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Advanced cancers, such as prostate and breast cancers, commonly metastasize

to bone. In the bone matrix, dendritic osteocytes form a spatial network allowing

communication between osteocytes and the osteoblasts located on the bone surface.

This communication network facilitates coordinated bone remodeling. In the presence of

a cancerousmicroenvironment, the topology of this network changes. In those situations,

osteocytes often appear to be either overdifferentiated (i.e., there are more dendrites than

healthy bone) or underdeveloped (i.e., dendrites do not fully form). In addition to structural

changes, histological sections frommetastatic breast cancer xenograftedmice show that

number of osteocytes per unit area is different between healthy bone and cancerous

bone. We present a stochastic agent-based model for bone formation incorporating

osteoblasts and osteocytes that allows us to probe both network structure and density of

osteocytes in bone. Our model both allows for the simulation of our spatial networkmodel

and analysis of mean-field equations in the form of integro-partial differential equations.

We considered variations of our model to study specific physiological hypotheses related

to osteoblast differentiation; for example predicting how changing biological parameters,

such as rates of bone secretion, rates of cancer formation, and rates of osteoblast

differentiation can allow for qualitatively different network topologies. We then used our

model to explore how commonly applied therapies such as bisphosphonates (e.g.,

zoledronic acid) impact osteocyte network formation.

Keywords: bone, bone formation, network, mathematical model, osteocyte

INTRODUCTION

Advanced cancers commonly metastasize to bone where they often disrupt the normal bone
remodeling process (Roudier et al., 2003; Zhang et al., 2013). With the onset of various types
of bone cancer, it is common for the bone remodeling process to be disrupted. Much previous
work has been focused on macroscopic properties of the resulting bone, e.g., the osteoblastic
(net bone formation) and osteolytic (net bone reduction) phenotypes. As bone is formed and
resorbed cyclically, osteocyte networks can be morphologically malformed. A relatively unexplored
area regarding cancerous bone formation is the study of osteoblast-to-osteocyte differentiation
whilst concurrently taking into account network structure. Understanding the full nature of
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TABLE 1 | Cancer type impact on osteocyte topology.

Cancer type Origin Bone growth Osteocyte topology References

Osteogenic Sarcoma. Mesenchymal cells Mixture Canaliculi upregulated,

Lacunae empty. Stinson, 1975

Osteoma (benign). Unknown Osteoblastic Canaliculi down regulated,

retarded growth. Stinson, 1975

Myeloma Plasma cells / White

blood cells

Primarily osteolytic Osteocyte lacunae

spherical, canaliculi reduced

in number, shorter,

distorted.

Eisenberger et al., 2008

Kristinsson et al., 2011

Metastasis (group A) Lung, Breast, Liver Primarily osteolytic Unknown
Eisenberger et al., 2008

Metastasis (group B) Prostate Primarily osteoblastic Unknown
Logothetis and Lin, 2005

bone formation networks is now becoming extremely important,
especially as osteocyte network structure is suspected to limit
effectiveness of current anti-cancer therapy (Lerebours and
Buenzli, 2016).

Myeloma and (benign) osteoma, osteocytes appear
exceptionally spherical with shorter distorted dendrites that
are reduced in number (Stinson, 1975; Eisenberger et al., 2008).
An experimentally contrasting osteocyte network was observed
with unregulated excessive cancerous growth in the presence of
osteogenic sarcoma (Stinson, 1975). Broadly speaking, osteocytes
within a cancerous microenvironment display either over or
under developed phenotypes (see Table 1 and figures in Stinson,
1975) leading to “more connected” or “less connected” networks.

Perturbations in osteocyte-network organization can impact
both fluid flow and diffusion of metabolites and thereby affect
mechanosenzation and signaling (Knothe Tate et al., 2000; Steck
and Knothe Tate, 2005; Kerschnitzki et al., 2013; Lerebours and
Buenzli, 2016). The exchange of signaling molecules through
the lacuno-canalicular network relate to: skeletal unloading,
and fatigue damage (Jilka et al., 2013). The range of signaling
molecules that have been detected is vast and arise in the
regulation of bone mineralization (Hesse et al., 2015), and many
other organs1. Studies have reported that high-density networks
correlate positively with high bone quality (Kerschnitzki et al.,
2013).

