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The identification and 3D structural characterization of a homolog of the (R)-selective

transaminase (RTA) from Aspergillus terreus (AtRTA), from the thermotolerant fungus

Thermomyces stellatus (TsRTA) is here reported. The thermostability of TsRTA (40%

retained activity after 7 days at 40◦C) was initially attributed to its tetrameric form in

solution, however subsequent studies of AtRTA revealed it also exists predominantly as

a tetramer yet, at 40◦C, it is inactivated within 48 h. The engineering of a cysteine residue

to promote disulfide bond formation across the dimer-dimer interface stabilized both

enzymes, with TsRTA_G205C retaining almost full activity after incubation at 50◦C for 7

days. Thus, the role of this mutation was elucidated and the importance of stabilizing the

tetramer for overall stability of RTAs is highlighted. TsRTA accepts the common amine

donors (R)-methylbenzylamine, isopropylamine, and D-alanine as well as aromatic and

aliphatic ketones and aldehydes.

Keywords: biocatalysis, amino transferase, crystal structure, chiral amine, thermostability, quaternary structure,

enzyme engineering, enzyme characterization

INTRODUCTION

A green chemistry approach to minimize the environmental impact of synthetic processes entails
the use of biocatalysts, as they often offer unmatched regio-, enantio-, and chemo-selectivity
(Truppo, 2017). In addition, biocatalysts are bio-renewable and biodegradable (Sheldon and
Woodley, 2018). One class of biocatalysts, at the forefront of industrial applications, are
transaminases (TAs) (Fuchs et al., 2015; Kelly et al., 2018), pyridoxal-5′-phosphate (PLP) dependent
enzymes catalyzing the shuttling of an amino group between an amine and a carbonyl group,
producing chiral primary amines, a highly desired reaction in industry (Constable et al., 2007;
Savile et al., 2010). Both (S)-selective transaminases (STAs) and (R)-selective transaminases (RTAs),
belonging to separate fold types within the family of PLP-dependent enzymes, are known.
RTAs share their fold type with branched chain amino transferases (BCATs) and D-amino acid
transaminases (DATAS), which are significantly more abundant in nature and well-characterized,
while RTAs remained elusive prior to Höhne et al. (2010) describing a consensus motif. Since then,
several more RTAs have been reported, with just a few crystal structures solved. However the overall
number of known RTAs (and their solved structures) is still significantly smaller compared to STAs
(Guo and Berglund, 2017; Slabu et al., 2017).

The application of TAs (as well as other classes of enzymes) in chemical synthesis is often
hindered by their insufficient stability (Bommarius and Paye, 2013). Key strategies to address this
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limitation include the sourcing of biocatalysts from
extremophilic organisms (Littlechild et al., 2007), as well as
enzyme engineering (Bommarius, 2015). To expand the toolbox
of RTAs in order to include more inherently stable catalysts,
the identification of a homolog of the RTA from Aspergillus
terreus (AtRTA) (Höhne et al., 2010; Łyskowski et al., 2014)
from the thermotolerant fungus Thermomyces stellatus (TsRTA)
is here described together with its 2.2 Å crystal structure. An
in-depth investigation of the quaternary structures of both
RTAs is presented. RTAs are commonly accepted to exist
exclusively as dimers, while both dimeric and tetrameric STAs
have been reported (Börner et al., 2017). Finally, we describe
the introduction of a mutation that stabilizes the quaternary
structure, improving the thermostability of both enzymes.

MATERIALS AND METHODS

All reagents were purchased from Sigma Aldrich, Thermo Fisher,
Alfa Aesar, Apollo Scientific, or Fluorochem and used without
further purification. Restriction enzymes, polymerases, and
ligases were purchased from New England Biolabs. MALDI-TOF
MS was carried out using ground steel target plates on a Bruker
ultraFlex III MALDI-TOF mass spectrometer. NMR spectra
were obtained using a Bruker 400 MHz NMR spectrometer
(Bruker AV3400HD). ESI-MS data were obtained on a Bruker
MicroTOF spectrometer.

Discovery of Novel RTA Sequences
Protein BLAST searches were performed with the sequences
of several reported RTAs against the NCBI non-redundant
protein sequence database (https://blast.ncbi.nlm.nih.gov/Blast.
cgi) as well as the now defunct fungal genomics database
(https://genome.fungalgenomics.ca/) of the Genozymes project.
Candidate sequences were searched for sequences from
extremophilic or extremotolerant organisms which were then
inspected for the consensus sequence described by Höhne et al.
(2010) Multiple sequence alignments against several reported
RTAs were performed using MUSCLE (Madeira et al., 2019) to
assess sequence identities.

pCH93b
The QuikChange Lightning Multi Site-Directed Mutagenesis Kit
from Agilent was used to introduce a TEV recognition sites
it pET22b(+) and to insert a second NdeI restriction site to
facilitate excision of the PelB sequence by digestion with NdeI for
2–3 h [30 µL reaction: CutSmart (10 x) buffer (3 µL), restriction
enzyme (2 µL; 40U), DNA (2 µg)]. Following gel purification,
the backbone was then closed in a 16◦C ligation reaction [20
µL reaction: 10x T4 ligase buffer (2 µL), vector-backbone (200
ng), T4 ligase (1 µL)] and transformed into E. coli XL10-
Gold using electroporation (see Supporting Information for full
plasmid map).

The following primers were used:
TEV recognition site insertion:
5′-GCTTGCGGCCGCAGAGAACCTCTATTTCCAAGGGC

TCGAGCACCACC-3′

Introduction of second NdeI restriction site:

5′-GAATTAATTCCGATATCCATATGCATCGCCGGCTG
GGCAGCG-3′

Mutations in red.

Cloning
The codon-optimized synthetic gene of TsRTA was purchased
from GeneArt in the cloning vector pMA, flanked by BamHI
and HindIII restriction sites. Restriction digests of pMAT-TsRTA
and pCH93b-CvSTA were set up in separate vials as follows:
pMAT-TsRTA (700 ng) or pCH93b-CvSTA (1,500 ng), CutSmart
(10x) buffer (3 µL), BamHI HF (2 µL), HindIII HF (2 µL) and
nuclease free water to 30 µL followed by incubation at 37◦C
for 30min. The backbone pCH93b and the insert TsRTA were
purified from an agarose gel (1%, 150mA, 75V, 50min) using
the GeneJet gel purification kit (excised backbone and insert
were combined prior to purification). DNA was eluted in 43 µL
nuclease free water (45◦C). 10x T4 ligase buffer (5 µL) as well
as T4 ligase (2 µL) were added. The reaction was incubated at
16◦C overnight. DNA was isolated by ethanol precipitation and
transformed into electrocompetent E. coli XL10-gold (1750V,
5.5ms) and, following outgrowth in SOC medium (37◦C, 180
rpm 1 h), plated onto selective LB-agar plates (ampicillin (amp)
100µg/mL), and incubated at 37◦C overnight. The presence of
the insert and absence of mutations were verified by sequencing.

