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Macrophage activity is a major component of the healthy response to infection and

injury that consists of tightly regulated early pro-inflammatory activation followed by

anti-inflammatory and regenerative activity. In numerous diseases, however, macrophage

polarization becomes dysregulated and can not only impair recovery, but can promote

further injury and pathogenesis, e.g., after trauma or in diabetic ulcers. Dysregulated

macrophages may either fail to polarize or become chronically polarized, resulting in

increased production of cytotoxic factors, diminished capacity to clear pathogens,

or failure to promote tissue regeneration. In these cases, a method of predicting

and dynamically controlling macrophage polarization will enable a new strategy for

treating diverse inflammatory diseases. In this work, we developed a model-predictive

control framework to temporally regulate macrophage polarization. Using RAW 264.7

macrophages as a model system, we enabled temporal control by identifying

transfer function models relating the polarization marker iNOS to exogenous pro- and

anti-inflammatory stimuli. These stimuli-to-iNOS response models were identified using

linear autoregressive with exogenous input terms (ARX) equations and were coupled with

non-linear elements to account for experimentally identified supra-additive and hysteretic

effects. Using this model architecture, we were able to reproduce experimentally

observed temporal iNOS dynamics induced by lipopolysaccharides (LPS) and interferon

gamma (IFN-γ). Moreover, the identified model enabled the design of time-varying input

trajectories to experimentally sustain the duration and magnitude of iNOS expression.

By designing transfer function models with the intent to predict cell behavior, we were

able to predict and experimentally obtain temporal regulation of iNOS expression using

LPS and IFN-γ from both naïve and non-naïve initial states. Moreover, our data driven

models revealed decaying magnitude of iNOS response to LPS stimulation over time

that could be recovered using combined treatment with both LPS and IFN-γ. Given

the importance of dynamic tissue macrophage polarization and overall inflammatory

regulation to a broad number of diseases, the temporal control methodology presented

here will have numerous applications for regulating immune activity dynamics in chronic

inflammatory diseases.
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INTRODUCTION

Healthy immune response during infection or injury is a
dynamic process consisting of initial acute pro-inflammatory
activation followed by anti-inflammatory/resolving activity,
which is mediated in large part by macrophages (Sica and
Mantovani, 2012; Decano and Aikawa, 2018). This temporally
regulated response promotes pathogen and debris clearance
followed by tissue regeneration and, ultimately, recovery of
homeostasis (Figure 1A; Sica and Mantovani, 2012; Decano and
Aikawa, 2018). Dysregulation can occur in several ways. First,
a strong initial pro-inflammatory response within the affected
tissue can lead to systemic inflammation that positively feeds
back to sustain local inflammation. Second, a compensatory
anti-inflammatory response (e.g., via regulatory T cells) can
lead to aberrant immunosuppression, which impairs pathogen
clearance and regeneration (Binkowska et al., 2015). Third,
long-term dysregulation of immune response during chronic
disease interferes with tissue regeneration and homeostasis, in
turn further sustaining immune dysregulation. Indeed, chronic
inflammatory dysfunction contributes to a breadth of diseases,
including impaired wound healing after major trauma and
multiple neurodegenerative diseases (Figure 1A; Ohashi et al.,
2015; Oishi and Manabe, 2016), and chronically impaired
immune response can lead to worsened outcomes after new
insults (Wynn et al., 2013). However, broad ablation of immune
response, e.g., via corticosteroids, can equally limit successful
regeneration, and recovery of tissue homeostasis (Guo and
Dipietro, 2010; Weekman et al., 2014; Oishi and Manabe, 2016;
Hamelin et al., 2018).

FIGURE 1 | Conceptual diagram of modeling immune response in health and disease. (A) Immune response as dynamically regulated in health (left) and dysfunctional

in chronic conditions (right). (B) Block diagram with macrophages as the “system” or “plant” that is being controlled. (C) Identification, validation, and prediction of

inflammatory response as a three-step process consisting of (1) design of an engineering model structure and fit of model parameters, (2) comparison of predicted

and experimental results, and (3) use of the predictive model to design input strategies to obtain a desired response.

Although the need for regulation of tissue immune response
is well-recognized, identification of new strategies to intervene
in tissue inflammation remains a major challenge. After
trauma for example, treatment selection, dosing, and timing
of administration are all crucial factors in determining patient
outcome (Becelli et al., 2000). There has recently been a
call for a better understanding of the complex and dynamic
immune response post-injury in order to identify new strategies
to regulate dynamic immune response and ultimately patient
outcome (Galbraith et al., 2016).

The dynamic activity of macrophages is integral to both the
early (<1 h) and continued (>1 month) response to infection
and injury (Wynn et al., 2013; Hu et al., 2015). Without
appropriate regulation of their activity, macrophages can drive
the initiation and progression of many diseases (Wynn et al.,
2013; Ohashi et al., 2015). In particular, loss of regulation can lead
to insufficient pro-inflammatory activity, leading to incomplete
clearance of pathogens and/or tissue debris, impaired pro-
regenerative response, chronic inflammation, and infection (Guo
and Dipietro, 2010; Oishi and Manabe, 2016). Recent efforts to
regulate dysfunctional macrophages have focused on cell-based
therapies, such as delivery of mesenchymal stem cells (MSCs)
or macrophages conditioned ex vivo toward anti-inflammatory
and pro-regenerative “M2” phenotypes. The underlying principal
behind immunomodulatory cell therapies is that these cells
will act as natural “controllers” of immune response through
beneficial immunomodulatory signaling in the local environment
(Pacini, 2014). However, these strategies are subject to a number
of limitations. For example, MSCs are subject to variable efficacy
between donors and batches (Wang et al., 2012; Pacini, 2014).
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Other approaches seek to deliver ex vivo modified macrophages,
but both mouse and human trials have had variable success and
still face many challenges (Lee et al., 2016; Spiller and Koh,
2017). A new approach that actively regulates resident tissue
macrophages would escape many challenges faced by current
cell-based therapies.

Exogenous control of macrophage activity would provide an
exciting new method to modulate immune response (Ohashi
et al., 2015; Decano and Aikawa, 2018) that would steer the
system through a desired trajectory of activity. Macrophages
are an attractive target for regulating immune response because
(i) they are involved in diverse immune functions essential
for tissue protection and repair and (ii) they are highly
plastic, with the ability to dynamically re-polarize for different
functions based on external cues (Wynn et al., 2013). Since
macrophage polarization is dynamic, a quantitative temporal
model will enable design of exogenous input sequences capable of
normalizing response (Figures 1A,B). The pathways governing
macrophage polarization in response to stimuli have been
comprehensively modeled, including receptor binding kinetics,
downstream kinase signaling, and gene transcription (Salim
et al., 2016). While mechanistically appealing, these models
possess dozens of equations and hundreds of parameters,
making it intractable to identify reliably predictive input-output
relationships between exogenous stimulation and polarization
in terms of these precise mechanistic models. Moreover,
it has recently been argued that identification of viable
strategies to intervene in immune activity will require rigorous
integration of experimental data with computational modeling
(Vodovotz et al., 2017). There is thus a need for an empirical
input/output model that relates macrophage response to
exogenous inputs in order to predict and control activation levels
over time.

In the current study, we formulated a data-driven modeling
approach, informed by an in vitro macrophage polarization
assay and system identification theory, to identify the temporal
dynamics of macrophage response to multiple exogenous pro-
inflammatory stimuli. Specifically, we conditioned RAW 264.7
macrophages with M1 polarizing stimuli (LPS and IFN-γ)
or an M2 polarizing stimulus (IL-4) and quantified response
in terms of iNOS expression for 1–72 h post-stimulation.
We then used least squares regression to fit a low-order
autoregressive with exogenous terms (ARX) model together
with non-linear elements to relate iNOS response to each input
(Figures 1C1,2). The identified model predicted the dynamics
of polarization in subsequent experiments in response to
different concentrations and temporal trajectories (simultaneous
vs. sequential) of each input (Figure 1C3). Finally, we used the
identified model as part of an open-loop control framework to
tailor input sequences to achieve desired temporal trajectories
of macrophage polarization in vitro. To our knowledge, this
is the first study to experimentally control immune cell
dynamics using a predictive control framework. Given the
importance of dynamic M1 and M2 polarization during
tissue regeneration, the control methodology presented here
defines a novel framework that will have diverse applications

for treating chronic inflammatory diseases and promoting
tissue regeneration.