The functional role of these different network topologies
is unclear. Experimental works only reveal a snapshot of
the communication between the osteocytes within bone, and
the osteoblasts on the bone surface. However, one can use
mathematical modeling as a tool for investigation. Marotti et al.
suggested that osteoblasts are incorporated into the osteocyte
network by mature osteocytes extending their dendrites toward
the osteoblast layer (Marotti et al., 1995; Marotti, 2000; Kamioka
et al., 2001; Palumbo et al., 2004; Pazzaglia et al., 2010).
Experimentally, sclerostin has been stained for and observed
within the cancer structures between osteocytes and osteoblasts

1These include Receptor Activator of Nuclear Factor Kappa-B Ligand (RANKL),

Vascular Endothelial Growth Factor (VEGF) (Jilka et al., 2013), Parathyroid

Hormone (PTH) (Xiong et al., 2014), calcium ions (Ca2+) (Ishihara et al., 2012),

and Sclerostin (Sapir-Koren and Livshits, 2014).

(Poole et al., 2005). These studies highlight the important
roleosteocytes play in osteoblast function and differentiation.

Therapeutically, zoledronic acid is frequently used to treat
metastatic breast cancer (BCA) where pathological bone is
formed with lower densities of osteocytes per unit volume;
zoledronate then helps recover the number of osteocytes by
inhibiting osteoclasts—although it is not clear if the network
structure is restored.

In this paper, we have developed a stochastic agent-based
model to investigate how cancer cells regulate osteocyte behavior
and bone formation. We consider osteocyte network formation
building on an earlier model of osteocyte generation (Buenzli,
2015), which did not account for network structure. In said
model, osteocytes are located within a growing domain that
represents the presence of mineralized bone; osteoblasts are
located on the surface of the bone substrate. There are two
constitutive processes: (i) the bone surface moves with a speed
proportional to the surface density of osteoblasts; and (ii)
osteoblasts differentiate into osteocytes. We add to the model by
allowing for extra structure relating to the osteocyte’s canicular
network. We allow for osteocytes to extend dendrites toward the
osteoblast layer to signal osteoblast differentiation (we assume
these processes occur concurrently). Osteoblasts are also allowed
to proliferate and move along the bone surface.

With this model, we aim to link osteocyte density and
network structure to biological quantities such as: the rate
of osteoid secretion; the rate of osteocyte network formation;
and the rate of preosteoblast proliferation. In particular, we
investigate how stimulatory or inhibitory network dependent
signals influence osteoblast-to-osteocyte differentiation and lead
to different osteocyte network properties in newly formed bone.

1. MATERIALS AND METHODS

1.1. Histological Analysis of Osteocyte
Density
Specimens for analysis were derived from mice that were
intratibially inoculated with either saline (Control) or breast
cancer (BCa, PyMT cell line) as described previously under
University of South Florida IACUC approved protocols (R2238
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and R1762-CCL) (Araujo et al., 2014; Tauro et al., 2017). Mice
were harvested for analysis prior to breach of the cortical bone
(day 21). Separately, BCa-PyMT inoculated mice were treated
with a bisphosphonate (zoledronate) over the course of the
study period (1mg/Kg, subcutaneously thrice weekly) (Araujo
et al., 2014; Tauro et al., 2017). Subsequent to tissue collection
and isolation, bones were decalcified, processed and paraffin
embedded. sections (5µm) were generated, rehydrated and then
stained with either Gomori’s Trichrome or Hematoxylin & Eosin
using standard procedures.

We estimated the area of visible trabecular bone within
a pathology image, and subsequently count the number of
osteocytes within this region. For full details of this Algorithm,
see Appendix A. Unfortunately, the samples were not at a
resolution high enough to determine network structure, however
it was possible to estimate number of osteocytes per unit area
(#osteocytes/mm2). These results are presented as box plots in
Figure 1.

From Figure 1, breast cancer pathological bone have
significant lower osteocyte number densities when compared to
healthy bone. Macroscopically, breast cancer is often osteolytic
and suppresses osteoblast proliferation and maturation. When
applied as therapy, the zoledronate treatment allows for recovery
of osteocyte number density.