The synthetic gene of AtRTA was kindly provided by Johnson
Matthey. The gene was amplified (Q5 polymerase 2x Master Mix
(12.5 µL), AtRTA_fwd (0.5µM), AtRTA_rev (0.5µM), template
(ca 1–10 ng), final volume 25 µL. Cycling conditions: 98◦C, 30 s;
30x (98◦C, 10 s, 67◦C 30 s, 72◦C 30 s); 72◦C 5min, 4◦C. The
mix was purified (GeneJet PCR purification kit), digested (PCR
product (1.4 µg) or pCH93b (2.4 µg) (23 µL), SacI HF (2 µL),
HindIII HF (2 µL), CutSmart (10x) buffer (3 µL); incubation at
37◦C for 90min), gel purified as above (elution in 25 µL diluted
kit elution buffer (25% v/v in nuclease free water, 65◦C), and
ligated (sample (25 µL), 10x T4 ligase buffer (3 µL), T4 ligase (2
µL), incubation at 25◦C for 30min, followed by 65◦C for 10min).
Electroporation was then carried out as above, using 5 µL of the
ligation mix.

AtRTA_fwd: 5′-ACAGATAGAGCTCCATGGCCAGCATGG
ACAAAG-3′

AtRTA_rev: 5′-ACAGATAAAGCTTATTACGCTCGTTAT
AGTCGATTTCAAACG-3′

Mutagenesis
The mutants AtRTA_G207C and TsRTA_G205C were prepared
using the QuikChange Lightning multi site-directed mutagenesis
kit from Agilent, following the manufacturer protocol: 10×
QuikChange Lightning Multi reaction buffer (2.5 µL), pCH93b
harboring the RTA gene (ca 100 ng), primer (0.4µM), dNTP
mix (1 µL), QuikSolution (1 µL), QuikChange Lightning Multi
enzyme blend (1 µL), nuclease free water (to 25 µL). Cycling
conditions: 95◦C, 2min; 30x (95◦C, 20 s, 55◦C 30 s, 65◦C
3.5min); 65◦C 5min, 4◦C. DpnI (1 µL) was added and the
mix incubated at 37◦C for 1 h. A portion (4 µL) of the mix
were then transformed into the provided XL10-gold cells and,
following outgrowth in SOCmedium (37◦C, 180 rpm 1 h), plated
onto selective LB-agar plates (amp 100µg/mL), and incubated at
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37◦C overnight. The mutations were then verified by in-house
Sanger sequencing.

The following primers were used:
AtRTA_G207C: 5′-CAACCTATCCATTTTTAACGGATTG

TGATGCCCATTTAACGG-3′;
TsRTA_G205C: 5′-ATCCGTTTCTGACCGATTGTGATGC

CAATCTGAC-3′.
Mutated codon in red.

Expression and Purification
pCH93b containing the synthetic gene was transformed into
BL21 STAR (DE3) E. coli cells. TB-medium (amp 100µg/mL)
(300 mL) supplemented with lactose (5 g/L) were inoculated
with a single colony and incubated at 37◦C, with shaking
(180 rpm) for 4 h followed by 25◦C with shaking (180 rpm)
for 20 h. Cells were harvested by centrifugation (4,500 g,
15min, 4◦C) and stored at −20◦C either as pellets or in
resuspension buffer. Proteins were purified by immobilized
metal affinity chromatography (IMAC) as described by Cerioli
et al. (2015). Enzyme concentration was estimated by the
absorbance at 280 nm (non-denatured protein), using predicted
extinction coefficients (TsRTA: 40493.38 Da, 53860 M−1

cm−1, AtRTA: 39860.55 Da, 50880 M−1 cm−1; https://web.
expasy.org/protparam/).

Size-Exclusion Chromatography
Size-exclusion chromatography (SEC) was carried on a Superdex
200 10/300 GL column (GE Healthcare), using a mobile
phase of potassium phosphate buffer (50mM), sodium chloride
(100mM), PLP (0.1mM), pH 8. Injection volume: 100 µL,
flow rate 0.75 mL/min. Samples were prepared in potassium
phosphate buffer [50mM), PLP (0.1mM), pH 8 (with or without
sodium chloride (100mM)], to a final protein concentration of ca
2 mg/mL. Samples were either injected directly after preparation
or incubated at ambient temperatures for varying amounts of
time to follow the interconversion of different quaternary states.
A calibration curve was generated using the Sigma Aldrich Gel
Filtration Markers Kit for Protein Molecular Weights 12,000–
200,000 Da (MWGF200) (Figure S4 insert).

Stability, Activity, and Kinetic Assays
Activity assays were based on the method by Schätzle et al. (2009)
as applied in Cerioli et al. (2015), with (R)-methylbenzylamine
(RMBA) in place of SMBA in UV-free 96-well plates using
the EPOCH 2 plate reader at 30◦C unless otherwise stated
(pathlength 0.84 cm, calculated according to A977−A900

0.18 ), ε = 12.6
mM−1 cm−1).

Temperature, pH, and Co-solvent Stability Assays
The purified enzyme in potassium phosphate buffer (50mM,
pH 8, 0.1mM PLP) was diluted to a final conc. of 0.30–
0.38 mg/mL with either phosphate buffer (temperature stability
assays), universal buffer adjusted to the desired pH (pH stability
assays) (Cerioli et al., 2015), or phosphate buffer containing
10 or 20% [(v/v), final concentration] co-solvents (co-solvent
stability assays). Aliquots (30 µL) were stored at 35–60◦C for the
temperature stability assays, 4◦C for pH stability, and 25◦C for

the co-solvent stability assays. For each time point, one aliquot
was briefly centrifuged in a microfuge to ensure the complete
collection of the sample at the bottom of the tube, and incubated
on ice for ca. 10min. The standard activity assay described above
was performed in triplicate on each sample, using 3 µL of the
enzyme sample per reaction. The sample was then discarded.

