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Sequencing-based identification of tumor tissue-of-origin (TOO) is critical for patients
with cancer of unknown primary lesions. Even if the TOO of a tumor can be diagnosed
by clinicopathological observation, reevaluations by computational methods can help
avoid misdiagnosis. In this study, we developed a neural network (NN) framework
using the expression of a 150-gene panel to infer the tumor TOO for 15 common
solid tumor cancer types, including lung, breast, liver, colorectal, gastroesophageal,
ovarian, cervical, endometrial, pancreatic, bladder, head and neck, thyroid, prostate,
kidney, and brain cancers. To begin with, we downloaded the RNA-Seq data of 7,460
primary tumor samples across the above mentioned 15 cancer types, with each type of
cancer having between 142 and 1,052 samples, from the cancer genome atlas. Then,
we performed feature selection by the Pearson correlation method and performed a
150-gene panel analysis; the genes were significantly enriched in the GO:2001242
Regulation of intrinsic apoptotic signaling pathway and the GO:0009755 Hormone-
mediated signaling pathway and other similar functions. Next, we developed a novel
NN model using the 150 genes to predict tumor TOO for the 15 cancer types. The
average prediction sensitivity and precision of the framework are 93.36 and 94.07%,
respectively, for the 7,460 tumor samples based on the 10-fold cross-validation;
however, the prediction sensitivity and precision for a few specific cancers, like prostate
cancer, reached 100%. We also tested the trained model on a 20-sample independent
dataset with metastatic tumor, and achieved an 80% accuracy. In summary, we
present here a highly accurate method to infer tumor TOO, which has potential clinical
implementation.

Keywords: cancer of unknown primary, tissue-of-origin, neural network, RNA sequencing, the Pearson
correlation
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INTRODUCTION

Worldwide, almost one in three cancer patients is clinically
diagnosed with distant metastases. In most cases, primary
and metastatic lesions are identified simultaneously; however,
some primary tumors cannot be found after systematic
clinicopathological diagnosis (Tomuleasa et al., 2017). Cases
with cancer of unknown primary (CUP) lesions account for
approximately 3–5% of all newly diagnosed cancers (Richardson
et al., 2015); due to its poor prognosis, CUP is the fourth-
highest cause of cancer-related deaths around the world (Pavlidis
and Fizazi, 2005; Kamposioras et al., 2013). Cancer of unknown
primary patients are generally treated with non-selective
empirical chemotherapy, which leads to a very low short-term
survival rate (Kurahashi et al., 2013). Thus, identifying the
primary site is critical for improving long-term survival in
CUP patients, especially when considering cancer-type specific
targeted therapy (Hudis, 2007; Varadhachary et al., 2008;
Hyphantis et al., 2013).

To identify the primary lesion of CUP, a systematic assessment
is performed which consists of physical examination, patient-
history analysis, serum markers, radiological imaging; as well as
immunohistochemical analysis. Immunohistochemical markers
are very important for determining tissue-of-origin (TOO;
MacReady, 2010; Molina et al., 2012; Oien and Dennis, 2012;
Pavlidis and Pentheroudakis, 2012); however, the expressed
markers may be non-specific sometimes (Handorf et al., 2013;
Montezuma et al., 2013; Tothill et al., 2013). Recently, studies
have shown that cellular-origin signatures, which are sufficiently
retained in primary tissue, persist after primary cancer cells
undergo dedifferentiation and colonization in different tissue
types (Ma et al., 2005; Tothill et al., 2005). Molecular profiling
is a promising technique that can improve primary-site diagnosis
in CUP patients (Ma et al., 2005; Lazaridis et al., 2008; Meiri et al.,
2012); it is based on expression microarrays and the quantitative
real-time polymerase chain reaction (qRT-PCR) experimental
platform (Ma et al., 2005; Lazaridis et al., 2008; Greco et al., 2012;
Meiri et al., 2012).