1.2. Mathematical Model
1.2.1. Mathematical Description
Our model is a stochastic agent-based model for the bone
formation phase only. The agents in our model are osteocytes
and osteoblasts occupying nodes within a spatial network.
The osteoblast-to-osteocyte differentiation pathway is subdivided
into eight phenotypic stages: (i) preosteoblast; (ii) preosteoblastic
osteoblast; (iii) osteoblast; (iv) osteoblastic osteocyte; (v) osteoid-
osteocyte (Type II preosteocyte); (vi) Type III preosteocyte; (vii)
young osteocyte; and (viii) old osteocyte (Franz-Odendaal et al.,
2006). Additionally, the secretion of bone occurs as two steps:
first osteoid is deposited as a collageneous scaffold, and then
mineralization occurs to confer strength. Stages (iv)–(vi) are
cells after the deposition front but before the mineralization
front, surrounded by a non-mineralized osteoid matrix (i.e.,
there is scaffold around them). Stages (vii)–(viii) are cells
whose volume has depleted (endoplasmic reticulum and Golgi
apparatus reduction) and are in mineralized bone. The diagram
in Figure 2 shows the bone-formation step. Here we are only
interested in the structure of a mature osteocyte network [stages
(vi)–(viii)], so we avoid modeling the full biology intricacy (e.g.,
cell sub-classifications, proteins etc) for simplicity. We model
mobile preosteoblasts (disconnected from the osteocyte network)
in front of the bone deposition front that proliferate; stationary
mature osteoblasts that secrete osteoid and are connected to
the osteocyte network; and osteocytes that form dendrites with
mature osteoblasts.

In our model, the spatial network has connections, between
cells, representing the ability for two cells to communicate;
physically this communication is mediated through dendrites.

The model consists of the following processes: (i) bone
secretion; (ii) osteoblast differentiation; (iii) dendrite growth; (iv)

FIGURE 1 | (a) Tukey box plot showing results to preliminary image analysis of

osteocyte number density. Means plotted in black (see text for details). The far

left histogram (marked †) is representative of a collection of histology slides

imaged at a lower resolution. (b) Comparison between osteocyte sizes: (left)

control, (right) bone under breast cancer protocol. Image size corresponds to

32× 21µm. The smaller box plots are the osteocyte densities for each mouse

using 3–8 slides per mouse. Each sample of the osteocyte number density is

weighted by the quantity of visible bone area within the sample when

determining the data statistics summarized in the plots. The larger box plots

show the combined data for mice undergoing the same protocol.

preosteoblast migration; and (v) preosteoblast proliferation (see
Figure 2). Agents of the same type (osteocytes or osteoblasts)
follow the same rules, although each agent may have different
properties, e.g., position, number of connections, in addition
to type.

Bone secretion is carried out by osteoblasts secreting bone
in a small region around themselves, orthogonal to the bone
surface (in the normal direction). Osteoblasts can also become
buried and differentiate into osteocytes. The rate of osteoblast
differentiation may depend on if the osteoblast in question is in
communication with the osteocyte network in bone.

For dendrite growth, osteocytes and osteoblasts create a
communication channel (i.e., become connected in the network)
at a rate that is a function of the distance between the two cells.
Our model is consistent with the suggestions in Palumbo et al.
(1990) that dendrites grow away from osteocytes within bone and
toward the osteoblast layer on the bone surface.

Movement and cell division are included for pre-osteoblasts
that are disconnected from the osteocyte network. Pre-
osteoblasts move along the bone surface by means of a diffusive
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FIGURE 2 | Diagrammatic illustration of bone formation. (A) Biological process. Lighter shades of blue indicate more differentiated cells. The lighter shade of pink

indicates the deposition front, and the darker shade of pink indicates the mineralization front. The left panel occurs earlier than the right panel. Dendritic osteocytes

(light blue) have dendrites that extend toward the osteoblast layer (dark blue). The osteoblasts secrete bone matrix. Osteoblast cells marked with “A” are signaled by

the osteocyte network to differentiate into osteocytes. Osteoblast cells marked with “B” do not differentiate and stay on the outer bone surface. Osteoblast cells

marked with “C” arrive at the bone front after differentiating from precursor osteoblasts (preosteoblasts) (this figure is adapted from Franz-Odendaal et al., 2006).

(B) Model representation of biological process. In a small time step, the following events can occur: (i) bone secretion; (ii) osteoblast differentiation; (iii) dendrite growth;

(iv) osteoblast migration; and (v) osteoblast proliferation.

process; they are also able to proliferate and divide into create two
daughter cells.