Temperature, pH, and Co-solvent Activity Assays
Modified activity assays were performed as follows: for
temperature activity assays, 3 µL of enzyme solution, stored
on ice at the appropriate dilution (0.07–0.09 mg/mL), and 300
µL of assay buffer, pre-heated to the desired temperature, were
combined. The assay was performed in a 96-well plate in a pre-
heated plate reader. For pH activity assays, assay buffer was
prepared in universal buffer (Davies, 1959) at the desired pH.
For the co-solvent activity assays, assay buffer containing the
desired co-solvent was prepared. To initiate the assay, 3 µL of
enzyme solution, stored on ice at the appropriate dilution (0.37
mg/mL), and 300µL of assay buffer, were combined and the assay
performed as usual.

Kinetic Studies
Activity assays were performed by either fixing the pyruvate
concentration at 10mM (1% (v/v) DMSO) while the RMBA
concentration was varied (0.005 to 10mM) or with the RMBA
concentration fixed at 2.5mM (0.25% (v/v) DMSO) and the
pyruvate concentration varied (0.005 to 10mM), using purified
enzyme at the appropriate dilution (0.0030–0.0038 mg/mL, final
concentration in the assay). Assays at each concentration were
performed in triplicate. Kinetic parameters kcat ,Km, andKi where

obtained by fitting a substrate inhibition curve

(

v = kcat
1+ Km

[S] +
[S]
Ki

)

using GraphPad Prism (Copeland, 2000).

Substrate Scope Analysis
Reactions were set up containing RMBA (10mM) [IPA (50mM)
for acetophenone] and a carbonyl acceptor (10mM), or
benzaldehyde (10mM) [pyruvate (10mM) for MBA] and an
amino donor [10mM (20mM for racemates)], purified TsRTA
(wild-type and mutant, 0.5 mg/mL), PLP (0.1mM), DMSO (5
or 10% v/v) in potassium phosphate buffer (50mM pH 8),
in a final volume of either 600 µL or 1mL. Reactions were
incubated at 37◦C, 180 rpm in triplicate. Samples (100 µL) were
quenched in with 900 µL acetonitrile and aq. HCl (0.2%) (1:1
v/v) and analyzed by reverse-phase HPLC. Enantiopreference
was determined by chiral GC-FID or chiral reverse-phase HPLC
(see below). For the intensification studies, reactions were set
up analogously but with an increasing amount of RMBA and
phenoxyacetone, and the ratio of enzyme to the substrate was
kept constant (0.1 mg/mL for a 10mM reaction or 0.025 mol%).
Reactions were quenched analogously but with proportionally
increasing dilution factors.

MALDI-TOF MS
Protein samples (20 µL) in potassium phosphate buffer [50mM;
PLP (0.1mM), pH 8] were diluted with an equal volume 1% TFA.
For preparation of reduced samples, TCEP (10 µL of a 200mM
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stock) was added to the sample, followed by incubation at
70◦C for 15min. Samples were then desalted using C4 ZipTip R©

pipette tips (Merck Millipore) as follows: The sample was bound
to the tip under saturating conditions, the resin washed (5%
methanol, 0.1% TFA in water; 20 × 10 µL) and the protein
eluted in 5 µL elution buffer (80% acetonitrile, 0.1% TFA in
water). The desalted samples (2 µL) were mixed with 2 µL of a
solution of sinapic acid (20 mg/mL; in elution buffer) of which
1 µL was spotted onto a ground steel target plate, dried, and
coated with 1 µL of the sinapic acid solution. The spots were
then analyzed using a Bruker ultraFlex III MALDI-TOF mass
spectrometer (laser amplitude 60%). External calibration relative
to HSA (66,440 kDa).

Reverse-Phase HPLC Analysis
of Conversions
Samples were analyzed using a ThermoFisher Ultimate 3000
Reverse-phase HPLC (diode array detector) on aWaters XBridge
C18 column (3.5µm, 2.1 × 150mm) with the following
method: A: 0.1% TFA in water, B: 0.1% TFA in acetonitrile.
Gradient: 0min 95% A 5% B; 1min 95% A 5% B; 5min
5% A 95% B; 5.10min 0% A 100% B; 6.60min 0% A 100%
B; 7min 95% A 5% B; 10min 95% A 5% B. Injection
volume 2 µL, at 45◦C with a flow rate of 0.8 mL/min.
Retention times in min: acetophenone (3.85), MBA (2.11),
benzaldehyde (3.60), benzylamine (1.06), phenoxyacetone (3.90),
1-phenoxypropan-2-amine (3.10). Conversions were calculated
from a calibration curve of authentic standards, following the
production of product(s).

Enantiopreference
Samples were basified by adding 1:10 sodium hydroxide
(5M), saturated with sodium chloride, and extracted into 2
× 500 µL ethyl acetate. Extracted samples were derivatized
with 20 µL each triethylamine and acetic anhydride and
analyzed by GC-FID: Thermo ScientificTM TraceTM 1310
GC equipped with an Agilent CHIRASIL-DEX CB (25m ×

0.25mm × 0.25µm) column: 0min 40◦C, 1min 40◦C, 4min
100◦C, 5min 100◦C, 15min 110◦C, 16min 110◦C, 17.8min
200◦C, 22.8min 200◦C. Injector temperature 230◦C, split
ratio 1:10, continuous flow 1.7 mL/min, FID temperature
250◦C. Helium was used as carrier gas. Retention times
in min: (S)-o-fluoro-α-methylbenzylamine (11.2), (R)-o-
fluoro-α-methylbenzylamine (11.1), (S)-1-aminoindan (14.9),
(R)-1-aminoindan (15.0), (S)-4-phenylbutan-2-amine (14.7),
(R)-4-phenylbutan-2-amine (14.8), (S)-hexan-2-amine (8.0),
(R)-hexan-2-amine (8.1), (S)-tetrahydrothiophene-3-amine
(13.1), (R)-tetrahydrothiophene-3-amine (13.0), (S)-α-
Ethylbenzylamine (13.3), (R)-α-Ethylbenzylamine (13.4),
SMBA (12.3), RMBA (12.6), (S)-1-phenoxypropan-2-amine
(14.7), (R)-1-phenoxypropan-2-amine (14.8).