In recent years, cancer classification based on gene expression
data such as RT-PCR has attracted great interest and has
been implemented in different studies (Lapointe et al., 2004;
Mramor et al., 2007; Liu et al., 2008). Single studies are
prone to laboratory-specific bias; they are usually limited
to a relatively small number of samples and fail to yield
novel markers for clinical application. However, applying Next
Generation Sequencing (NGS) technology helps alleviate the
issue of batch effect by providing gene expression data sets
from multiple studies; thus, the integrative analysis of such
data can be considered a source of cancer classification. In
this regard, establishing a robust classification model is a
challenging task; bioinformatics feature selection techniques for
establishing such models have been introduced in a previous
review (Saeys et al., 2007).

Support vector machines (SVMs) based on the recursive
feature elimination (RFE) algorithm represent embedded
methods used for feature selection and classification modeling
based on microarray gene expression data, which mined

11,925 genes to 154 genes with definite biological significance
(Xu et al., 2016). More than 20,000 genes were generated
from NGS RNA-Seq data in other studies (Bhowmick
et al., 2019); this number is almost twice as much as that
from microarray gene expression data. Hence, RNA-Seq
data from nine cancer types (lung, liver, colon, thyroid,
prostate, bladder, kidney, brain, and skin) were analyzed
with different algorithms, and Artificial Bee Colony (ABC)
yielded better results than Ant Colony Optimization,
Differential Evolution, and Particle Swarm Optimization.
Among different cancer types, lower grade brain glioma had
the highest accuracy (99.1%) based on the ABC algorithm
(Bhowmick et al., 2019). However, the robustness of feature
selection and classification modeling methods still needs to be
comprehensively evaluated; different algorithms might result
in different results depending on their model (Chopra et al.,
2010; Bhowmick et al., 2019). Therefore, it is necessary to
design a robust classification algorithm based on NGS data that
can yield accurate cancer type classification and supplement
clinical examination.

In the present study, genome-wide gene expression profiles
were established based on comprehensive RNA-Seq data. The
gene expression data of ∼8,000 tumor samples were used
to identify gene signatures for 15 common human cancer
types (lung, breast, liver, colorectal, gastroesophageal, ovarian,
cervical, endometrial, pancreatic, bladder, head and neck,
thyroid, prostate, kidney, and brain). To screen gene features
and evaluate cancer classifiers, the Pearson correlation Neural
Network (NN) algorithm was implemented in this study to
identify tumor origins.

MATERIALS AND METHODS

RNA-Seq Datasets
NGS-based gene expression profiling data of 7,480 tumor samples
were collected from The Cancer Genome Atlas (TCGA, release
version v26),1 and the tissue origins of those samples were
confirmed through histopathological analysis. The downloaded
data offered RNA-seq data of 21 cancer types that belongs
to projects from United States, which is sequenced using
the same protocols. Among them, melanoma had a distinct
distribution from other cancer types (80 samples were sampled
from primary tumor and 352 were sampled from metastatic
tumor) and was excluded. Thus, the expression profiles
of 15 common cancer types (lung, breast, liver, colorectal,
gastroesophageal, ovarian, cervical, endometrial, pancreatic,
bladder, head and neck, thyroid, prostate, kidney, and brain)
were studied in this work. The normalized expression value
of expression data was downloaded from TCGA and provided
the expression levels of 20,501 unique genes for the 15
chosen cancer types.

To perform the bioinformatics analysis in this study, the
transcript level of genes was normalized again to form a matrix
with rows of sample numbers and columns of gene numbers.

1https://dcc.icgc.org/releases/release_26

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 August 2020 | Volume 8 | Article 737

https://dcc.icgc.org/releases/release_26
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00737 August 4, 2020 Time: 15:18 # 3

He et al. DNN-Based Inference of Cancer Tissue-of-Origin

The normalization was done by dividing the sum of the gene
expression value of each sample. Normalized gene expression
data were extracted and represented as a matrix with ‘m’ rows
and ‘n’ columns, such that ‘m’ represented 7,480 tumor samples
and ‘n’ represented the expression levels of 20,501 unique genes.

For log transformation, we used log2 to transform the original
dataset after replacing zeros to global minimum × 0.1. No
normalizations were done after feature selection.

Among all the samples, 7,460 samples were sampled from
primary tumors, remaining 20 samples sampled from the
metastatic tumors.