Our simulations are carried out in two dimensions, but they
represent a slice from a three dimensional organ, in which the
third dimension Lz is the typical distance between osteocyte
centers (Lz ≈ 40µm), projected onto two dimensions (see Figure
7 in Appendix). The x-direction is the main direction of bone
growth, and the volume occupied by the bone increases in time.
We impose periodicity in the y-direction (orthogonal to bone
growth) to avoid boundary effects.

In all the simulations in this paper, we consider bone
formation after a cement line has been deposited. A cement line
is a 1-5µm region of hypermineralized (and collagen deficient)
bone (Skedros et al., 2005) is deposited after bone resorption
to prepare surfaces for new bone formation. When this cement
line is deposited, osteocytes from deep within the bone are not
necessarily in communication with osteoblasts on the other side
of the cement line (Qin et al., 1999).

Accordingly, we use the initial condition that there are no old
osteocytes to communicate with (no initial network structure at
the onset of bone formation) and there is an initial surface density
of 6 × 103mm−2 pre-osteoblasts that do not have any network
structure. We also specify that once an osteoblast is buried, a new
osteoblast takes its place (so the total number of osteoblasts at any
time is constant). This new osteoblast has no network structure.
Therefore, one can interpret this configuration of the model as

the scenario in which pre-osteoblasts are in abundance at the
bone interface. New osteoblasts then move into the cell gaps on
the bone surface as space becomes available (Figure 3).

1.2.2. Simulation and Analysis
Individual simulation runs of our stochastic agent-based
model were performed with a fixed time step Monte Carlo
algorithm (see Appendix B). However, a single realization is
unrepresentative of the stochastic process, so many simulations
must be carried out to work out statistics of the process along
with parameterization. This can be computationally demanding,
especially as the system grows in size.

As an alternative to large numbers of simulations, we can
utilize mean field equations. We have shown previously (Taylor-
King et al., 2017) that in the limit as the number of nodes in
the network increases, one is able to derive a mean-field partial
integro-differential equation for the expected number of nodes
at a particular position in the domain connected to a fixed
number of cells. By solving themean-field equations, one can also
calculate the degree distribution of the nodes of the network. The
validity of the mean-field assumption is discussed in Taylor-King
et al. (2017).

Simulations of the stochastic mathematical model suggest that
the system is approximately homogeneous in y, the direction
orthogonal to bone growth (see Figure 3). Under the assumption
of homogeneity in y, the mean-field equations depend only
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on x, the direction of bone growth. The solutions of these
equations provide spatial profiles of the densities of osteocytes
and their network structure perpendicularly to the bone surface
(see Appendix C).

Our mean-field equations take the form of two coupled
hierarchies of integro-partial differential equations (see
Equations 23–24 in Appendix). These equations can be solved
to indicate how many particles one could expect to find within
a small region of space are, connected to k other cells (referred
to as degree k) at time t. We denote by vk the surface density
of osteoblasts (number per unit area, [vk] = mm−2) connected
to k osteocytes on the bone surface; and wk the number density
osteocytes (number per unit volume, [wk] = mm−3) connected
to k osteocytes or osteoblasts with position x at time t within
the bone. Therefore, we write the total density of all osteoblasts
(regardless of degree) as p =

∑

k vk and total density of
osteocytes (regardless of degree) as q =

∑

k wk. The average
number of osteocytes connected to an osteoblast is the average
degree of osteoblasts, i.e.,

〈k〉Ob =

∑∞
k=0 kvk

p
; (1)

and the average number of cells (osteoblasts and osteocytes)
in communication with an osteocyte is the average degree of
osteocytes, i.e.,

〈k〉Ot =

∑∞
k=0 kwk

q
. (2)

The full equations for vk and wk are derived in Appendix C and
solved in Appendix D. In the present work, we only consider
an uninterrupted bone formation process so that the density of
osteocytes q at point x corresponds to that generated by the
terminal differentiation of osteoblasts when the bone deposition
front was at x.

The mean-field equations admit a traveling wave solution,
corresponding to steady bone growth if the osteoblast
proliferation rate is such that the surface density of osteoblasts
is constant. Such a solution is useful both to explain the model
and to investigate the qualitative effects of perturbations to
parameters. In the following, we denote the traveling wave
solution with a tilde.

2. RESULTS

2.1. Selection of Differentiation Mechanism
We wish to investigate the effects of different model choices for
the rate of osteoblast-to-osteocyte differentiation, Dk.