Alternatively, samples were derivatized with FMOC-Cl [100
µL sample, 200µL borate buffer (100mM, pH 9), 400µL FMOC-
Cl (15mM in acetonitrile)], diluted 5-fold with acetonitrile
and aq. HCl (0.2%) (1:1 v/v) and analyzed by reverse-phase
HPLC (diode array detector) on a Phenomenex Lux Cellulose-
2 chiral column (5µm, 44.6 × 250mm) with the following

isocratic methods: A: 0.1% TFA in water, B: 0.1% TFA in
acetonitrile. Tetrahydrofuran-3-amine and butan-2-amine: 40%
A 60% B, serine: 55% A 45% B. Injection volume 2–20
µL, at ambient temperature with a flow rate of 1 mL/min.
Retention times in min: (S)-tetrahydrofuran-3-amine (11.3), (R)-
tetrahydrofuran-3-amine (12.3), (S)-butan-2-amine (13.0), (R)-
butan-2-amine (11.7), L-serine (6.0), D-serine (6.2; shoulder:
acetophenone (6.4)].

Retention times of each enantiomer were identified by
comparing to commercially available samples (either a
racemate and one enantiomer, or both enantiomers), except for
phenoxypropan-2-amine, where (S)-phenoxypropan-2-amine
synthesized using the Halomonas elongata transaminase (Cerioli
et al., 2015) was used (see below), tetrahydrothiophene-3-amine,
where a commercial racemate and (S)-tetrahydrothiophene-
3-amine synthesized from L-methioninol according to the
procedure by Pan et al. (2011) was used and serine, where
commercial L-serine was used.

(S)-Tetrahydrothiophene-3-Amine
[α]D−32.2, c 1, acetone [lit. (Dehmlow and Westerheide, 1992)
−37.77], 1H-NMR (400 mHz, CDCl3) δ 1.51 (3H, br s, NH2

+ H2O), 1.81–1.90 (1H, m, SCH2CHaHb), 1.94–2.04 (1H, m,
SCH2CHaHb), 2.59 (1H, ddd (J 10.7, 4.4, 0.9Hz), SCHaHbCHN),
2.84–2.96 (2H, m, SCH2CH2), 2.98 (1H, dd (J 10.6, 5.1Hz),
SCHaHbCHNH2), 3.71 (1H, p (J 4.9Hz), CHNH2), 13C-
NMR (100 mHz, CDCl3) δ 28.4 (SCH2CH2), 38.7 (SCH2CH2),
40.0 (SCH2 CHNH2), 55.9 (CHNH2); in agreement with lit.
(Dehmlow and Westerheide, 1992; Pan et al., 2011) ESI-MS
(m/z): [M+H]: calc. 104.0528, found 104.0538.

Synthesis of (S)-1-Phenoxypropan-2-Amine
Phenoxyacetone (274 µL, 2 mmol), isopropylamine (IPA) [5
mmol, from a pH adjusted 2M stock in potassium phosphate
buffer (50mM, pH8)], PLP [2mL of a 10mM stock in potassium
phosphate buffer (50mM, pH8)], and DMSO (2mL) were diluted
with potassium phosphate buffer (50mM, pH8) to a final volume
of 20mL. Lyophilized HEwT cfe (25.5mg) (Cerioli et al., 2015)
was added and the mixture incubated with gentle agitation at
25–30◦C. After 24 h, an additional 25mg of HEwT and after
another 24 h a further 50mg were added. The reaction was
incubated for another 72 h after which the reaction was basified
with 3mLNaOH (5M) and extracted with 3× 20mL EtOAc. The
combined organic extracts were dried with MgSO4, filtered, and
concentrated in vacuo to ca 2mL. Methanolic HCl (80 µL, 3M,
prepared from acetyl chloride and methanol) was added and the
sample concentrated in vacuo. The resulting oil was recrystalized
from EtOAc to give the HCl salt of (S)-1-phenoxypropan-2-
amine as white needles (290.3mg, 77% yield, >99.5% ee). [α]D
33.8, c 2, methanol (lit. Koszelewski et al., 2008 −28.1 for the
(R)-enantiomer), 1H-NMR (400mHz, DMSO-d6) δ 1.29 (3H, t (J
6.7Hz), Me), 3.58 (1H, pd (J 6.8, 4.0Hz), CHNH3), 3.99 (1H, dd
(J 10. 2, 7.0Hz), CHaHb), 4.12 (1H, dd (J 10.2, 4.0Hz), CHaHb),
6.95–7.02 (3H, m, o, p-Ar-H), 7.32 (2H, dd (J 8.8, 7.0Hz), m-
Ar-H), 8.22 (3H, br s, NH3), 13C-NMR (100 mHz, DMSO-d6)
δ 15.0 (Me), 46.0 (CHNH3), 68.5 (CH2), 114.6 (o-C), 121.2 (p-
C), 129.5 (m-C), 157.8 (Ar-C-O); in agreement with lit. (Knutsen
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et al., 1999; Franchini et al., 2003) ESI-MS (m/z): [M+H]: calc.
152.1070, found 152. 7078.

TsRTA Crystallization and Data Collection
Crystallization trials of TsRTA (10 mg/ml; 20mM Tris-HCl
pH 8.0; 0.1mM PLP) were carried out using an Orxy 4
crystallization robot (Douglas Instruments) and flat-bottomed,
Greiner CrystalQuick 96 well sitting drop plates (Greiner Bio-
one). TsRTA microcrystals grown over 2–3 days at 20◦C in a 500
nl drop, containing 30% protein and PACT screen (Molecular
Dimensions) condition G3 (0.2M sodium iodide, 0.1M Bis-Tris
Propane pH 7.5, 20% (w/v) PEG 3350), were used to prepare
a seed stock. Seeds were prepared using the Seed Bead Kit
(Hampton Research), crushing the crystals in 50 µl well solution
by vortexing for 2min. 0.15 µl seed stock was used to seed a
second PACT screen, preparing 0.8 µl drops at diverse protein
concentrations (31.25, 50, and 68.75%). For microseeding, the
protein concentration was halved to 5 mg/ml. Crystals were
harvested from PACT condition C12 (0.01M zinc chloride, 0.1M
HEPES pH 7.0, 20% (w/v) PEG 6K) from a drop containing
68.75% protein. For cryoprotection, crystals were soaked in a
solution comprising 18.75% (v/v) PACT condition G3, 20% (w/v)
PEG6K, 0.1M HEPES pH 7.0, 0.002M ZnCl and 28% (w/v)
ethylene glycol.