Gene Feature Identification
To identify an optimal gene signature, we introduced a strategy
of feature selection and multi-class classification modeling in this

study. According to the mechanism of feature selection, the sets of
genes were screened by the Pearson Correlation algorithm (Hall,
1998; Saeys et al., 2007). This study consisted of the following
steps: (i) create an array to binarize rows for each cancer type (C
columns) for the m tumor samples, labeling the sample as “true”
if the sample belongs to the cancer type, otherwise the sample was
labeled as “False,” where C is the total cancer types and m is the
sample number; (ii) calculate the correlation of gene expression
level with samples labeled “true” for each cancer type, then sort
in decreasing order according to their correlation; (iii) take the
most important signatures, appeared top N of the list, for each
cancer type, where N is an integer; and (iv) combine C lists of the
top N genes and remove the redundant genes, generating a gene
set. Gene expression values from the gene set will be extracted
for further usage.

FIGURE 1 | Workflow of gene-feature identification and performance assessment.
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Feature Performance Assessment
We used a NN (Hinton, 1989) to train the classification model.
The gene expression values were used as input signatures for the
NN. The NN was designed with three layers, in which the input
layer has N units, the hidden layer has 50 units, and output layer
has 15 units corresponding to each cancer where N is the gene
number of the input matrix. The output layer of the NN was used
as the input for the Softmax function to obtain the probabilities
for each cancer type. To prevent overfitting, L2 penalty was
set to 0.0001. For comparison, we used logistic regression as a
baseline method. The parameter C was set to 10,000 for logistic
regression. The algorithms were implemented using scikit-learn
package (Pedregosa et al., 2011).

Gene Ontology Analysis
To perform the Gene ontology (GO) analysis of the identified
gene features, GO consortium (Ashburner et al., 2000) was
used. The enrichment result was generated by clusterProfiler,
which performs a hyper geometric test between the tested genes
and gene sets in GO terms (Yu et al., 2012). The biological
significances of the selected genes were examined by GO
enrichment analysis to identify the most enriched biological-
process terms. Benjamini–Hochberg was used to adjust the
p value.

RESULTS

Collection of Gene Expression Datasets
of Common Human Cancer Types
The main objective in this study is to identify putative
gene biomarkers to classify cancer type. The workflow of
the present study is shown in Figure 1. For this analysis,
the TCGA was used to obtain gene expression profiles of
15 common solid tumor cancer types via NGS-based RNA-
Seq, including lung, gastroesophageal, colorectal, liver, breast,
thyroid, cervical, brain, pancreatic, ovarian, endometrial, bladder,
kidney, head and neck, and prostate. In total, the expression
data of 7,480 tumor samples were collected. Among those,
the gene expression profiles of lung adenocarcinoma and
lung squamous cell carcinoma samples were merged into
lung cancer; those of colon adenocarcinoma and rectum
adenocarcinoma were merged into colorectal cancer; those of
kidney renal clear cell carcinoma and kidney renal papillary
cell carcinoma were merged into kidney cancer; and those of
glioblastoma multiforme and lower grade glioma were merged
into brain cancer.

Around 20 of the 7,480 samples were sampled from metastatic
tumors, whereas 7,460 were sampled from primary tumors. Thus,
we split the dataset into the 7,460-sample training dataset and the
20-sample test dataset according to the sampling tumor type. All
cancer types in the training dataset had more than 100 samples;
the largest sample size was that of breast cancer (1,056 samples),
whereas, the smallest sample size was that of pancreatic cancer
(142 samples). Table 1 summarizes the datasets and provides
information on the tumor samples.

TABLE 1 | Summary of samples used in the experiments.