For a given surface density of osteoblasts, the volumetric
density of inclusions embedded in a tissue during bone formation
is determined by two dynamic processes: the rate of osteoblast
terminal differentiation and the tissue growth rate (Buenzli,
2015). If the rate of osteoblast terminal differentiation is
identical for all osteoblasts at a given location, i.e., Dk is
independent of k (Dk ≡ D̂), the density of osteocytes generated

is given by Buenzli (2015)

q̃ ≡
D̂ p̃

ν̃
=

D̂

κform
, (3)

where D̂ is the terminal differentiation rate, i.e., the probability
per unit time for a single osteoblast to become embedded as an
osteocyte, ν̃ = κformp̃ is the normal velocity of the bone interface,
and κform is the rate of bone deposition per osteoblast. If the
rate of osteoblast terminal differentiation depends additionally
on the number of connections k they have with osteocytes, the
density of osteocytes generated sums up the contributions of all
k-degree osteoblasts

q̃ ≡

∞
∑

k=0

Dkṽk

ν̃
. (4)

In contrast to Equation (3), the density of osteocytes given by
Equation (4) depends explicitly on the population of osteoblasts,
through the proportions vk/p̃ of k-degree osteoblasts. Notice
that this expression determines the density of osteocytes created
at the moving bone deposition front. It does not account for
processes that may subsequently affect osteocyte density such
as osteocyte apoptosis, bone resorption and remodeling, which
may remove and replace osteocytes subsequently (Lerebours and
Buenzli, 2016).

To explore different differentiation mechanisms we alter both:
the rate of dendritic growth, α, and the mechanism behind the
rate of osteoblast differentiation, Dk.

2.1.1. Assuming No Network Influence:

Degree-Independent-Rate Model
To account for the potential of network independent
differentiation we assume that the number of osteocytes
each osteoblast is in communication with does not impact the
rate of osteoblast differentiation; we write

D
(null)
k

≡ D̂ , (5)

for all values of k = 0, 1, . . . ,∞.
After parameterizing the system using experimental

measurements found from literature (see Table 3), with
this choice of osteoblast differentiation there remains two
undefined (free) parameters in the model: the rate of dendrite
growth α̂, and the rate of osteoblast differentiation D̂; and we
calibrate these parameters based on two further experimental
observations: the mean degree of an osteoblast connectivity

〈k̃〉Ob = 1 (see Appendix E.6); and the number density of
osteocytes q̃ = 2.375× 104mm−3. By carrying out mathematical
analysis in the traveling wave regime, we obtain formulas linking
these quantities together (see Appendix D.2). We determine
parameters as α̂ = 1.39×10−3 day−1 and D̂ = 2.59×10−3 day−1.

If one changes the rate of osteoblast-to-osteocyte
differentiation, D̂, we observe a linear relationship with the
number density of osteocytes buried, q̃ (see Equation 3).
Changing the rate of formation, α̂, leads to a linear relationship

with the mean osteoblast degree, 〈k̃〉Ob, and the mean osteocyte
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FIGURE 3 | Single simulation runs of bone growth with different parameter choices: (A) Healthy parameter set (as shown in Table 3); (B) Increased osteoid secretion

(η → 2η); (C) Reduced dendrite growth (α → α/2); (D) Reduced osteoblast surface density (p̃ → p̃/2). Osteoblast are colored in blue and osteocytes (and their

network connections) are in red; darker shades of red denote osteocytes that were buried earlier in time. All simulations are shown after 365 days.

degree, 〈k̃〉Ot. These effects are decoupled — changing the rate
of osteoblast-to-osteocyte differentiation, D̂, has no effect on the
network structure, and changing the rate of dendrite formation,
α̂, has no effect on the osteocyte density, q̃. This will not be the
case when osteoblast terminal differentiation is coordinated by
the osteocyte network.

The assumption that osteoblast differentiation is independent
of the osteocyte network is unlikely. First, as reviewed in
Gohel et al. (1995), osteoblasts can be signaled by osteocytes to
adhere to the mineral matrix and grow dendrites (subsequently
differentiating) via the insulin-like growth factor 1 (IGF-1).
Second, sclerostin secreted by osteocytes has been shown to act
briefly as an inhibitory signal to prevent excessive osteoblast
differentiation and allowing for coordinated osteocyte network
formation (Poole et al., 2005). Note that in Poole et al. (2005),
sclerostin was stained for and observable within the osteocyte’s
dendritic protrusions. These experiments, along with the three-
dimensional scans taken by Kamioka et al. (2001), strongly
suggest that osteocytes signal osteoblast differentiation through
the extension of dendrites toward the osteoblast layer.