X-ray diffraction data were collected on a single TsRTA crystal
at 2.2 Å resolution on the XDR2 beamline at the ELETTRA
synchrotron facility (Trieste, Italy). Two TsRTA chains (Chains
A and B) were present in the asymmetric unit, with an estimated
Matthew’s coefficient of 2.7 Å3/Da (54.4 % solvent content). Data
reduction was carried out using Mosflm and assigned to the
body-centered monoclinic space group I121 using POINTLESS
and scaled with AIMLESS (Evans, 2011; Powell et al., 2017).
Molecular replacement was carried out using MOLREP and
chain A of the omega transaminase from Aspergillus terreus
(AtRTA; PDB entry 4ce5; 82% sequence identity over 321
residues) as a search model (Vagin and Teplyakov, 1997;
Łyskowski et al., 2014). All programs are available under the
CCP4 suite (Winn et al., 2011). The structure was manually built
and refined to convergence using coot and phenix.refine and
structure geometry was validated by Molprobity in the PHENIX
platform (Table S1) (Davis et al., 2007).

For data collection and refinement parameters see Table S1.
Atomic coordinates and structure factors are available for
download from the RCSB Protein Data Bank (www.rcsb.org)
under accession code 6XWB.

RESULTS AND DISCUSSION

Expression and Initial Characterization
of TsRTA
A putative RTA from the thermotolerant fungus Thermomyces
stellatus (TsRTA) with 81% identity to AtRTA (Łyskowski et al.,
2014) was identified from a protein BLAST search (Figure S1).
TsRTA was readily expressed at 25◦C and, following Ni-IMAC,
the enzyme was obtained in high yields (800 mgenzyme/Lculture)
and was judged to be pure by SDS-PAGE (Figure S2). The
specific activity with pyruvate and RMBA was determined to be
2.5 U/mg (AtRTA: 3 U/mg). The catalytic efficiency (kcat/Km)
was comparable to AtRTA for RMBA and ca. 2-fold lower for
pyruvate (Table 1). Substrate inhibition was observed in both
TsRTA and AtRTA for both pyruvate and RMBA, with higher
inhibition from the latter (Figure S3).

The resting stability and activity of TsRTA were then
investigated under varying conditions. TsRTA was stable in
universal buffer between pH 5-9 for at least 14 days at 4◦C
(Figure S4a), and most active between pH 8-9, as is commonly
observed for RTAs (Schätzle et al., 2011) (Figure S4b; it should be
noted the overall specific activity in universal buffer Davies, 1959
was lowered by ca. 20-fold). TsRTA was stable in the presence
of co-solvents such as 20% (v/v) methanol, ethanol, and DMSO,
which are commonly used co-solvents in biotransformations,
with no loss of activity after 1 week (Figure S4d). Stability
decreased with increasing chain length of alcohols, as well as
THF, acetonitrile and to a lesser extent DMF. The activity in
the presence of co-solvents followed the same trends as the
stability (Figure S4c).

To assess the extent to which the thermotolerant origin of
TsRTA impacts its stability, thermostability assays were carried
out in parallel with both TsRTA and AtRTA. TsRTA retained 40%
activity when incubated at 40◦C for 7 days, whereas AtRTA lost
almost 90% activity within 24 h. However, at 45◦C, TsRTA almost

TABLE 1 | Kinetic parameters for wild-type (wt) and mutant TsRTA and AtRTA.

Km (mM) kcat (s
−1) Ki (mM) kcat /Km (s−1 mM−1)

TsRTA_wt RMBA 0.13 ± 0.01 1.82 ± 0.03 15 ± 1 13.8 ± 0.6

Pyruvate 0.57 ± 0.03 2.21 ± 0.04 39 ± 5 3.9 ± 0.1

TsRTA_G205C RMBA 0.12 ± 0.01 1.35 ± 0.03 20 ± 2 11.0 ± 0.6

Pyruvate 0.42 ± 0.01 1.33 ± 0.02 130 ± 30 3.2 ± 0.1

AtRTA_wt RMBA 0.17 ± 0.01 2.24 ± 0.04 19 ± 1 13.3 ± 0.5

Pyruvate 0.23 ± 0.01 2.25 ± 0.02 52 ± 4 10.0 ± 0.2

AtRTA_G207C RMBA 0.30 ± 0.02 1.96 ± 0.05 19 ± 2 6.4 ± 0.3

Pyruvate 0.19 ± 0.01 1.71 ± 0.03 60 ± 10 9.2 ± 0.5

Parameters were obtained by fitting a substrate inhibition curve (using GraphPad Prism) to the data obtained when either RMBA or pyruvate concentrations were varied. Reaction

velocities at each concentration were measured in triplicate. Standard errors (SE) are quoted, accounting for covariance.
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FIGURE 1 | Thermal resting stability profiles of wild-type TsRTA and AtRTA, as well as mutants both before and after equilibration in the presence of

β-mercaptoethenol. Retained activity after incubation at 35–60◦C for 30 min−7 d (pH 8). Activity expressed relative to the activity of each enzyme at t = 0. Error bars

represent standard errors (n = 3).

completely lost its activity within 2 h, while AtRTA retained ca.
25% activity after 4h (Figure 1). Indeed, during temperature
activity assays AtRTA showed a higher optimum temperature
compared to TsRTA (Figure 2), which showed loss of activity
over the 10min activity assay from 50◦C onward.

SEC unexpectedly revealed that 90% of TsRTA in solution
exists as a tetramer, with only 10% adopting the dimeric
form (Figure S5). Other highly similar RTAs, including
AtRTA (4ce5, 81% identity) (Łyskowski et al., 2014), and
RTAs from Nectria haematococca (4cmd, 78% identity)
(Sayer et al., 2014), Exophiala xenobiotica (6fte, 70% identity)
(Telzerow et al., 2019), and Aspergillus fumigatus (4uug,
73% identity) (Thomsen et al., 2014) are reported as
dimers based on their crystal packing. Two thermostable
BCATs, belonging to the same fold type IV as RTAs, with
hexameric structures have recently been reported by Isupov
et al. (2019). In addition, increased operational stability of
tetrameric STAs compared to dimeric STAs has been reported
(Börner et al., 2017). Thus, the improved thermostability

of TsRTA was initially attributed to its tetrameric nature
(Littlechild et al., 2007).