RESULTS

Macrophage iNOS Expression Is Transient
and Refractory to Repeated Stimulations
We first aimed to determine the temporal dynamics of
macrophage response to single or repeated pro-inflammatory
stimuli. As a model system, we used expression of the
pro-inflammatory M1 marker inducible nitric oxide synthase
(iNOS) by RAW 264.7 macrophages in response to the
pro-inflammatory stimulus lipopolysaccharide (LPS). Using
quantitative Western blot, we found that a single administration
of 1µg/mL LPS, but not IL-4 (Supplementary Figure S1),
resulted in transient iNOS dynamics with a peak in iNOS
expression at 24 h followed by a decay to baseline over
the following 48 h (Figure 2A). Immunocytochemistry (ICC)
confirmed this response (Figures 2B,C) and revealed that this
temporal trajectory was (1) conserved given a range of lower
doses of LPS and (2) that the magnitude of the response
monotonically increased with the magnitude of the stimulation
(Supplementary Figure S2). Intriguingly, although LPS was not
removed from cultures, and thus represented a persistent step-
like stimulus, the dynamics of iNOS expression followed a first
order decay response (Figures 2B,C). In traditional engineered
systems, this type of system response is usually obtained by
stimulating the system with a finite impulse input (Ljung, 1999).

To test whether the observed decay in iNOS expression
was due to LPS depletion from the culture medium, we re-
administered 1µg/mL LPS every 24 h. However, iNOS expression
in response to repeated stimulation was comparable to that of
a single LPS stimulation (Figure 2D), indicating suppression
of response to continued stimulation, which is consistent with
known auto-inhibitory mechanisms of macrophage response to
LPS, such as induction of ATF3 (Lawrence and Natoli, 2011)
and kinase phosphatases (Zhao et al., 2006; Sun et al., 2017).
Although the dynamics of these auto-inhibitory processes have
not been fully delineated, we next wanted to determine if
we could identify a stimulation strategy that would increase
sustained iNOS expression over the course of our 72 h culture
experiments. Because we found an initial peak at 24 h in response
to 1µg/ml of LPS, we tested a recovery time period of 24 h
between the initial peak and a potential second peak within
the 72 h experimental treatment window. However, cycled re-
stimulation did not alter iNOS expression dynamics (Figure 2E),
suggesting that the dynamics of macrophage polarization to LPS
stimulation consist of an initial response that is not sustained
despite either continued or repeated LPS stimulation, during our
experimental time window, i.e., the system becomes refractory.
This refractory behavior resembles immune tolerance/fatigue
observed in chronic disease conditions, such as type 2 diabetes
and cancer (Geerlings and Hoepelman, 1999; Makkouk and
Weiner, 2015).
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FIGURE 2 | RAW264.7 macrophages transiently express iNOS in response to constant or repeated LPS stimulation. (A) Representative Western blot for iNOS (140

kDa) and α-tubulin (55 kDa) after LPS treatment. (B) Representative ICC images showing iNOS response after LPS stimulation. (C) ICC quantification matches

Western blot analysis of transient iNOS expression in response to a single administration of LPS. (D) Dynamics of iNOS expression are not modulated in response to

multiple administrations of LPS or (E) after 24 h in basal medium before LPS re-stimulation (mean ± SEM, N = 16 at 0, 24, 48, and 72 h; red curves; interpolation ±

RMS CV error).

Auto-Regressive Model With Exogenous
Inputs Fits iNOS Dynamic Response to LPS
Input
We next asked if a control systems engineering methodology
could be used to design a temporal sequence of LPS stimulation
that would enable us to recover or sustain iNOS expression, and,
by extension, pro-inflammatory activation of RAW 264.7 cells.
Control systems methodology requires a model that can be used
to predict future system response given a known stimulation
input. Diverse model structures are employed in engineering
fields, ranging from high-order mechanistic models to input-
output data-driven models. For this application, a mechanistic
model encoding all of the genetic and protein interactions
responsible for iNOS expression would suffer from reduced
predictive capacity due to uncertainty in fitted parameters.
Gray and black box models, which capture dominant response
dynamics without specifying mechanistic details, are thus
more appealing to relate iNOS dynamics to pro-inflammatory
stimulation (Shin et al., 2012). We therefore sought to identify
an optimized black box single input and single output (SISO)
model relating LPS input to iNOS output (Shin et al., 2012;
Rachad et al., 2015). A critical tradeoff must be considered when
choosing model structure: maximize flexibility to best capture
system dynamics while avoiding the need to have more model
parameters than can be reliably identified from the data (Van
den Hof et al., 1994). Autoregressive models with exogenous
inputs (ARX) models are frequently used for black-box system
identification because they can capture underlying system
dynamics in diverse applications and because parameterization
using the ARX (Materials andMethods, Equations 1–3) structure
guarantees uniqueness of solution and identification of the
global minimum of the error function (Liu and Allen, 2002;
Zurakowski and Teel, 2006; Shin et al., 2012; Deshpande et al.,
2014).

To identify the parameters of this model architecture,
extensive experimental characterization of macrophage
polarization dynamics with multiple input patterns and

magnitudes was performed to generate a rich dataset to train and
identify an input/output model of iNOS expression dynamics

(Figures 2C–E, Supplementary Figure S2). We experimentally
found that macrophages exhibited a monotonic LPS dose-to-
iNOS response relationship within a physiologically relevant

concentration range (Supplementary Figure S2), which is well-

described using the linear ARX model structure. Above a high
(1µg/mL) concentration of LPS, response tapers off, potentially
due to cell death or changes in intracellular signaling activity

(Ziegler-Heitbrock et al., 1994). As such, we set 1µg/mL LPS
as the maximum concentration used in this study. To capture

the post-LPS stimulation refractory period, we fit an ARX
model (orders na = 1, nb = 2, nk = 1, Materials and Methods,
Equations 1–3) to experimental time sequence input-output data

from numerous experimental runs consisting of constant high
input (N = 38), constant input for three lower concentrations

(10, 100, and 500 ng/mL, N = 4), cyclic high input (Figure 2E,
N = 8), and replenished high input (Figure 2D, N = 8) with
model parameters estimated using least squares (Materials and
Methods, Equation 4). The resulting model recapitulated this

refractory pattern for a step input (Figure 3A). The model

parameter estimates are given in Supplementary Table S1 (three
free coefficients) and returned a normalized Akaike’s Information

Criterion (AICc) model quality metric of 430.59 and minimized
mean squared error (Supplementary Table S3). This model
outperforms the related ARMAX (autoregressive-moving
average with exogenous terms) model structure with similar
numbers of parameters (na = 1, nb = 2, number of moving
average coefficients nc = 0; AICc = 501.96). By estimating this
input/output model (Supplementary Tables S1, S2), we can
achieve both high descriptive and predictive capacities.
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FIGURE 3 | SISO LPS/iNOS ARX model, controller design, and experimental MPC testing. (A) Identified ARX model of macrophage iNOS response to LPS has a

characteristic step response that follows the experimentally quantified trajectory. Control system design identifies input strategy (dashed line) for a step reference that

elicits a gradual increase in plant response (blue stems) using a (B) PI or (C) LQG controller. Model simulations given controller defined inputs but within experimental

input constraints predict sustained outputs for (D) PI and (E) LQG controllers. (F) A heuristically defined three-step increase input strategy predicts an output that

reaches a maximum at 72 h. Experimental implementation using cultured RAW 264.7 macrophages and (G) PI controller-, (H) LQG controller-, or (I) a heuristic

combination of designed LPS input schema (dashed line) modulates temporal iNOS expression (red curves, mean ± SEM, N = 16; interpolated curve ± RMS CV

error) but does not reach the unit reference nor sustain 72 h activity. Macrophage refractory response to repeated LPS input is captured (blue stems) by multiplying the

(J) PI predicted, (K) LQG predicted, or (L) heuristically defined input sequences against a time-dependent exponential decay term (dashed lines).

Model Predictive Controller Identifies LPS
Stimulation Sequence to Sustain iNOS
Expression
Using the identified ARX system model, we sought to tune a
controller (Control System Design Toolbox, MATLAB), placed
upstream of the plant (Figure 1B), that would predict a
temporally defined LPS input strategy to overcome the persistent

decay in iNOS expression. We used two controller structures
to design input strategies capable of achieving sustained
iNOS expression. First, since our system dynamics (Figure 2C)

indicated that the system model responds to the derivative

of the input, we attempted to compensate for the derivative

using a classical proportional-integral (PI) controller, which
is commonly applied in engineering applications to minimize
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steady-state error (Nise, 2015; Supplementary Table S4). Here,
we used the PI controller (Materials and Methods, Equation 8) to
control LPS-induced iNOS expression to the unit reference (1 a.u.
iNOS relative expression, Materials andMethods). The controller
predicted that a stair-wise delivery of LPS (Figure 3B, dashed
line) would give rise to a more gradual but prolonged output
response, y, that reached the reference by the control horizon
of 72 h (Figure 3B, blue stems). Importantly, the second step in
input exceeded the unit input value (corresponding in vitro to
1µg/mL LPS), which was the upper bound of LPS concentration
used in this study. When the controller was constrained to inputs
between 0 and 1 (1µg/mL LPS), no PI controller obtained by
adjusting controller gains Kp and Ki (Materials and Methods),
was capable of defining an input sequence that both maintained
a u≤1µg/mL and predicted y to reach the reference within the
control time horizon.