2.1.2. Modeling Network Effects
We now consider a range of models in which the pre-existing
osteocyte network can either have an stimulatory or inhibitory
effect on osteoblast differentiation. We consider differentiation
rates of the form

Dk =

{

λ if k = 0 ,
λ + f (k) if k ≥ 1 ,

(6)

where λ is the network-independent rate of osteoblast
differentiation and f = f (k) is the contribution to osteoblast
differentiation for an osteoblast connected to k osteocytes.
When f > 0 the network has an excitatory effect on osteoblast
differentiation, and when f < 0 the network has an inhibitory
effect on osteoblast differentiation. To prevent negative
differentiation rates, we require that

λ > 0 , and λ + f (k) ≥ 0 , ∀k ≥ 1. (7)

In the main text (see section 2.1.3 below), we consider only
the case where f is a constant, f = γ . Other choices of f are

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 July 2020 | Volume 8 | Article 757

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Taylor-King et al. Modeling Osteocyte Network Formation

considered in Appendix E, i.e., i.e., cumulative activation (f ∝

k) and diminishing activation (f ∝ 1/k). It should be noted
that choices of f that have non-monotonic behavior (i.e., a local
maximum/minimum exists) can lead to non-monotonic profiles
in q.

2.1.3. Proposed Mechanism: Switch-Like Influence
Switch-like mechanisms are frequently found in biology (Cherry
and Adler, 2000); at a cellular level this includes initiating
mechanisms for proliferation and differentiation (Xia et al.,
2006). For a switch-like osteoblast differentiation, we take

D
(swt)
k

=

{

λswt if k = 0 ,
λswt + γswt if k ≥ 1 .

(8)

If the osteoblast on the bone surface is not in communication
with any other osteocytes (k = 0) then it has an network-
independent differentiation rate λswt. If osteoblasts are in
contact with one or more osteocytes, then there is an induced
differentiation rate λswt + γswt where γswt is the added
contribution from the dendritic network.

Our technique for parameter identification with this family
of terminal differentiation rates is based on the mean-field
equations. We choose a network independent component of
osteoblast differentiation such that λswt 6= D̂, leaving 2 free
parameters αswt and γswt. We then determine the free parameters

by imposing that 〈k̃〉Ob = 1 and q̃ = 2.375 × 104mm−3 in the
traveling wave regime. By making these assertions, if λswt < D̂,
the network contribution will always have an stimulatory effect
on osteoblast differentiation; and if λswt > D̂, then the network
contribution will always inhibit osteoblast differentiation.

To investigate the role of intrinsic to extrinsic osteoblast
differentiation rates, we assume that the network-independent
differentiation rate λswt contributes half the total rate of
osteoblast-to-osteocyte differentiation rate of the null model
(so λswt = D̂/2). We then determine that αswt = 2.08 ×

10−3 day−1 and γswt = 2.59 × 10−3 day−1. Another option
would be for an inhibitory contribution, in which case we can
set λswt = 3D̂/2, and then αswt = 6.96 × 10−3 day−1 and
γswt = −2.60× 10−3 day−1.

2.1.4. Differentiation Mechanism Comparison
In Figure 4, we plot the osteocyte density profile, the mean
osteoblast degree over time, and the mean osteocyte degree over
time using Equations (23)–(25) in Appendix for 3 proposed
choices ofDk: the null model, stimulatory network contributions,
and inhibitory network contributions.

Figure 4 shows that in all 3 models, it takes approximately
1 year (∼ 0.7mm) to get to the steady-state desired osteocyte
density. We see similar results for the mean osteoblast degree,
except that inhibitory contributions to osteoblast differentiation
require more time for the osteoblasts to reach the steady-state
degree distribution. The main means for differentiation between
the three models is the resulting mean osteocyte degree profile.
The osteocyte density profile also differs at the onset, but slowly

relaxes to the steady state profile. Keeping p̃, q̃, 〈k̃〉Ob fixed,
stimulatory network contributions to osteoblast differentiation

FIGURE 4 | (Top) Osteocyte density profile [q(t, x = ν̃t)], (Middle) mean

osteoblast degree over time [〈k(x = ν̃t)〉Ob], and (Bottom) mean osteocyte

degree over time [〈k(x = ν̃t)〉Ot ] when solving Equations (23)–(25) in Appendix.