3D Structural Analysis and Relation
to Thermostability
Electron density was well-defined for residues 1–319 in both
polypeptide chains (A and B) present in the asymmetric unit,
but it was absent for TsRTA residues 320–334, in addition to
the C-terminal His-tag, due to flexibility in this region. Both
polypeptide chains exhibit high structural similarity, with an
RMSD of 0.24 Å for 319 aligned Cα atoms, as calculated using
the CCP4i program SUPERPOSE (Krissinel and Henrick, 2004).
Regions of poor electron density were observed for several side
chains from residues 126–132 that are located in a loop region
and solvent exposed. There was an area of positive density that
appeared to be continuous with the sidechain of D65 (Chain A),
observed in the difference map (mFo-DFc), that could not be
identified or modeled.
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FIGURE 2 | Temperature–activity relationship of wild-type and mutant TsRTA

and AtRTA: specific activity at 30–65◦C. Error bars represent standard errors

(n = 3).

The TsRTA monomer adopts the classical aminotransferase
class IV fold (InterPro: IPR001544; Pfam PF01063) with a
significant content of both α-helices and β-strands (3 β-sheets)
and can be observed to be sub-divided into two smaller
sub-domains (see Figure 3A and Figures S6, S7). A Profunc
search (http://www.ebi.ac.uk/thornton-srv/databases/profunc/)
(Laskowski et al., 2005), as expected, identified AtRTA as the
top structural homolog (RMSD of 0.67 Å over 318 C-alpha
matched pairs).

The active site pocket houses a single PLPmolecule, covalently
bound to eachTsRTA chain via an imino bondwith the conserved
active site lysine residue (K178) and additional hydrogen bonds
(2.6–3.0 Å) formed between the phosphate group of PLP and
side chain atoms from residues R77, E211, T237, and T273
(conserved in AtRTA); the phosphate group is further stabilized
by hydrogen bonds with R77 and N219 via two conserved
water molecules (Figure S8) (Łyskowski et al., 2014). E211
forms a hydrogen bond (2.8 Å) with the pyridine nitrogen;
for other class IV members, it is suggested that the role of
this residue is to maintain the pyridine ring in its protonated
form, thus stabilizing the carbanion reaction intermediate. The
pyridine ring is further stabilized by hydrophobic residues with
a conserved leucine residue (L233) and the backbone of a
conserved phenylalanine (F215).

An analysis of the dimer interface formed with the PDBePISA
server (https://www.ebi.ac.uk/pdbe/pisa/) revealed an interaction
surface area of 2143.5 Å2 mediated by 57 interacting residues
(Complexation Significance Score (CSS) of 1.0). Contact surface
interactions comprise 30 hydrogen bonds and 10 salt bridges,
with an estimated solvation energy gain upon interface formation
of 1Gi =−22.6 kcal mol−1.

A tetrameric structure of ATA-117-Rd11 (40% sequence
identity) has been deposited in the PDB as 5fr9 (Cuetos et al.,
2016) This structure contains two disulfide bridges at the
tetrameric interface (Figures 3C,D), while glycine residues are

found in all of the above-mentioned RTAs, as well as wild-
type ATA-117 (Figure 3D and Figure S9). Despite the fact that
a tetramer interface was not predicted by PDBePISA, yet in
agreement with our experimental findings, a TsRTA tetramer was
generated by applying the symmetry operation (-x, y, -z) to the
asymmetric dimer, which superimposed well with the tetramer
of ATA-117-Rd11 (Figure 3B). Additionally, for all of the above
mentioned structures of RTAs, except for E. xenobiotica, a
similar crystallographic-tetramer can be obtained (Figure 3C),
yet, interface analysis with PDBePISA, only predicted AtRTA
to form a tetramer. Gel-filtration chromatography of AtRTA
then revealed a composition of 97% tetramer, 2% dimer and
1% monomer (Figure S5). Analysis of known tetrameric STAs
(Börner et al., 2017) (PDB entries 4b9b, 4atp, 3n5m, 3a8u, and
5lh9) showed PDBePISA only predicted the first three to be stable
tetramers in solution. Thus, the analysis of the “dimer of dimers”
structure by PDBePISA was deemed unreliable. Attempts to
disrupt the tetrameric structure by simple variation of the ionic
strength of the buffer (0–1,200mM NaCl) were made but no
effect was observed.

TsRTA_G205C and AtRTA_G207C variants, produced to
mimic the equivalent tetramer-bridging G215C mutation of
ATA-117-Rd11, exhibited a disrupted quaternary structure
immediately following purification: a composition of ca. 55%
tetramer, 42% dimer, and 2% monomer and 28% tetramer, 19%
dimer, and 52% monomer were observed for TsRTA_G205C and
AtRTA_G207C, respectively (Figure S5), as judged by SEC. This
can be attributed to an enhanced energy barrier for tetramer
formation due to increased steric hinderance from the cysteines.
Indeed, incubation at room temperature with gentle agitation
showed slow reconstitution of the tetrameric form, but it tapered
off over time (Figures S10, S11), possibly due to incorrect
disulfide bond formation within the dimer. Incubation at 4◦C in
the presence of β-mercaptoethanol (10mM) for 2 days, followed
by dialysis to remove the reducing agent and an overnight
incubation with aeration (to form the correct disulfide bond), on
the other hand, resulted in 89% tetramer and 11% dimer, and
89% tetramer, 5% dimer, and 6% monomer for TsRTA_G205C
and AtRTA_G207C, respectively (Figure S12). The presence
of a disulfide bond bridging two subunits was confirmed by
MALDI-TOF MS (Figure S13). For AtRTA_G207C, a 65%
increase in activity was observed following β-mercaptoethanol
pre-treatment. This matches the increase in the relative amount
of dimer and tetramer from 57 to 94%. Thus, the increase in
activity is due to the inactive monomer being converted into
the active dimeric and tetrameric forms. For TsRTA_G205C,
no such increase was observed implying that both the dimeric
and tetrameric forms have similar activities. Both enzymes,
displayed only marginally lower specific activities over their
respective wild-type forms (1.8 and 2.7 U/mg vs. 2.5 and 3
U/mg for TsRTA_G205C and AtRTA_G207C, respectively) due
to a decreased kcat . Inhibition from pyruvate was no longer
detectable. The equivalent G207C mutation in AtRTA largely
had the same effect, but, in addition, it increased the Km

of RMBA, lowering the catalytic efficiency further. Any effect
on substrate inhibition was less pronounced and statistically
insignificant (Table 1).
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A B

C D

FIGURE 3 | (A) The monomer (chain B) of TsRTA in the context of the overall quaternary structure. The two sub-domains are colored orange and pink. The co-factor

PLP (attached to K178) is shown as sticks. (B) The tetramer of TsRTA obtained by applying the symmetry operation (-x, y, -z) to the asymmetric unit dimer. (C)

superimposition of the crystallographic tetramers of TsRTA (pink), AtRTA (4ce5, wheat), ATA-117-Rd11 (pale green), N. haematococca RTA (4cmd, blue-white), and A.

fumigatus RTA (4uug, pale yellow). (D) Zoom view of the two disulfide bridges (C215) that extend across the dimer-dimer interface of 5fr9 (lighter colors) and the

equivalent glycine residues (G205) of TsRTA (darker colors). This figure was generated with open source PyMOL 2.1.0.