Due to the inability of the PI controller to identify an input
sequence capable of reaching or maintaining output levels at
72 h, we next decided to take advantage of our ARX system
model to re-design the input sequence using a linear-quadratic
Gaussian (LQG) controller (Materials and Methods, Equation
9; Supplementary Table S4), which can provide improved
performance over conventional PID controllers for minimizing
total error (Mohammadbagheri et al., 2011). This LQG controller
designed a reduced magnitude for the original input followed
by the unit max of LPS input (Figure 3C, dashed line) to
achieve 80% of the reference point prior to exceeding the
unit max stimulation input (Figure 3C, blue stems), which
the PI controller-defined input could not achieve within
LPS concentration constraints. However, this controller also
required u>1µg/mL to reach the reference. When the input
is constrained to 0≤u≤1µg/mL LPS, the model simulations
predicted that progressive step increases in LPS would prolong
the iNOS response but not sustain it at the unit reference
value (Figures 3D,E). Finally, when the initial magnitudes of the
LQG and PI predicted inputs were heuristically combined in a
three-step increase strategy, simulations predicted a maximum
response at 72 h (Figure 3F).

Experimental Implementation of Predicted
LPS Input Temporarily Sustains
Macrophage iNOS Activation
Each controller above defined a temporally increasing magnitude
of the stimulus u, or LPS concentration, where the input is
increased at each time step. Experimentally, the model predicted
input values represent a fraction of the normalized maximum
(high) LPS concentration, 1µg/mL. For example, 0.2 is 20% of
the maximum 1µg/mL, or 200 ng/mL, and 0.4 is 400 ng/mL as
in our data used for model fitting. To test the PI controller input
strategy, RAW 264.7 macrophages were treated with 40 ng/mL of
LPS for 24 h, followed by 1µg/mL from hour 24 until fixation
at 72 h (Figure 3G, dashed line). Despite the controller requiring
u of 1.2, biologically this would have led to excessive cell death,
likely changing the plant response. Thus, we tested the effect
of the unit max of LPS in this stair-wise input scheme. The
macrophage expression of iNOS peaked at approximately 70%

of normalized maximum iNOS (defined by the 24 h expression
level given 1µg/mL LPS) at 24 h (Figure 3G, red curve). The
subsequent increase in LPS concentration delivered did not
sustain this level of iNOS, which declines through the 48 and 72 h
time points, but does keep levels higher (∼50%max) at 48 h than
an initially high level of LPS (Figure 3G, red curve).

The LQG controller predicted input, 24 h of 200 ng/mL
followed by 48 h at 1µg/mL LPS (Figure 3H, dashed line),
realized an iNOS expression level ∼60% of the reference at 24 h
(Figure 3H, red curve). Intriguingly, here the cells sustained
this iNOS level through 48 h, but not through 72 h (Figure 3H,
red curve). We next heuristically combined the input strategies
defined by the PI and LQG controller to test whether iNOS
expression at 72 h could be sustained (Figure 3I, dashed line).
However, iNOS expression given this strategy reflected that of
the LQG controller and did not keep activation high at 72 h
(Figure 3I, red curve).

The refractory, or muted, iNOS response to either high,
continued, or step-wise increases in LPS stimulation suggested
a decaying efficacy of LPS regardless of input sequence. Reduced
response to LPS is consistent with time-dependent compensatory
downstream signaling (Kadelka et al., 2019), including increases
in phosphatases that down-regulate LPS-induced phospho-
protein signaling, e.g., MAP kinase phosphatase 1 and Protein
phosphatase 2A; inhibition of pro-inflammatory transcription
factors; or up-regulation of anti-inflammatory transcription
factors, e.g., STAT6 inhibition of NF-κB (Zhao et al., 2006;
Lawrence and Natoli, 2011; Ni et al., 2016; Sun et al., 2017).

Because prior work has shown that signaling proteins
downstream of LPS respond with exponentially decaying
dynamics (Kadelka et al., 2019), we next hypothesized that
an exponential decay term would improve agreement between
our dynamic model and experimental data. Indeed, when the
input sequence terms were multiplied by a time-dependent
exponential decay term (Figures 3J–L, dashed lines), the
response magnitudes (Figures 3J–L, blue stems) reflected
the experimentally obtained iNOS values for each input
strategy. Although this single input system was unable to
meet constant reference control specifications, the ability to
qualitatively maintain elevated pro-inflammatory macrophage
activation via our predictive control framework demonstrated
an exciting feasibility of the approach that may be extendable
to alternate strategies that can overcome the decaying efficacy of
LPS stimulation.

IFN-γ Stimulation Increases Reachable
iNOS Trajectories and Adds System
Non-linearity
We found above that single or repeated stimulation with LPS
was unable to indefinitely sustain iNOS expression and that
sustained expression was only partially recovered by temporally
modulating the input (Figures 3D–I), i.e., inflammatory activity
was modulated but could not be prolonged indefinitely. In
engineering systems, independent inputs increase the system
rank and thereby increase state achievability. That is to say,
adding a secondary stimulus that operates through separate,
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orthogonal means, expands the internal states, and reachable
output of a system (Hespanha, 2009). Therefore, we next
hypothesized that a second pro-inflammatory input would
improve controllability. To test this, we used IFN-γ, which
signals largely independently of LPS (Figure 4A) as the second,
orthogonal input because 100 ng/mL IFN-γ robustly increased
iNOS levels despite prior LPS input (Figures 4B–D). Although
we also considered TNF-α as the second pro-inflammatory
stimulus, we found the iNOS response is more sensitive to
IFN-γ within a physiologically relevant concentration range
(Supplementary Figure S3). Given these findings, the use of
multiple pro-inflammatory inputs is promising for toggling both
the magnitude and duration of macrophage activity with greater
reachability than can be achieved with a single input.

While IFN-γ recovered iNOS expression from LPS-induced

tolerance, it also introduced a non-linear element to the dynamic

response—supra-additivity. ARX and transfer function models
require that the output of the sum of two inputs equal the
sum of the output of each input. However, IFN-γ amplifies

LPS-induced iNOS expression, where expression is greater than
the sum of expression from each stimulus alone, whether
added concomitantly or in series. In fact, supra-additivity for
simultaneous conditioning is present across all time points and
for a range of LPS and IFN-γ concentrations through 72 h
of conditioning (Figures 5A,B, Supplementary Figure S4). The
supra-additivity also lead to iNOS expression that was greater
than the unit reference for 24 h of LPS (Figures 5A,B), so our
predictive model needs to account for these non-linearities to
avoid overshooting or behavior that does not settled to the
desired reference (Figure 4D).

RAW 264.7 Macrophages Exhibit State
Memory Based on Stimulation History
In disease, macrophages may exist in chronically activated or
other non-naïve states, driven by local and systemic changes
in signaling proteins, hormones, among other factors (Mosser
and Edwards, 2008; Ohashi et al., 2015). Thus, having shown
our ability to model macrophage pro-inflammatory dynamics

FIGURE 4 | Orthogonal stimuli maintained or magnified iNOS expression. (A) Signaling diagram for LPS and IFN-γ (created with BioRender). (B) 24 h of LPS

treatment and delayed subsequent IFN-γ (dashed lines) treatment modulates iNOS expression (red curves, mean ± SEM, N = 16; interpolated curve ± RMS CV

error), even at 72 h time point. (C) Representative ICC images showing cycled LPS and IFN-γ (input defined in B) induces iNOS expression comparable to 24 h of LPS

alone while cycling only LPS in that same pattern (Figure 2F) does not maintain expression. (D) 24 h of LPS treatment and immediately subsequent IFN-γ (dashed

lines) treatment modulates iNOS expression (red curves, mean ± SEM, N = 16; interpolated curve ± RMS CV error), even at 72 h time point.
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FIGURE 5 | RAW 264.7 macrophages are markedly affected by activation state-dependent hysteresis, which can be overcome using multiple pro-inflammatory

inputs. (A) LPS and IFN-γ added simultaneously cause time dependent supra-additive expression of iNOS (color represents mean, SEM displayed numerically, N = 2).

