 10.1088/0967-3334/30/4/R01

Ren, L., Jones, R. K., and Howard, D. (2008). Whole body inverse

dynamics over a complete gait cycle based only on measured

kinematics. J. Biomech. 41, 2750–2759. doi: 10.1016/j.jbiomech.2008.

06.001

Roetenberg, D., Luinge, H., and Slycke, P. (2009). XSENSMVN: full 6DOF human

motion tracking using miniature inertial sensors. Xsens Motion Technologies

BV. Technical Report.

Ruiz, N., Schulter, S., and Chandraker, M. (2018). Learning to simulate. arXiv

preprint arXiv:1810.02513.

Seshadri, D. R., Li, R. T., Voos, J. E., Rowbottom, J. R., Alfes, C. M., Zorman, C.

A., et al. (2019). Wearable sensors for monitoring the internal and external

workload of the athlete. NPJ Digital Med. 2:71. doi: 10.1038/s41746-019-

0149-2

Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., and Webb, R.

(2017). “Learning from simulated and unsupervised images through adversarial

training,” in Proceedings - 30th IEEEConference on Computer Vision and Pattern

Recognition, CVPR 2017 (Honolulu, HI), 2242–2251. doi: 10.1109/CVPR.20

17.241

Stetter, B. J., Ringhof, S., Krafft, F. C., Sell, S., and Stein, T. (2019). Estimation

of knee joint forces in sport movements using wearable sensors and machine

learning. Sensors 19:3690. doi: 10.3390/s19173690

Taylor, R. (1990). Interpretation of the correlation coefficient: a basic review. J.

Diagnost. Med. Sonogr. 6, 35–39. doi: 10.1177/875647939000600106

Um, T. T., Pfister, F. M. J., Pichler, D., Endo, S., Lang, M., Hirche, S., et al. (2017).

Data augmentation of wearable sensor data for parkinson’s disease monitoring

using convolutional neural networks. arXiv [Preprint]. arXiv:1706.00527.

doi: 10.1145/3136755.3136817

Van den Bogert, A. J., Blana, D., and Heinrich, D. (2011). Implicit methods

for efficient musculoskeletal simulation and optimal control. Proc, IUTAM 2,

297–316. doi: 10.1016/j.piutam.2011.04.027

Van den Bogert, A. J., Hupperets, M., Schlarb, H., and Krabbe, B. (2012). Predictive

musculoskeletal simulation using optimal control: effects of added limb mass

on energy cost and kinematics of walking and running. Proc. Instit. Mech. Eng.

P J. Sports Eng. Technol. 226, 123–133. doi: 10.1177/1754337112440644

Veiga, J. J. D., O’Reilly, M., Whelan, D., Caulfield, B., and Ward, T. E. (2017).

Feature-free activity classification of inertial sensor data with machine vision

techniques: method, development, and evaluation. JMIR mHealth and uHealth

5:e115. doi: 10.2196/mhealth.7521

Wächter, A., and Biegler, L. T. (2006). On the implementation of an interior-

point filter line-search algorithm for large-scale nonlinear programming.Math.

Program. 106, 25–57. doi: 10.1007/s10107-004-0559-y

Winter, D. A. (2009). Biomechanics and Motor Control of Human Movement.

Hoboken, NJ: John Wiley & Sons. doi: 10.1002/9780470549148

Wouda, F. J., Giuberti, M., Bellusci, G., Maartens, E., Reenalda, J., van Beijnum, B.

J. F., et al. (2018). Estimation of vertical ground reaction forces and sagittal knee

kinematics during running using three inertial sensors. Front. Physiol. 9:218.

doi: 10.3389/fphys.2018.00218

Zell, P., and Rosenhahn, B. (2019). Learning inverse dynamics

for human locomotion analysis. Neural Comput. Appl. 1–15.

doi: 10.1007/s00521-019-04658-z

Zrenner, M., Gradl, S., Jensen, U., Ullrich, M., and Eskofier, B. M. (2018).

Comparison of different algorithms for calculating velocity and stride

length in running using inertial measurement units. Sensors 18:4194.

doi: 10.3390/s18124194

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Dorschky, Nitschke, Martindale, van den Bogert, Koelewijn and

Eskofier. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 14 June 2020 | Volume 8 | Article 604

https://doi.org/10.1080/10255842.2013.867481
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1145/272991.272995
https://doi.org/10.1109/ICRA.2017.7989371
https://doi.org/10.3389/fbioe.2020.00041
https://doi.org/10.1007/s11517-019-02061-3
https://doi.org/10.1109/EMBC.2018.8512470
https://doi.org/10.1088/0967-3334/30/4/R01
https://doi.org/10.1016/j.jbiomech.2008.06.001
https://doi.org/10.1038/s41746-019-0149-2
https://doi.org/10.1109/CVPR.2017.241
https://doi.org/10.3390/s19173690
https://doi.org/10.1177/875647939000600106
https://doi.org/10.1145/3136755.3136817
https://doi.org/10.1016/j.piutam.2011.04.027
https://doi.org/10.1177/1754337112440644
https://doi.org/10.2196/mhealth.7521
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1002/9780470549148
https://doi.org/10.3389/fphys.2018.00218
https://doi.org/10.1007/s00521-019-04658-z
https://doi.org/10.3390/s18124194
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	CNN-Based Estimation of Sagittal Plane Walking and Running Biomechanics From Measured and Simulated Inertial Sensor Data
	1. Introduction
	2. Materials and Methods
	2.1. Measured Data
	2.2. Random Sampling
	2.3. Simulated Data
	2.4. Convolutional Neural Network
	2.5. Evaluation

	3. Results
	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