Sampling
site

Cancer type Code Sample
size

Percentage
(%)

Primary Lung LUAD + LUSC 914 12.25

Gastroesophageal STAD 415 5.56

Colorectal COAD + READ 604 8.10

Liver LIHC 294 3.94

Breast BRCA 1056 14.16

Thyroid THCA 500 6.70

Cervical CESC 258 3.46

Brain GBM + LGG 529 7.94

Pancreatic PAAD 142 1.90

Ovary OV 261 3.50

Endometrial UCEC 516 6.92

Bladder BLCA 301 4.03

Kidney KIRC + KIRP 748 10.03

Head and Neck HNSC 480 6.43

Prostate PRAD 379 5.08

Total for primary tumors 7,460 100

Metastatic Breast BRCA 7 35.00

Cervical CESC 2 10.00

Colorectal COAD + READ 1 5.00

Head and Neck HNSC 2 10.00

Thyroid THCA 8 40.00

Total for metastatic tumors 20 100

Hundred and Fifty as a Feature Number
Works Well With the Neural Network
A classification modeling database of 15 common cancer types
was established based on the expression data of 20,501 unique
genes obtained from TCGA. However, having a large number
of samples per cancer type might result in variations due to
intra-tumor heterogeneity; hence, it is critical to identify the
gene expression features from high-dimension datasets. Pearson
correlation-based feature selection represents a multivariable
filter method for high-dimension data analysis (Hall, 1998;
Saeys et al., 2007), which is fast in operation and simple in
complex computation; they are used to assess the correlation
between cancer type and corresponding gene-expression features.
Here, we used Pearson correlation to select the gene-expression
signature from NGS-based mRNA expression data for each
cancer type. In this study, we used integers from 1 to 20
as candidates for gene number for each cancer type, which
might give rise to 20 possible gene sets of 15, 30, . . ., 300
with a step of 15.

The regression model is an important mathematical model
for classification. NNs, as types of deep learning algorithms,
are advanced techniques that can analyze complex and high-
dimensional data. NNs have been applied in protein classification
(Asgari and Mofrad, 2015) and anomaly classification (Suk and
Shen, 2013; Plis et al., 2014; Hua et al., 2015). Here, we used
NNs as the classification model to assess the performance of
different numbers of features. The gene expressions levels were
the input layer for the NN; 15 cancer types were the output layer
obtained from NNs.
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Usually, 10-fold cross-validation is used for minimizing the
over-fitting issues and obtaining good performance. Hence, to
avoid overfitting of the NN algorithm, we ran a 10-fold cross-
validation 10 times using the 7,460-sample training dataset to
obtain relatively stable and reliable results, possibly minimizing
the percentage of false positives and false negatives. The 10-fold
cross validation was performed as follows. (a) Split the whole
training dataset into 10 disjoint parts randomly. (b) Use 9 parts
as the training set (9/10 training set). (c) Choose N genes using
Pearson correlation from the 9/10 training set, where N is the
gene number which might be 15, 30, . . ., 300 with a step of
15. (d) Train a model using the selected genes using the 9/10
training set. (e) Use the remaining one part as test set as the
validation set of the previously trained model. (f) Repeat b–e 10

times with each part being the test set, until all the samples are
predicted once. Finally, (g) merge the results from the test parts
and evaluate the metrics.

The cross validation was done using different gene number
and the accuracies from each 10-fold cross validation are plotted.
For comparison, we also used logistic regression as a baseline
model (Figure 2). We achieved a good accuracy when the selected
gene number is 150. Though a better accuracy could be achieved
using the 200 or more as the feature number, the growth curve
of number-accuracy is slowing down. The 150 could be seen
as a turning point for this curve. Thus, we finally chose the
number 150 as the feature number. The results was calculated
by averaging the results of 10 times of 10-fold cross validations
and showed that the overall accuracy of each cancer type was

FIGURE 2 | The cross validation accuracy of different gene numbers using neural network (A) and logistic regression (B).
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TABLE 2 | Sensitivity and precision assessment for each cancer type.