The slow formation of the quaternary structure provided an
opportunity to probe the thermostability of TsRTA_G205C and
AtRTA_G207Cwith different proportions of the tetrameric form.
Both mutants showed increased thermostability compared to
the corresponding wild-type. However, the enzyme samples with
a lower proportion of tetramer (In this case, TsRTA_G205C:
75% tetramer, AtRTA_G207C: 55% tetramer) showed a drop
in activity within 30min, followed by a more stable profile.
Samples with 90% tetramer showed a much less pronounced
activity loss (Figure 1). All samples showed a very similar profile,
offset by the initial drop, thus supporting that the tetramer,
stabilized by disulfide bonds, has improved thermostability over
the dimer. TsRTA_G205C showed higher thermostability than
AtRTA_G207C, and the switch in thermostability observed for
the wild-type enzymes between 40◦C and 45◦C was absent in
case of the mutants. The temperature optimum was shifted for
TsRTA_G205C showing considerable activity at 60◦C and 65◦C
but not for AtRTA_G207C which followed a similar profile to the
wild-type (Figure 2).

These data suggest two different mechanisms by which these
enzymes may lose their activity at elevated temperatures. The
first, proceeding via dissociation of the tetramer followed by
unfolding of the dimer, and the second being the direct unfolding
of the tetramer. The first mechanism presumably is eliminated by
the disulfide bond and it implies that TsRTA is inherently more
stable toward the second mechanism. This could explain why, at
40◦C, wild-type TsRTA is more stable than AtRTA. Yet, at 45◦C,
TsRTA might more rapidly dissociate into the dimeric form than
AtRTA, thus being less stable at higher temperatures (a weaker
dimer-dimer interaction is consistent with the higher proportion
of dimer observed for TsRTA at equilibrium).

Substrate Scope
To further characterize the newly identified TsRTA, the scope
toward carbonyl substrates was examined (Table 2). Aldehydes
such as benzaldehyde, cinnamaldehyde, and vanillin were
accepted, but only traces of conversion were observed with
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TABLE 2 | Carbonyl substrate scope (10mM scale) of wild-type TsRTA, unless stated otherwisea.

Substrate Conversion (%) Product ee (%)

After 30 min After 24 h

Benzaldehyde 79 ± 1 89 ± 2

Phenylacetaldehyde 1.5 ± 0.8 2.5 ± 0.8

Cinnamaldehyde 38 ± 1 60 ± 1

Vanillin 16 ± 1

12 ± 1d
72 ± 3

93 ± 3d

Butanone <0.5 12 ± 1 >99.5 (R)

Hexan-2-oneb 30 ± 1

30 ± 1d
57 ± 1

70 ± 2d
>99.5 (R)

Pinacolone <0.5 1.8 ± 0.8 n.d.

2,2-Dimethylhexan-3-one <0.5 <0.5 n.d.

Cyclohexanone <0.5 7.7 ± 0.7

Tetrahydrothiophene-3-oneb 5.5 ± 0.7 32 ± 1 21 ± 1 (R)

Tetrahydrofuran-3-oneb 1.0 ± 0.8 25 ± 1 22 ± 1 (S)

(Continued)
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TABLE 2 | Continued

Substrate Conversion (%) Product ee (%)

After 30 min After 24 h

Pyruvate 75 ± 1 95 ± 1 n.d.

β-Hydroxy-pyruvate 52 ± 1 46 ± 1 >99.5 (R)

α-Ketoglutarate <0.5 <0.5 n.d.

Acetophenoneb,c <0.5 4 ± 3 traces (R)

o-Fluoroacetophenoneb 34 ± 1

35 ± 2d
70 ± 1

80 ± 3d
>99.5 (R)

1-Indanoneb 1.8 ± 0.8 3.6 ± 0.8 traces (R)

Propiophenoneb <0.5 1.2 ± 0.8 traces (R)

Phenoxyacetoneb 65 ± 1

50 ± 1d,e
81 ± 4

95 ± 1d,e
>99.5 (R)

4-Phenylbutanoneb 17 ± 1

13 ± 1d
51 ± 3

75 ± 1d
>99.5 (R)

aUnless otherwise stated, for the carbonyl acceptor scope, 10mM RMBA was used as the amine donor. Conversions are based on the formation of acetophenone as determined by

HPLC and calculated from a calibration curve. All reactions were carried out in triplicate. Standard errors include the SE of the calibration curve (Ellison and Williams, 2012; Theodorou

et al., 2012). Any conversion <1% may be due to the exchange of PMP for PLP following the first half reaction with RMBA. Enantiomeric excesses were determined after 24 h by chiral

GC-FID or chiral RP-HPLC (butanone, tetrahydrofuran-3-one, β-hydroxy-pyruvate).
b10% (v/v) DMSO.
c50 mM isopropylamine.
dTsRTA_G205C.
e0.1 mg/mL enzyme.

“<0.5” = calculated conversion smaller than uncertainty from calibration curve. “n.d.” = no product detected.

phenylacetaldehyde. Pyruvate was an excellent substrate. α-
Ketoglutarate, the natural ketone acceptor for branched-chain
aminotransferases (Höhne et al., 2010), was not a substrate,
as well as the bulky 2,2-dimethylhexan-3-one. However,
traces of conversion were observed when the propyl group
was shortened to a methyl group. Butanone gave low levels
of conversion. Extending the chain-length to hexan-2-one
increased conversion. In both cases only the (R)-enantiomer was
detected, showing excellent discrimination between the methyl

and ethyl group in butanone in particular. Cyclohexanone on
the other hand gave only low conversions. The heterocyclic
ketones tetrahydrofuran-3-one and tetrahydrothiophene-3-one
gave higher conversions, yet poor enantioselectivity. While
the expected (R)-3-aminotetrahydrothiophene was produced,
(S)-3-aminotetrahydrofuran was preferred, in both cases with
ca. 20% ee. This is most likely due to different electronic
interactions of the negatively polarized oxygen compared to
the more neutral and bulkier sulfur atom. Coincidentally, this
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TABLE 3 | Amine substrate scope (10mM scale) of wild-type TsRTAa.