Data are normalized by 1µg/mL LPS-only condition for each time-point. (B) Selected non-normalized data from A (24 h, highest concentration per stimulus)

demonstrating that iNOS expression from combined conditions is greater than the linear addition of LPS or IFN-γ alone (mean ± SEM, N = 2). (C) Prior treatment with

IL-4 attenuates LPS induced iNOS expression (24 h post-LPS treatment) in an IL-4 concentration-dependent manner (mean ± SEM, N = 6). (D) Interpolated

attenuation factor gamma surface plot (top) and fit error (bottom). (E) Pretreating macrophages with 100 ng/mL IL-4 for 24 h prior to LPS stimulation reduced the

magnitude of pro-inflammatory polarization measured by iNOS expression normalized to DAPI (color represents mean, SEM displayed numerically, N = 4). Combining

4 ng/mL of IFN-γ with LPS stimulates iNOS expression, overcoming the hysteretic effect dependent on the dose of LPS (color represents mean, SEM displayed

numerically, N = 4). (F) Diagram of global plant, as implemented in control system (Figure 1B), of multiple input system with both linear and non-linear model

elements. System predicted inputs u1 (LPS) and u2 (IFN-γ) are fed into respective identified SISO ARX models and supra-additive interaction term λ elements. Terms

multiplied by weighting coefficients c (defined by multiple regression estimation; Equation 10) prior to summation (6) and hysteresis-dependent attenuation (γ). Note

that u3 accounts for IL-4 attenuation via γ .

and design input trajectories for naïve macrophages, we next
wanted to determine whether the macrophage response to pro-
inflammatory stimulation would be affected by pre-polarizing the
cells toward an anti-inflammatory state.

To model RAW 264.7 cells starting in a non-naïve state,
we pre-conditioned macrophages with IL-4 for 24 h prior
to pro-inflammatory stimulation. Upon stimulation with LPS,
we found that prior IL-4 conditioning attenuated expression
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of iNOS after 24 h of treatment with LPS, but that iNOS
still responded to LPS in a concentration dependent manner
(Figure 5C). M2 polarization was validated by increased
expression of Arg1 (data not shown). Further, an initial
polarization toward a pro-inflammatory phenotype increased the
magnitude of anti-inflammatory polarization that outweighed
the IL-4 concentration given (Supplementary Figure S5), which
is consistent with prior studies, including one study where AAV
delivery of IFN-γ in vivo increased M2 gene expression, as
well as M1 genes (Weekman et al., 2014). Together, these data
suggest that macrophages exhibit hysteresis in their response to
prior inputs, whereby prior M2 polarization attenuates future
M1 response and prior M1 polarization sensitizes future M2
response. The M2 driven attenuation of M1 response reflects one
aspect of how systemic immunosuppression poses a major risk
to post-traumatic or surgical injury patients (Kimura et al., 2010;
Islam et al., 2016).

Modeling Multi-Input Driven Hysteresis
and Supra-Additivity
Since the dynamics of iNOS expression in RAW 264.7 cells were
dependent on the polarization state history (i.e., hysteresis in
non-naïve cells) and demonstrated supra-additivity in response
to combinations of LPS and IFN-γ, we next sought to incorporate
these elements into our iNOS response model. In terms of
state history, quantification, andmathematical modeling of state-
history dependence has previously been reported for cancer cell
epithelial-mesenchymal transition (Celia-Terrassa et al., 2018;
Tripathi et al., 2020). Here, we accounted for the hysteretic
effects of prior treatment with IL-4 by defining an attenuation
factor to account for the reduction in magnitude of iNOS
expression in the next time step for the range of LPS and IL-
4 concentrations described in Figure 5C relative to expression
with no exposure to IL-4. Quantitatively, the attenuation factor γ

(Materials and Methods) is equal to 1 for non-hysteretic systems
and increases with higher prior concentrations of IL-4 such that
1
γ
multiplied by iNOS expression for a given LPS concentration

gives the iNOS response for that LPS concentration and an
IL-4 pre-treatment concentration. A response plane for γ was
fitted with 3rd order polynomials in [LPS] and [IL-4] to
define a smoothed continuous response surface from which
any attenuation due to anti-inflammatory induction is returned
(Figure 5D).

To account for supra-additive effects of multiple pro-
inflammatory inputs, as done for the hysteretic surface, we
populated time-dependent interaction term (λ) surface curves
for the defined ranges of co-addition of LPS and IFN-γ.
Excitingly, the supra-additivity of IFN-γ with LPS demonstrated
the ability to recover the attenuation effect induced by IL-
4. Indeed, greater iNOS expression was observed across lower
LPS concentrations and higher IL-4 concentrations when IFN-
γ co-stimulation was used compared with LPS stimulation alone
(Figure 5E, note that the scale of response is an order of
magnitude greater in the heat map with IFN-γ). This interaction
effect motivates the need for a system plant model that processes
both M2 and M1 inputs.

The global plant model was constructed and is
described schematically in Figure 5F. The system receives
the concentration of LPS (u1) and IFN-γ (u2) which
are passed into their respective identified ARX models
(Supplementary Table S2), the supra-additivity of LPS and
IFN-γ was accounted for using λ, the pro-inflammatory
contributions are summed and applied as inputs to the hysteresis
term γ, Finally, the output is the predicted iNOS output (ŷ) as a
function of time t (Figure 5F).

Design of LPS and IFN-γ Temporal Input
Trajectories With Global Plant Model
Achieves Sustained iNOS Expression
Transfer functions were linearly combined with coefficients for
supra-additivity (λ) and hysteresis (γ) acting as pre-processing
filters, i.e., the terms were multiplied with each model’s output,
then added. The global regression of the function has the final
form inMaterials andMethods, Equation 10 [R2 = 0.748; p-value
(vs. constant model) = 1.34e-38]. Simultaneous administration
of unit, high, inputs in vitro vastly overshot the unit value of
iNOS and did not settle over the course of the experiment
(Figure 6A), demonstrating that it is possible to obtain sustained
iNOS response, but that more carefully crafted input sequences
are needed to obtain constant, sustained expression of iNOS.
We therefore next used the global model (Figure 5F) together
with an MPC controller to design input trajectories for LPS
(u1) and IFN-γ (u2) needed to obtain sustained constant iNOS
expression over a 72 h control horizon (Figure 6B). Using these
trajectories, the simulated plant reached the reference value by
24 h with a minor overshoot that settled by 72 h (Figure 6C).
Including hysteresis in the plant controller estimation increases
the predicted inputs magnitude needed to obtain the unit step
reference (Figure 6D). Given the input sequence defined in
Figure 6D, a hysteretic system was predicted to respond with
relatively small overshoot and error (Figure 6E, red curve).
Importantly, the model captures the large overshoot that would
be expected from administering elevated input levels to a non-
hysteretic system (Figure 6E, blue curve).

Next, the relative input magnitudes defined for a hysteretic
plant (Figure 6D) were translated to concentrations of LPS
and IFN-γ, which were administered as temporally defined to
RAW 264.7 macrophages in culture. The macrophage iNOS
expression trajectories reflected the model predicted response
for both hysteretic, i.e., pretreatment with 100 ng/mL IL-
4 (Figure 6F, red curve and Figure 6G) and non-hysteretic
(Figure 6F, blue curve) cell conditions. Since this initial
model only accounted for a static supra-additivity term, we
next updated it to incorporate a dynamic supra-additivity λ

term that updated with time based on our response data in
Figure 5A. The updated model was simulated with inputs used
experimentally (Figure 6F) and defined by the original model
(Figure 6D). This 2nd generation model improved the predictive
performance with results that recapitulated the overshoot seen
in the hysteretic system (Figure 6H). Since we wanted to
ultimately achieve a unit reference system response, our last
step was to use the 2nd generation model to define new
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FIGURE 6 | Open-loop control of pro-inflammatory macrophage activity is experimentally achieved using a nested multiple regression. (A) RAW 264.7 macrophage

temporal response to 1µg/mL LPS and 100 ng/mL IFN-γ. (B) Model designed inputs u1 and u2 using hysteresis-free model, which reflects cells beginning in a naïve

state. (C) Hysteresis-free model response to inputs defined in (B). (D) Model designed inputs u1 and u2 using first generation model accounting for hysteresis, which

reflects cells starting from a non-naïve 24 h IL-4 primed state. (E) Hysteretic model (red) and non-hysteretic model (blue) responses to inputs defined in (D). (F)

Experimental delivery of designed inputs in (D) reflects predicted control output (E) for both hysteretic IL-4 primed (red curve, mean ± SEM, N = 16; interpolated

curve ± RMS CV error) and non-hysteretic (blue curve, mean ± SEM, N = 16; interpolated curve ± RMS CV error) RAW 264.7 macrophage cultures. (G)