Sensitivity (%) Precision (%)

Lung 91.87 92.76

Gastroesophageal 94.89 96.33

Colorectal 98.06 96.88

Liver 97.99 98.80

Breast 98.43 97.98

Thyroid 99.38 99.58

Cervical 71.63 76.38

Brain 99.32 99.41

Pancreatic 91.76 94.63

Ovarian 97.55 97.15

Endometrial 95.54 94.85

Bladder 74.75 88.36

Kidney 98.42 98.54

Head and Neck 90.83 79.39

Prostate 100.00 100.00

Average 93.36 94.07

94.87% using 150 as the feature number; the sensitivity was
on average 93.36%, while the precision was on average 94.07%,
corresponding to the actual numbers of cancer samples (Table 2).
Among the 15 cancer types, the classifier sensitivity of 13 cancer
types (lung, breast, liver, colorectal, gastroesophageal, ovarian,
endometrial, pancreatic, head and neck, thyroid, prostate, kidney,
and brain) was more than 90%, with that of prostate cancer
having the highest sensitivity (100%). On the contrary, the
remaining two cancer types had a sensitivity of <90% (74.75%
for bladder cancer and 71.63% for cervical cancer) (Figure 3
and Table 2).

We also attempted to use the log-transformed data for in
the cross validation since log-transformation was a common
transformation for gene expression profile. For a reasonable

comparison, we selected 10 genes for each cancer in each fold
of cross validation. However, the overall accuracy by 10 times of
10-fold cross validations only reached 80.90% (Supplementary
Table S1), which is not satisfactory. In contrast, the data by the
previously described transformation method output the result of
94.87%, showing more optimization shall be done for a better
result using the log-transformed data.

The Identified Genes Were Enriched in
Several Organ-Specific Pathways
A 150-gene set was identified using the whole training dataset
for subsequent processing (Table 3). To understand how
frequently those genes will show up in the cross validation
phase, we counted the genes in all the 100 gene sets used
in the cross validation and found that 117 genes out of
the 150 gene showed up in all gene sets validation, showing
the robustness of the feature selection method based on
Pearson correlation (Supplementary Table S2). To investigate
the biological processes of the involved signature genes, GO
enrichment analysis was performed. We saw that the most
functionally enriched processes related to our 150-gene panel by
GO analysis were biological processes (Figure 4 and Table 4).
Among those, GO:0048568 Embryonic organ development,
GO:0061458 Reproductive system development, GO:0007389
Pattern specification process, GO:0043062 Extracellular structure
organization, GO:0002009 Morphogenesis of an epithelium, and
GO:0048732 Gland development were related to tissue or organ
morphogenesis. Our signature genes were involved in these
biological processes and might be useful for classifying distinct
cancer types. Hence, the enrichment analysis in the present study
might provide a basis to improve our understanding of lung,
gastroesophageal, colorectal, liver, breast, thyroid, cervical, brain,
pancreatic, ovarian, endometrial, bladder, kidney, head and neck,
and prostate cancers.

FIGURE 3 | Prediction of cancer type by confusion matrix analysis. The confusion matrix is from one 10-fold cross validation and displayed the relationship between
reference diagnosis and the predicted cancer type. The first column represents reference diagnoses; the predicted cancer types by transcript levels of the 150 genes
are shown across the top row.
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The Trained Neural Network Showed
High Accuracy on Independent
Metastatic Tumor Dataset
We further sought to validate our model on the 20-sample
metastatic dataset as a test set. We trained the NN model and
the logistic regression model on the whole training dataset using
the 150-gene set, which was then used for predicting the test set.
The prediction accuracy of NNs was 80%, while the prediction
accuracy of the logistic regression model was 70%. The detailed
predictions are shown in Table 5.

DISCUSSION

Inferring cancer TOO is important for CUP patients and might
serve well for minimizing misdiagnosis, even if the cancer origin
is diagnosed by pathological observation. Hence, it is critical
to develop a method to classify TOO of common cancer types.
This study was possible because of the great advancements in
NGS technologies and the general application of NGS in clinical
experiments, along with the efforts made by researchers who
have contributed to the TCGA, from where huge gene expression
datasets can be obtained. In the present study, we utilized the
NN method to comprehensively analyze high-dimensional RNA-
Seq datasets of 15 common cancer types. The 150-gene panel of
cancer classifiers demonstrated an average accuracy of 94.87%,
corresponding to the actual numbers of cancer samples.