Substrate Conversion (%)

after

30min

after 24 h

(R)-Methylbenzylamined 75 ± 1 96 ± 1

(S)-Methylbenzylamineb <0.5 <0.5

(±)-Methylbenzylaminebc 82 ± 3 94 ± 1

L-Alanine n.d. n.d.

D-Alanine 29 ± 4 30 ± 4

(±)-Alaninec 30 ± 4 31 ± 4

β-Alanine 6 ± 5 12 ± 4

Isopropylamine 28 ± 4 88 ± 4

Cadaverine 23 ± 4 44 ± 3

o-Xylylenediamine n.d. 7 ± 5

p-Nitrophenethylamine 23 ± 4 53 ± 6

aUnless otherwise stated, 10mM benzaldehyde was used as the carbonyl acceptor.

Conversions are based on the formation of either acetophenone or benzylamine, as

determined by HPLC and calculated from a calibration curve. All reactions were carried out

in triplicate. Standard errors include the SE of the calibration curve. (Ellison and Williams,

2012; Theodorou et al., 2012).
b10 mM pyruvate.
c20Mm.

“<0.5” = calculated conversion smaller than uncertainty from calibration curve. “n.d.” =

no product detected.

revealed that the enantiomer produced by the Halomonas
elongata STA had been mis-assigned as (S) (Planchestainer
et al., 2019), and it is the unexpected (R)-enantiomer that
is produced preferentially in that case. β-Hydroxy-pyruvate
reached its final conversion of ca. 50% after just 30min, probably
due to thermodynamic limitations. Acetophenone (with 5 eq.
of isopropylamine) gave only traces of conversion, similarly
to 1-indanone and propiophenone. o-Fluoroacetophenone
and phenoxyacetone gave good conversions. Substituting the
oxygen of the latter with a methylene (4-phenylbutanone)
resulted in moderate conversion. In all cases only the (R)-
enantiomer was detected. To verify that TsRTA_G205C
has a similar substrate scope, biotransformations with 5
representative substrates which showed lower conversions
with the wild-type, were carried out with the mutant
variant: vanillin, hexan-2-one, o-fluoroacetophenone, 4-
phenylbutanone, and phenoxyacetone. In all cases higher
conversions were achieved after 24 h, while conversions after
30min remained similar to the wild-type. This indicates that
the higher resting stability of TsRTA_G205C also translates
into improved operational stability, increasing the number of
turnovers of the mutant. As expected, the mutant maintained
excellent enantioselectivity.

TsRTA accepts the commonly used amine donors RMBA,
IPA, and D-alanine (D-Ala), with the other enantiomers of
MBA and Ala not being accepted. As no pyruvate removal
or recycling system was used, the final conversion with D-Ala
and benzaldehyde was only 30%, however this was reached
within 30min. Only low conversion was obtained with β-Ala,
and only traces with o-xylylenediamine (Green et al., 2014).
However, p-nitrophenethylamine (Baud et al., 2015) was readily
accepted, making TsRTA suitable for colourimetric screening
during directed evolution (Planchestainer et al., 2019), as was
the “smart” amine donor cadaverine (Gomm et al., 2016)
(Table 3).

To further investigate the benefit of the increased
thermostability of TsRTA_G205C, the intensification of
biotransformations with phenoxyacetone with one equivalent
of RMBA as the amino donor were investigated for RMBA
concentration of 10 to 300mM (incomplete dissolution
of phenoxyacetone for 100mM and higher), employing a
catalyst loading of 0.025 mol%. Both variants showed similar
performance at the 10mM scale, but the wild-type exhibited
a faster drop in conversion at increasing scales, reaching 13%
conversion at 300mM vs. 31% for TsRTA_G205C (Figure 4). In
addition, the wild-type reached its final conversion within 30min
for concentrations of 50mM and higher, while TsRTA_G205C
showed increased conversions after 30min even at the 300
mM scale.

CONCLUSION

The predominant tetrameric composition in solution of two
RTAs, TsRTA and its homologAtRTA, has been discovered. Upon
comparisons made between the crystal structure of TsRTA and
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FIGURE 4 | Intensification of biotransformations employing equimolar

amounts of RMBA and phenoxyacetone, at 37◦C. Reactions contained 0.025

mol% of transaminase, PLP (0.1mM), DMSO (10% v/v for 10–200mM, 15%

for 300mM), and KPi buffer (50mM, pH 8). Samples were taken after 30min

and 24 h. Conversions are based on the formation of phenoxypropan-2-amine

as determined by HPLC and calculated from a calibration curve. All reactions

were carried out in triplicate. Error bars represent standard errors and include

the SE of the calibration curve (Ellison and Williams, 2012; Theodorou et al.,

2012).

the crystal structures of RTAs deposited in the PDB, a likely
interface for the dimer-dimer interaction was also identified.
This interface was then probed by introducing a cysteine residue
mimicking ATA-117-Rd11, which stabilized both RTAs and thus
rationalized the role of this mutation in the directed evolution of
ATA-117-Rd11. This dimer-dimer interaction was observed in all
but one deposited crystal structure of RTAs, although the position
of the equilibrium between the dimeric and tetrameric forms in
solution is not known in most cases. SEC studies of the RTA from
Nectria haematococca have been reported to be consistent with
a dimeric form (Sayer et al., 2014). While the wild-type TsRTA
was only marginally more stable than AtRTA, this difference was
significantly amplified in the mutant variants. Thus, we propose
that two mechanisms, one where tetramer dissociation precedes
unfolding and one where unfolding occurs in the tetramer state,
might play a role in the inactivation of these RTAs. Clearly,
the full inactivation kinetics of both enzymes would need to
be studied in detail and in particular the relative kinetic and
thermodynamic stability (Bommarius and Paye, 2013) of the
tetrameric and dimeric forms for the wild-type enzymes should
be elucidated.

The full understanding of the quaternary structure of
RTAs is particularly important with regard to rational
approaches to enzyme engineering. The stabilization of the
tetrameric form of RTAs through the mutation described
herein, which could not have been predicted from a dimeric
model, appears to be a promising strategy to stabilize RTAs
(the residue mutated herein being present in all reported
RTA structures). Additional mutations stabilizing this
interface may also be possible, creating more stable and
therefore more evolvable (Bloom et al., 2006) and industrially
useful catalysts.
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