Representative images of iNOS staining in model predictive control experiments using the inputs in (D). (H) Simulation of updated 2nd generation model with dynamic

supra-additivity term in response to designed inputs (D) captures experimental RAW 264.7 iNOS expression for both hysteretic (red curve) and non-hysteretic (blue

curve) systems. (I) Experimental validation of the second-generation global model. Delivery of inputs designed to maintain a constant unit output of iNOS in a

hysteretic system using the new model (inputs shown in Figure S6) improves control output for both hysteretic IL-4 primed (red curve, mean ± SEM, N = 8;

interpolated curve ± RMS CV error) and non-hysteretic (blue curve, mean ± SEM, N = 8; interpolated curve ± RMS CV error) macrophage cultures.

system inputs (Supplementary Figure S6) for the IL-4 pre-
treated hysteretic system using the MPC controller. We then
applied these temporal input sequences to both blank media

and IL-4 pre-treatedmacrophages. Excitingly, thisMPC designed
input sequence improved macrophage iNOS expression dynamic
response because the IL-4 pre-treated cells settled to the target

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 July 2020 | Volume 8 | Article 666

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Weinstock et al. Control of Pro-Inflammatory Macrophage Dynamics

reference with minimal overshoot (Figure 6I). We also found
that non-hysteretic (blank media pre-treated) cells overshot and
did not settle to the reference by the control horizon (Figure 6I),
as predicted by the model (Figure 6E).

In total, these experimental findings show that our global plant
model predicts the dynamics macrophage pro-inflammatory
response, including transient response to LPS, supra-additivity,
and hysteresis. Moreover, we showed that this model could be
used to define dual stimulation strategies that could prolong
RAW 264.7 cell polarization as quantified by iNOS.

DISCUSSION

In this work, we developed a novel paradigm for engineering
immune activity by defining predictive data-driven models of
macrophage polarization and using them to define the dynamic
delivery of pro-inflammatory factors to control the duration and
magnitude of macrophage polarization. Rather than identifying
detailed, highly parameterized mechanistic models, we applied
a control theory framework to globally describe the pro-
inflammatory activity of macrophages over time. Specifically,
using expression of the canonical pro-inflammatory (M1)marker
iNOS as an output, we defined a black-box transfer function to
capture the dynamic response of macrophages given a temporal
sequence of applied LPS and IFN-γ as system inputs. Our overall
modeling framework coupled linear ARX models, which are
uniquely identifiable, with non-linear elements that accounted
for state-history dependent hysteresis and supra-additivity from
multiple pro-inflammatory stimuli. Our global plant model
structure not only predicted responses to different input
sequences, but enabled design of new stimulation sequences
that yielded a desired temporal iNOS response overcoming
macrophage refractory behavior (Figure 6).

Immune dysregulation plays a central role in diverse diseases.
Dysregulated activity of macrophages in particular can both
hinder tissue repair and promote disease pathogenesis. However,
macrophage functional diversity and broad distribution
throughout the body also makes them excellent targets for
modulating immune function to treat an array of diseases (Salim
et al., 2016). Yet the vast majority of new immunomodulatory
strategies, including inflammatory inhibitors and cell-based
therapies, do not explicitly account for the temporal evolution of
macrophage response needed to resolve the response to injury.

The importance of a temporally dynamic immune response
has been highlighted by recent findings that long term resolution
of inflammation depends on a sufficiently pro-inflammatory
initial response followed by anti-inflammatory and resolving
activity. Early pro-inflammatory macrophage response enables
clearance of pathogens and damaged cells and subsequently
triggers the anti-inflammatory and pro-regenerative response
(Lee et al., 2016; Spiller and Koh, 2017; Ponzoni et al.,
2018). Thus, in the current study, we sought to model and
control macrophage pro-inflammatory activity, measured by
iNOS expression. Using an ARX model structure, which is
widely used for black-box system identification in engineering
(Rachad et al., 2015) and biological systems (Liu and Allen,

2002; Zurakowski and Teel, 2006; Shin et al., 2012; Deshpande
et al., 2014), we identified computational models able to predict
and control temporal iNOS expression. This black-box approach
enabled us to fit three parameters to model the dynamic LPS
response and three more to fit the IFN-γ response, in contrast
to dozens required in mechanistic differential equation models
of macrophage polarization (Salim et al., 2016). A key feature of
our black box modeling framework is that it is generalizable to
broad inputs, outputs, and disease cases. Indeed, relationships
between inputs and macrophage responses are quantitatively
linked by experimental data, which can be extended beyond
iNOS, LPS, and IFN-γ. This framework is therefore generalizable
to inputs and outputs relevant to other diseases and markers
of macrophage activity by experimentally tuning the model
parameters to the new system.

Interestingly, when implementing model-predicted LPS input
sequences, we observed that the time-dependent decay in the
efficacy of LPS persisted. In fact, when the designed input
magnitude was multiplied against a time-dependent decay term
(Figures 3J,L, dashed lines), we were able to simulate the
observed experimental response. This finding is consistent with
macrophage auto-regulatory processes that prevent runaway
inflammatory activity to LPS (Ziegler-Heitbrock et al., 1994).

The current work has some limitations that invite the need for
future studies. First, we used murine RAW 264.7 immortalized
macrophages, which is considered one of the best macrophage
cell lines, for development of the methodology in this study, due
to their high reproducibility between labs and studies (Taciak
et al., 2018; Kong et al., 2019), but future work is needed to
validate and tune the models for primary isolated macrophages.
Further, to extend the utility of themodel for disease therapeutics,
it will be necessary to identify similarities and differences between
primarymacrophages, either bone-marrow derived or peritoneal,
collected from wild type mice and mouse models of chronic
inflammatory diseases. For example, macrophages are known
to exhibit distinct inflammatory profiles from diabetic patients
than from healthy individuals (Li et al., 2019), which will be
reflected in the identified model parameters. Additionally, the
methodology developed here lays a foundation for dynamic
control of macrophage activation using a single polarization
marker, but a wider panel of pro- and anti-inflammatory markers
are needed to fully delineate macrophage activation state and
effector function. Ultimately, the use of this methodology in in
vivo models will be necessary to determine if it is possible to
control immune activity for translational applications.

Together, our dynamic experimental and computational
approach establishes a new way of conceptualizing and
modulating macrophage activity by using a temporal sequence
of input stimuli to shape the trajectory of inflammatory
response. We experimentally validated the computational model
predictions, extending previous theoretical work in model
predictive control for patient-specific therapeutics (Day et al.,
2010). We envision this framework having broad-reaching
applications both in vitro an in vivo. Moreover, our ability to
modulate macrophage activity suggests that design of temporally
varying inputs has therapeutic potential for broad chronic
inflammatory disorders.
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MATERIALS AND METHODS

RAW 264.7 Macrophage Cell Culture and
Conditioning
All studies in this work were performed using RAW 264.7
murine immortalized macrophages (ATCC TIB-71TM).
Macrophages were expanded, maintained, and cultured in
basal macrophage medium, which is comprised of DMEM
(Thermo Fisher Scientific; 12430062), 10% FBS (Thermo Fisher
Scientific; 26140079), and 1% antibiotic/antimycotic (Sigma-
Aldrich; A5955). Cells were cultured to 70% confluence before
conditioning began. Cells were conditioned by addition of
medium with lipopolysaccharide (LPS; Sigma-Aldrich; L2880
and Invitrogen; 00-4976-93), interferon gamma (IFN-γ; R&D
Systems; 485-MI), or interleukin (IL)-4 (PeproTech; 214-14)
as indicated. RAW 264.7 macrophages were conditioned
with LPS or IFN-γ alone to quantify individual stimulus
dynamic response, with LPS or IFN-γ sequentially to recover
iNOS expression via orthogonal input, or with LPS or IFN-γ
simultaneously to quantify supra-additivity and model predictive
control strategy response. Pre-treatment, 24 h of 100 ng/mL
IL-4 prior to addition of LPS or IFN-γ, was used to induce an
anti-inflammatory, non-naïve state for experiments involving
hysteretic effects.

Quantification of iNOS Expression via
Immunofluorescence and Western Blot
For immunocytochemistry (ICC) experiments, macrophages
were cultured in 96-well microplates. Macrophages were fixed
in 4% PFA solution for 15min and blocked with 5% BSA +

3% goat serum in PBS for 1 h. Cells were stained with α-iNOS
antibody (Cell Signaling Technology; Cat. No. 13120; 1:400)
and DAPI for normalization to nuclei count. Cells were imaged
at 10X magnification (Zeiss Observer Z1). Image fluorescence
was thresholded and total fluorescence above the threshold was
normalized to nuclei number.