Several hallmarked studies indicated that the cellular origin
signatures that are expressed in primary tissue are sufficiently
retained even after primary cancer cells undergo dedifferentiation
and colonization in different tissue types (Ma et al., 2005;
Tothill et al., 2005). A recent study compared four different
algorithms and indicated that the modeling performance differed
between these algorithms when analyzing RNA-Seq data from
4,127 primary tumor tissue samples related to nine cancer types
(Bhowmick et al., 2019). Among those, ABC yielded the best
results; it had an average precision of 91.16% and an average
sensitivity of 96.5% for nine cancer types (Bhowmick et al., 2019).
However, our study demonstrated an average precision of 94.07%
and an average sensitivity of 93.36%, corresponding to 7,460
cancer samples related to 15 common cancer types. Although the
average sensitivity from our study was a bit lower than that of
ABC algorithm, we managed to dramatically minimize the false-
positive rate to 0.34% (Table 2). Moreover, the overall accuracy
with an average of 94.87% is higher than that of other gene
expression-based signatures, which ranged from 79–91% (Ma
et al., 2005; Monzon et al., 2009; Kerr et al., 2012). Furthermore,
the performance of the 150-gene panel was higher than that of
the immunohistochemistry technique (75%), which represents
the current clinical practice standard, as tested by a 10-antibody
panel (Park et al., 2007).

In the present study, GO analysis revealed several over-
represented biological processes related to tissue morphogenesis,
such as embryonic organ development, reproductive system
development, pattern specification process/regionalization,
extracellular structure organization, epithelial morphogenesis,
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FIGURE 4 | The most represented biological processes associated with our signature genes. Dot plot displaying the number of signature genes involved in each
biological process, determined by enrichment analysis. Dot size represents the number of genes, and dot color represents p-value; a lower p-value represents a
higher probability of a biological process being enriched with the signature genes.

and glandular development (Figure 4 and Table 4). Additionally,
the expression patterns of several signature genes of the 150-
gene panel were previously reported to be related to tissues of
specific tumor types. For example, GRHL3 (Grainyhead-Like
Transcription Factor 3) encodes a cancer suppressor that is
a member of the grainyhead-like transcription factor family
(Darido et al., 2011). The downregulated GRHL3 gene was
associated with head and neck squamous cell carcinomas (Frisch
et al., 2018); overexpression of the oncogenic mir21 was as
result of decreased GRHL3 (Bhandari et al., 2013). In addition,
KLKs (Kallikrein-Related Peptidases) are genes that encode serine
proteases that exhibit a deregulated expression in prostate cancer.
In our study, KLK2, KLK3, and KLK4 were identified as gene
signatures for prostate cancer; KLK3 is a prostate-specific antigen
that is a gold-standard clinical biomarker widely employed in
the diagnosis and monitoring of prostate cancer (Fuhrman-Luck
et al., 2014); KLK2 showed promise as prostate cancer biomarker,
as well. Additionally, the deregulated expression of KLKs has
been utilized in designing novel therapeutic targets for prostate
cancer (Fuhrman-Luck et al., 2014).

GATA DNA-binding proteins, commonly abbreviated as
GATAs, are zinc-finger binding transcription factors that regulate
tissue differentiation and specification (Chou et al., 2010;
Zheng and Blobel, 2010). In our study, GATA3 and GATA6
transcripts were identified as gene signatures for breast cancer
and gastroesophageal cancer, respectively. Previous studies have
indicated that GATA3 was weakly expressed in a wide variety
of normal tissues, while its expression was remarkably elevated
in breast cancer (Yang and Nonaka, 2010; Liu et al., 2012);
moreover, GATA3 has been identified as a novel clinical
marker for detecting primary and metastatic breast cancer