For Western blot experiments, cells were cultured in 6-well
plates then lysed using RIPA buffer with PMSF (Sigma-Aldrich),
and cOmplete Mini (Sigma-Aldrich). Membranes were probed
for α-tubulin (Sigma-Aldrich, Cat. No. T6074; 1:4,000) and iNOS
(1:1,000). Membranes were imaged on a LiCor Odyssey CLx
machine and quantified in ImageStudio Lite. iNOS band intensity
was normalized to α-tubulin intensity to yield iNOS expression.

Data Normalization and Dynamic iNOS
Response Figure Generation
ICC andWestern blot data were aggregated and iNOS expression
for each independent experiment was normalized to the positive
control with RAW 264.7 cells treated with 1µg/mL LPS for 24 h.
iNOS dynamics plots were generated using the Gramm package
for MATLAB (Morel, 2018). Data at sampled time points (0, 24
48, and 72 h) were expressed as mean ± SEM for separated data
(N = 38 for LPS single input experiments;N = 8 for LPS repeated
input experiments; N = 8 for LPS cycled input experiments;
N = 32 for IFN-γ single input experiments; N = 16 for IFN-
γ repeated input experiments; N = 16 for IFN-γ cycled input
experiments per each time point. Sample sizes used for model fits

are indicated in figure legends). To generate interpolation curves,
data were smoothed using the Savitzky-Golay (sgolay) option in
the curve fitting toolbox. Shaded band on curve represents root
mean squared (RMS) cross validation error on smoothed data
(Morel, 2018).

SISO and MISO Linear ARX Model System
Identification
LPS response data were compiled into a time-domain
data object with experiments for all input concentrations
and unique input sequences. Dynamic models were fit
(Supplementary Table S1) to the autoregressive with exogenous
inputs (ARX) model structure

A
(

z−1
)

y (t) = B
(

z−1
)

u (t − nk) + ε (t) (1)

where u(t) is the LPS stimulation input, nk is the system dead
time, y(t) is the iNOS response, and the model coefficients
consist of

A
(

z−1
)

= 1+ a1z
−1 + a2z

−2 + . . . + anz
−na (2)

B
(

z−1
)

= b0 + b1z
−1 + b2z

−2 + . . . + bnb z
−nb (3)

with one pole (na), two zeros (nb), an input-output delay of
1 time step corresponding to 24 h, and zero initial conditions
(System Identification toolbox, MATLAB, 2018b). Parameters
were estimated by solving the least squares problem

(

WTW
)

θ =WTym (4)

whereW is the 4× 4 regressor matrix consisting of given inputs,
ym=[y (0) y (1) y (2) y (3)]T is the measured output vector, and
the uniquely identified solution to the least squares parameter
estimation is

θ = [a1 a2 . . . ana b0 b1 . . . bnb ]
T (5)

The sampling time step of the identified model was set to 24 h,
which was equal to the data acquisition time step.

Realized for control design and flow diagram integration, the
canonical state space equations for this ARX model are of the
form Equations (6) and (7) with matrix coefficients listed in
Supplementary Table S2.

x(t+ 1)= Ax(t)+ Bu(t) (6)

y(t)= Cx(t)+Du(t) (7)

where A is the 2 × 2 system matrix, B is the 2 × 1 input
matrix, C is the 1 × 2 output matrix, D is the 1 × 1
feedthrough matrix, and t is discrete time. Model order was
selected to minimize the small sample-size corrected Akaike’s
Information Criterion (AICc) (Ljung, 1999) and mean squared
error (Supplementary Table S3). This process was repeated for
a SISO IFN-γ model (na = 1, nb = 2) and a multi-input single
output (MISO) model with both LPS and IFN-γ inputs (na = 1,
nb = 2 for both inputs).
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LPS System Controller Design
Controller design was carried out in the Control SystemDesigner
application (MATLAB, Mathworks) to find an input strategy
capable of achieving the unit step response from a step reference.
Since our estimated system dynamics indicated a continuous
time zero at the origin, we selected a PI controller to compensate
because it adds a continuous time pole at the origin and is widely
used in engineered systems (Nise, 2015). A proportional-integral
(PI) controller (Equation 8; Bellman, 1961), was designed with
robust noise and quick response specifications (parameters given
in Supplementary Table S4). In discrete time, the PI control law
specifies the input in the current time step as a function of the
current and prior errors (Ogata, 1995; Nise, 2015):

u (t)= Kpe (t− 1) + Ki

∑t−1

0
e
(

t
)

(8)

where Kp is the proportional gain associated with the error in
the last time step and Ki is integral gain associated with the sum
of errors in the prior time step. Additionally, since our system
model (Equation 1), enabled state estimation, we implemented a
third order linear-quadratic Gaussian (LQG) controller, defined
to minimize J̃

J̃ =
∑N−1

t=0
(x(t)TQx(t )+ u(t)TRu(t)) + x (N)TQFx(N) (9)

The controller was tuned to be robust to noise and assuming
moderate measurement noise (zero/pole/gain parameters in
Supplementary Table S4). Where N is the time horizon, t is the
time step, Q is the state cost matrix, Qf is the final state cost
matrix, and R is the input cost matrix. Q, Qf, and R were defined
internally by the system designer application.

Surface Interpolation for Non-linear Model
Elements Parameterization
Supra-Additive Pro-Inflammatory Surface
Data matrices across concentration gradients of simultaneous
LPS and IFN-γ addition were divided by the iNOS expression
level given LPS only for each concentration to give the ratio
by which each IFN-γ concentration amplified iNOS expression.
The discrete matrix data were fit using cubic interpolation
(Curve Fitting Toolbox) for each sampled time point. The cubic
interpolation minimized the root mean square error between the
fitted and actual values while avoiding outliers from overfitting
for the supra-additivity matrix (Supplementary Figure S7; data
used for interpolation are provided in Supplementary Data 1).
Other curve fits sampled were linear interpolation, polynomial
models, spline interpolation, and local linear regression (Lowess)
but had greater error and were subject to overfitting. The
resulting scaling factor, λ, was queried for intermediary
concentrations of each input at each sampled time.

M2 Hysteresis Surface
For each LPS concentration, iNOS expression for non-M2
polarized LPS-only treated cells were divided by iNOS expression
values from cells treated with an array of IL-4 concentrations
for 24 h followed by 24 h of LPS. The matrix of LPS and IL-
4 concentrations was interpolated using 3rd order polynomial

linear regression, where parameters (Supplementary Table S6)
were estimated by the least-squares method, which provided
inverse of the continuous input concentration- dependent
attenuation factor γ. Other models were assessed as above,
considering overfitting via leave N out cross validation (with 10%
of samples left out) and root mean square error minimization
(Supplementary Figure S7).

Global System Model Architecture and
Formulation
For our first nested model, we used a multiple regression with
interaction terms to quantify the supra-additive effect of adding
both IFN-γ and LPS. Simulations were run using SISO models
for single- and double- stimuli experimental results to populate
a table with predicted output levels for varying magnitudes of
input. The linear dual-input (both IFN-γ and LPS for all time
points) model predictions were used as the regression output
y, and the single input (either IFN-γ or LPS) SISO model
predictions were given as regression inputs to fit a model of
relative contributions of time and input interactions (y′LPS and
y′IFNγ). The terms that significantly predicted total iNOS output y
were time-dependent LPS concentration, time-dependent IFN-γ
concentration, and a combinatorial effect of both LPS and IFN-γ
inputs (Equation 10). Weighting coefficients, c, for each term are
given in Supplementary Table S5.

y = [c1ty
′
LPS + c2ty

′
IFNγ] + c3y

′
LPSy

′
IFNγ (10)

We next sought to construct a second global model structure
that handles time- and concentration-dependent supra-
additive interaction terms. Here, experimentally obtained iNOS
expression data given varying concentrations of LPS and IFN-γ
was fit to a response surface, as described above, for each time
point. This surface was used to define a table as above but with
time and input-dependent dual-input model output predictions.
A multiple linear regression on this prediction table similarly
fit coefficients for time and input interaction terms (Equation
10, Supplementary Table S5). We accounted for this temporally
shifting interaction term by implementing the multiple linear
regression model with the output from the identified SISO
transfer function models and time as inputs and the MISO
transfer function output as multiple regression model output,

Global System Model MPC Controller
Design and Prediction
The Model Predictive Control toolbox in MATLAB (2018b)
was used to create the controller and define manipulated input
sequences for the MISO “global” model. The SISO IFN-γ and
LPS transfer functions with weighting coefficients derived from
the multiple regression was given as the model object, referred
to as the plant (Equation 11, Figure 1B). The plant model was
defined with two manipulated variable inputs, one output, a
control horizon of 72 h, and a prediction horizon of 120 h.
Manipulated variables were constrained with a minimum of
0, a maximum of 1, and unconstrained rates of change. The
default state estimator (Kalman filter) settings were used for
the controller predictions (MATLAB). Closed loop simulations
generated the inputs, u, needed to obtain the set reference
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(unit step) over simulation time with the expected system
output y. Plant performance was evaluated by running open-
loop simulations given the predicted inputs from the closed-loop
simulation. Optimal predicted input and output trajectories were
validated using the mpcmove function.

G = [C1Y1, C2Y2]+ C3Y1Y2 (11)

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

LDW and LBW designed the study. LDW, JF, and AW conducted
experiments and data analysis. LDW conducted computational
predictive modeling. JU conceptualized physical interpretation
of control laws. LBW supervised the project. All authors
contributed to the article and approved the submitted version.

FUNDING

This work was supported by startup funds from the George
W. Woodruff School of Mechanical Engineering at the Georgia
Institute of Technology. LDW was supported in part by the
National Institutes of Health Cell and Tissue Engineering
Biotechnology Training Grant (T32-GM008433).

ACKNOWLEDGMENTS

This manuscript has been released as a pre-print at bioRxiv,
BIORXIV/2019/826966 (Weinstock et al., 2019).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbioe.
2020.00666/full#supplementary-material

REFERENCES

Becelli, R., Renzi, G., Perugini, M., and Iannetti, G. (2000). Craniofacial

traumas: immediate and delayed treatment. J. Craniofac. Surg. 11, 265–9.

doi: 10.1097/00001665-200011030-00012

Bellman, R. (1961). Adaptive Control Processes a Guided Tour. Princeton, NJ:

Princeton University Press. doi: 10.1515/9781400874668

Binkowska, A. M., Michalak, G., and, Slotwinski, R. (2015). Current views on

the mechanisms of immune responses to trauma and infection. Cent. Eur. J.

Immunol. 40, 206–216. doi: 10.5114/ceji.2015.52835

Celia-Terrassa, T., Bastian, C., Liu, D. D., Ell, B., Aiello, N.M.,Wei, Y., et al. (2018).

Hysteresis control of epithelial-mesenchymal transition dynamics conveys a

distinct program with enhanced metastatic ability. Nat. Commun. 9:5005.

doi: 10.1038/s41467-018-07538-7

Day, J., Rubin, J., and Clermont, G. (2010). Using nonlinear model predictive

control to find optimal therapeutic strategies to modulate inflammation.Math.

Biosci. Eng. 7, 739–763. doi: 10.3934/mbe.2010.7.739

Decano, J. L., and Aikawa, M. (2018). Dynamic macrophages: understanding

mechanisms of activation as guide to therapy for atherosclerotic vascular

disease. Front. Cardiovasc. Med. 5:97. doi: 10.3389/fcvm.2018.00097

Deshpande, S., Nandola, N. N., Rivera, D. E., and Younger, J. W. (2014).

Optimized treatment of fibromyalgia using system identification and

hybrid model predictive control. Control Eng. Pract. 33, 161–173.

doi: 10.1016/j.conengprac.2014.09.011

Galbraith, N., Walker, S., Carter, J., and Polk, H. C. Jr. (2016). Past, present, and

future of augmentation of monocyte function in the surgical patient. Surg.

Infect. 17, 563–569. doi: 10.1089/sur.2016.014

Geerlings, S. E., and Hoepelman, A. I. (1999). Immune dysfunction in patients

with diabetes mellitus (DM). FEMS Immunol. Med. Microbiol. 26, 259–265.

doi: 10.1111/j.1574-695X.1999.tb01397.x

Guo, S., and Dipietro, L. A. (2010). Factors affecting wound healing. J. Dent. Res.

89, 219–229. doi: 10.1177/0022034509359125

Hamelin, L., Lagarde, J., Dorothee, G., Potier, M. C., Corlier, F., Kuhnast,

B., et al. (2018). Distinct dynamic profiles of microglial activation are

associated with progression of alzheimer’s disease. Brain 141, 1855–1870.

doi: 10.1093/brain/awy079

Hespanha, J. P. (2009). Linear Systems Theory. Princeton, NJ: Princeton

University Press.

Hu, X., Leak, R. K., Shi, Y., Suenaga, J., Gao, Y., Zheng, P., et al. (2015). Microglial

and macrophage polarization-new prospects for brain repair. Nat. Rev. Neurol.

11, 56–64. doi: 10.1038/nrneurol.2014.207

Islam, M. N., Bradley, B. A., and Ceredig, R. (2016). Sterile post-traumatic

immunosuppression. Clin. Transl. Immunol. 5:e77. doi: 10.1038/cti.2016.13

Kadelka, S., Boribong, B. P., Li, L., and Ciupe, S. M. (2019). Modeling the

bistable dynamics of the innate immune system. Bull. Math. Biol. 81, 256–276.

doi: 10.1007/s11538-018-0527-y

Kimura, F., Shimizu, H., Yoshidome, H., Ohtsuka, M., and Miyazaki, M. (2010).

Immunosuppression following surgical and traumatic injury. Surg. Today 40,

793–808. doi: 10.1007/s00595-010-4323-z

Kong, L., Smith, W., and Hao, D. (2019). Overview of RAW264.7 for

osteoclastogensis study: Phenotype and stimuli. J. Cell. Mol. Med. 23,

3077–3087. doi: 10.1111/jcmm.14277

Lawrence, T., and Natoli, G. (2011). Transcriptional regulation of macrophage

polarization: enabling diversity with identity. Nat. Rev. Immunol. 11, 750–761.

doi: 10.1038/nri3088

Lee, S., Kivimae, S., Dolor, A., and Szoka, F. C. (2016). Macrophage-based

cell therapies: the long and winding road. J. Control Release 240, 527–540.

doi: 10.1016/j.jconrel.2016.07.018

Li, C., Menoret, A., Farragher, C., Ouyang, Z., Bonin, C., Holvoet, P., et al.

(2019). Single cell transcriptomics based-MacSpectrum reveals novel

macrophage activation signatures in diseases. JCI Insight 5:e126453.

doi: 10.1172/jci.insight.126453

Liu, Y., and Allen, R. (2002). Analysis of dynamic cerebral autoregulation using an

ARXmodel based on arterial blood pressure andmiddle cerebral artery velocity

simulation.Med. Biol. Eng. Comput. 40, 600–5. doi: 10.1007/BF02345461

Ljung, L. (1999). System Identification: Theory for the User, 2nd Edn. Upper Saddle

River, NJ: Prentice Hall.

Makkouk, A., and Weiner, G. J. (2015). Cancer immunotherapy and breaking

immune tolerance: new approaches to an old challenge. Cancer Res. 75, 5–10.

doi: 10.1158/0008-5472.CAN-14-2538

Mohammadbagheri, A., Zaeri, N., and Yaghoobi, M. (2011). “Comparison

performance between PID and LQR controllers for 4-leg voltage-source

inverters,” in International Conference on Circuits, System and Simulation

(Bangkok).

Morel, P. (2018). Gramm: grammar of graphics plotting in matlab. J. Open Source

Soft. 3:568. doi: 10.21105/joss.00568

Mosser, D. M., and Edwards, J. P. (2008). Exploring the full spectrum of

macrophage activation. Nat. Rev. Immunol. 8, 958–969. doi: 10.1038/nri2448

Ni, Y., Zhuge, F., Nagashimada, M., and Ota, T. (2016). Novel action

of carotenoids on non-alcoholic fatty liver disease: macrophage

polarization and liver homeostasis. Nutrients 8:391. doi: 10.3390/nu80

70391

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 14 July 2020 | Volume 8 | Article 666

https://www.frontiersin.org/articles/10.3389/fbioe.2020.00666/full#supplementary-material
https://doi.org/10.1097/00001665-200011030-00012
https://doi.org/10.1515/9781400874668
https://doi.org/10.5114/ceji.2015.52835
https://doi.org/10.1038/s41467-018-07538-7
https://doi.org/10.3934/mbe.2010.7.739
https://doi.org/10.3389/fcvm.2018.00097
https://doi.org/10.1016/j.conengprac.2014.09.011
https://doi.org/10.1089/sur.2016.014
https://doi.org/10.1111/j.1574-695X.1999.tb01397.x
https://doi.org/10.1177/0022034509359125
https://doi.org/10.1093/brain/awy079
https://doi.org/10.1038/nrneurol.2014.207
https://doi.org/10.1038/cti.2016.13
https://doi.org/10.1007/s11538-018-0527-y
https://doi.org/10.1007/s00595-010-4323-z
https://doi.org/10.1111/jcmm.14277
https://doi.org/10.1038/nri3088
https://doi.org/10.1016/j.jconrel.2016.07.018
https://doi.org/10.1172/jci.insight.126453
https://doi.org/10.1007/BF02345461
https://doi.org/10.1158/0008-5472.CAN-14-2538
https://doi.org/10.21105/joss.00568
https://doi.org/10.1038/nri2448
https://doi.org/10.3390/nu8070391
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Weinstock et al. Control of Pro-Inflammatory Macrophage Dynamics

Nise, N. S. (2015). Control Systems Engineering, 7th Edn. Hoboken, NJ: Wiley.