(Cimino-Mathews et al., 2013; Krings et al., 2014; Shield et al.,
2014; Braxton et al., 2015; Sangoi et al., 2016; Yang et al.,
2017). GATA6 was initially cloned from rat gastric tissue,
designated as GATA-GT1 (Tamura et al., 1994); however, recent
studies have indicated that GATA6 was frequently overexpressed
and/or amplified in human gastroesophageal cancer (Sulahian
et al., 2014; Chia et al., 2015; Song et al., 2018). There’s some
limitations about our studies. First, we assessed the model based
on NGS RNA-Seq data from the formalin-fixed and paraffin-
embedded materials, but not fresh materials. We did not evaluate
it in fresh materials mainly due to the formalin-fixed and
paraffin-embedded materials are most diagnostic materials in
routine practice. Second, some solid tumor cancer types such as
sarcoma was not included due to the unavailability of RNAseq
data; besides, the non-solid tumors were currently excluded;
melanoma was also excluded due to the data scarcity and the
distinct distribution of its primary tumor sample number and
metastatic tumor sample number. Thus, further efforts should be
made for a broader application scope. Third, the training dataset
could be further expanded. Since the final gene set contains
some organ development-related genes, we can infer that the
gene set does not only classify cancer types, but also organs.
Staub et al. has already made efforts by expand the training
dataset and achieved a better result (Staub et al., 2009). Thus,
expression profiles from normal tissues could be further added to
our training dataset for a better performance. Another limitation
is that our method is based on the expression value without any
manipulations. Recently, an algorithm called TSP was applied
to this problem, which will generate gene pairs instead of
single gene features, giving rise to a leap to the prediction
accuracy (Shen et al., 2020). We believe that combining the
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TABLE 5 | The performance on metastatic samples of the neural network trained
on the primary samples.

Sample Id predicted_
by_NN

predicted_by
_logistic

true_label

TCGA-AC-A6IX-06A-11R-A32P-07 BRCA BRCA BRCA

TCGA-BH-A18V-06A-11R-A213-07 BRCA BLCA BRCA

TCGA-BH-A1ES-06A-12R-A24H-07 BRCA LIHC BRCA

TCGA-BH-A1FE-06A-11R-A213-07 KIDNEY KIDNEY BRCA

TCGA-E2-A15A-06A-11R-A12D-07 BRCA BRCA BRCA

TCGA-E2-A15E-06A-11R-A12D-07 BRCA BRCA BRCA

TCGA-E2-A15K-06A-11R-A12P-07 BRCA BRCA BRCA

TCGA-HM-A6W2-06A-22R-A33Z-07 UCEC UCEC CESC

TCGA-UC-A7PG-06A-11R-A42S-07 CESC CESC CESC

TCGA-NH-A8F7-06A-31R-A41B-07 COAD +
READ

COADREAD COAD +
READ

TCGA-KU-A6H7-06A-21R-A31N-07 CESC CESC HNSC

TCGA-UF-A71A-06A-11R-A39I-07 LUNG LUNG HNSC

TCGA-DE-A4MD-06A-11R-A250-07 THCA THCA THCA

TCGA-EM-A2CS-06A-11R-A180-07 THCA THCA THCA

TCGA-EM-A2P1-06A-11R-A206-07 THCA THCA THCA

TCGA-EM-A3FQ-06A-11R-A21D-07 THCA THCA THCA

TCGA-EM-A3SU-06A-11R-A22U-07 THCA THCA THCA

TCGA-J8-A3O2-06A-11R-A23N-07 THCA THCA THCA

TCGA-J8-A3YH-06A-11R-A23N-07 THCA THCA THCA

TCGA-J8-A4HW-06A-11R-A250-07 THCA THCA THCA

neural network and the feature generation could further improve
the performance for CUP problems.

CONCLUSION

In the present study, our 150-gene panel exhibited promising
results as a tumor classifier for inferring the origin of tumor
tissue. First, we obtained NGS-based RNA-Seq data for 7,460
tumor samples from TCGA. Second, we built a fine pipeline to
identify gene signatures based on their transcript-levels for 15
common cancer types. Third, we utilized the Neural Network to
evaluate the performance of the genes; on average, the precision
was 94.07%, while the sensitivity was 93.36%. In addition,
GO enrichment analysis revealed several biological processes,
including tissue morphogenesis; notably, most of the gene
signatures were involved in key oncogenic pathways, supporting
our 150-gene panel. Therefore, the 150-gene biomarker signature
in our study might prove to be clinically useful for identifying
cancers of unknown origin and confirming initial clinical
diagnoses. In future studies, we will focus on the application
of this model in metastatic cancer patients, in addition to
patients with cancer of unknown origin, to evaluate their
therapy outcome.
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