Ogata, K. (1995). Discrete-time Control Systems. Hoboken, NJ: Prentice-

Hall International.

Ohashi, W., Hattori, K., and Hattori, Y. (2015). Control of macrophage

dynamics as a potential therapeutic approach for clinical disorders

involving chronic inflammation. J. Pharmacol. Exp. Ther. 354, 240–250.

doi: 10.1124/jpet.115.225540

Oishi, Y., andManabe, I. (2016).Macrophages in age-related chronic inflammatory

diseases. NPJ Aging Mech. Dis. 2:16018. doi: 10.1038/npjamd.2016.18

Pacini, S. (2014). Deterministic and stochastic approaches in the clinical

application of mesenchymal stromal cells (MSCs). Front. Cell. Dev. Biol. 2:50.

doi: 10.3389/fcell.2014.00050

Ponzoni, M., Pastorino, F., Di Paolo, D., Perri, P., and Brignole, C.

(2018). Targeting macrophages as a potential therapeutic intervention:

impact on inflammatory diseases and cancer. Int. J. Mol. Sci. 19:1953.

doi: 10.3390/ijms19071953

Rachad, S., Nsiri, B., and Bensassi, B. (2015). System identification of inventory

system using ARX and ARMAX models. Int. J. Control Autom. 8, 283–294.

doi: 10.14257/ijca.2015.8.12.26

Salim, T., Sershen, C. L., and May, E. E. (2016). Investigating the role

of TNF-alpha and IFN-gamma activation on the dynamics of iNOS

gene expression in LPS stimulated macrophages. PLoS ONE 11:e0153289.

doi: 10.1371/journal.pone.0153289

Shin, Y. J., Sayed, A. H., and Shen, X. (2012). Adaptive models for gene networks.

PLoS ONE 7:e31657. doi: 10.1371/journal.pone.0031657

Sica, A., and Mantovani, A. (2012). Macrophage plasticity and polarization: in vivo

veritas. J. Clin. Invest. 122, 787–795. doi: 10.1172/JCI59643

Spiller, K. L., and Koh, T. J. (2017). Macrophage-based therapeutic

strategies in regenerative medicine. Adv. Drug Deliv. Rev. 122, 74–83.

doi: 10.1016/j.addr.2017.05.010

Sun, L., Pham, T. T., Cornell, T. T., McDonough, K. L., McHugh, W. M., Blatt,

N. B., et al. (2017). Myeloid-specific gene deletion of protein phosphatase 2A

magnifies MyD88- and TRIF-dependent inflammation following endotoxin

challenge. J. Immunol. 198, 404–416. doi: 10.4049/jimmunol.1600221

Taciak, B., Bialasek, M., Braniewska, A., Sas, Z., Sawicka, P., Kiraga,

L., et al. (2018). Evaluation of phenotypic and functional stability of

RAW 264.7 cell line through serial passages. PLoS ONE 13:e0198943.

doi: 10.1371/journal.pone.0198943

Tripathi, S., Chakraborty, P., Levine, H., and Jolly, M. K. (2020). A mechanism

for epithelial-mesenchymal heterogeneity in a population of cancer cells. PLoS

Comput. Biol. 16:e1007619. doi: 10.1371/journal.pcbi.1007619

Van den Hof, P. M. J., Heuberger, P. S. C., and Bokor, J. (1994). “System

identification with generalized orthonormal basis functions,” in Proceedings of

1994 33rd IEEE Conference on Decision and Control (Lake Buena Vista, FL).

Vodovotz, Y., Xia, A., Read, E. L., Bassaganya-Riera, J., Hafler, D. A., Sontag,

E., et al. (2017). Solving immunology? Trends Immunol. 38, 116–127.

doi: 10.1016/j.it.2016.11.006

Wang, Y., Han, Z. B., Song, Y. P., and Han, Z. C. (2012). Safety of

mesenchymal stem cells for clinical application. Stem Cells Int. 2012:652034.

doi: 10.1155/2012/652034

Weekman, E. M., Sudduth, T. L., Abner, E. L., Popa, G. J., Mendenhall, M.

D., Brothers, H. M., et al. (2014). Transition from an M1 to a mixed

neuroinflammatory phenotype increases amyloid deposition in APP/PS1

transgenic mice. J. Neuroinflammation 11:127. doi: 10.1186/1742-2094-11-127

Weinstock, L. D., James, E. F., Alexis, W., Jun, U., and Wood, L. B. (2019).

Experimental control of macrophage pro-inflammatory dynamics using

predictive models. bioRxiv [preprint]. doi: 10.1101/826966

Wynn, T. A., Chawla, A., and Pollard, J. W. (2013). Macrophage biology

in development, homeostasis and disease. Nature 496, 445–455.

doi: 10.1038/nature12034

Zhao, Q., Wang, X., Nelin, L. D., Yao, Y., Matta, R., Manson, M. E., et al. (2006).

MAP kinase phosphatase 1 controls innate immune responses and suppresses

endotoxic shock. J. Exp. Med. 203, 131–140. doi: 10.1084/jem.20051794

Ziegler-Heitbrock, H. W., Wedel, A., Schraut, W., Strobel, M., Wendelgass,

P., Sternsdorf, T., et al. (1994). Tolerance to lipopolysaccharide involves

mobilization of nuclear factor kappa B with predominance of p50 homodimers.

J. Biol. Chem. 269, 17001–17004.

Zurakowski, R., and Teel, A. R. (2006). A model predictive control based

scheduling method for HIV therapy. J. Theor. Biol. 238, 368–382.

doi: 10.1016/j.jtbi.2005.05.004

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Weinstock, Forsmo, Wilkinson, Ueda and Wood. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 15 July 2020 | Volume 8 | Article 666

https://doi.org/10.1124/jpet.115.225540
https://doi.org/10.1038/npjamd.2016.18
https://doi.org/10.3389/fcell.2014.00050
https://doi.org/10.3390/ijms19071953
https://doi.org/10.14257/ijca.2015.8.12.26
https://doi.org/10.1371/journal.pone.0153289
https://doi.org/10.1371/journal.pone.0031657
https://doi.org/10.1172/JCI59643
https://doi.org/10.1016/j.addr.2017.05.010
https://doi.org/10.4049/jimmunol.1600221
https://doi.org/10.1371/journal.pone.0198943
https://doi.org/10.1371/journal.pcbi.1007619
https://doi.org/10.1016/j.it.2016.11.006
https://doi.org/10.1155/2012/652034
https://doi.org/10.1186/1742-2094-11-127
https://doi.org/10.1101/826966
https://doi.org/10.1038/nature12034
https://doi.org/10.1084/jem.20051794
https://doi.org/10.1016/j.jtbi.2005.05.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	Experimental Control of Macrophage Pro-Inflammatory Dynamics Using Predictive Models
	Introduction
	Results
	Macrophage iNOS Expression Is Transient and Refractory to Repeated Stimulations
	Auto-Regressive Model With Exogenous Inputs Fits iNOS Dynamic Response to LPS Input
	Model Predictive Controller Identifies LPS Stimulation Sequence to Sustain iNOS Expression
	Experimental Implementation of Predicted LPS Input Temporarily Sustains Macrophage iNOS Activation
	IFN-γ Stimulation Increases Reachable iNOS Trajectories and Adds System Non-linearity
	RAW 264.7 Macrophages Exhibit State Memory Based on Stimulation History
	Modeling Multi-Input Driven Hysteresis and Supra-Additivity
	Design of LPS and IFN-γ Temporal Input Trajectories With Global Plant Model Achieves Sustained iNOS Expression

	Discussion
	Materials and Methods
	RAW 264.7 Macrophage Cell Culture and Conditioning
	Quantification of iNOS Expression via Immunofluorescence and Western Blot
	Data Normalization and Dynamic iNOS Response Figure Generation
	SISO and MISO Linear ARX Model System Identification
	LPS System Controller Design
	Surface Interpolation for Non-linear Model Elements Parameterization
	Supra-Additive Pro-Inflammatory Surface
	M2 Hysteresis Surface

	Global System Model Architecture and Formulation
	Global System Model MPC Controller Design and Prediction

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