The black line shows the null model, the blue line shows the stimulatory switch

model, and the red line shows the inhibitory switch model.

leads to more connected osteocyte networks with initially low
numbers of osteocytes (higher final value of 〈k〉Ot), and inhibitory
network contributions lead to less connected networks with
initially high numbers of osteocytes (lower final value of 〈k〉Ot).

Capturing network structure and choosing a model that best
reflects reality is difficult. For instance, the mean osteoblast
degree profile takes a long period of time before settling to

the steady-state mean osteoblast degree of 〈k̃〉Ob = 1. One
assumption we have made throughout our model selection
process was that the osteoblast surface density was approximately
constant. It may be the case that this surface density changes
over time (Eriksen et al., 1984; Parfitt et al., 1987). Were it the
case that the surface density of osteoblasts was initially higher
density before decreasing it would speed up the timescales until a
steady-state traveling wave profile was reached.

2.2. Parameter Analysis
We explored a wide range of model parameters to further
understand their impact on osteocyte network topology. For the
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switch-like model in section 2.1.3, we use the traveling wave
analytic expressions described in Appendix D.2 to investigate

how dependent variables q̃, ν̃, 〈k̃〉Ob, and 〈k̃〉Ot change due to a
single perturbation in one of the independent variables η, p̃, κdiff,
λ, γ and α, i.e., a sensitivity analysis, see Table 2. In addition to
the dependent variables, we also include the number of dendrites

per unit area M̃ = q̃〈k̃〉Ot/2 which is a quantity that could
be determined experimentally. Depending on whether osteocytes
activate or inhibit the rate of osteoblast differentiation, we obtain
different results for parameters λ, γ and α. For visualization
purposes, we show a few stochastic simulation runs for a few
specific examples in Figure 3; these examples use the switch-like
model in described in section 2.1.3 with the inhibitory parameter
configuration (λswt = 3D̂/2, αswt = 6.96 × 10−3 day−1,
γswt = −2.60× 10−3 day−1).

Osteocyte density is mostly determined by the secretory rate
and terminal differentiation rate, with some weak osteoblast
density dependence via the frequency distribution of osteoblast
degrees via equation (4). Table 2 confirms this as q̃ is dependent
on the secretory rate (η) or the terminal differentiation
rate (λ, γ , α), but not osteoblast density p̃. Contrasting
these results to those given in Figure 4 and Table 2 shows
intra-model variability by perturbing parameters, but Figure 4
shows inter-model differences by changing the mechanism for
osteoblast differentiation.

Whilst many parameters change the density of osteocytes,
only the rate of dendrite growth α and the rate of bone formation
η can change the mean osteocyte degree in the steady state
regime. A counter intuitive result also specifies that altering the
rate(s) of osteoblast differentiation (parameters λswt and γswt)
changes the osteocyte density (variable q̃) and the osteoblast

degree (variable 〈k̃〉Ob), but not the degree of these newly formed

osteocytes (variable 〈k̃〉Ot). This is possible because osteoblasts
are constantly being replaced in the steady state regime; therefore
parameters λswt and γswt are changing the osteocyte density
by modifying the mean time osteoblasts secrete bone before
differentiation — without changing the mean osteocyte degree.

As we mentioned in 2.1.1, inhibitory network contributions
to osteoblast differentiation is more likely in the presence
of sclerostin, but stimulatory network contributions may also
be possible via IGF-1. Determining which of these two
mechanisms drives osteoblast differentiation will require further
experimental work.

3. DISCUSSION

We have presented a model for the formation of an osteocyte
network and identified parameters for healthy bone formation.
By perturbing parameters, one can investigate irregular bone
formation and the resulting osteocyte topology changes. One
can also then predict the driving differentiation markers that
osteoblasts exhibit that would lead to these morphological
changes. In the context of zoledronate therapy for breast cancer,
we have used our model to propose how this commonly
used clinical treatment impacts bone formation. For future

TABLE 2 | Prediction summary.

Increased parameter (↑) Symbol q̃ ν̃ 〈k̃〉Ob 〈k̃〉Ot M̃

Rate of bone secretion η ↓ ↑ ↓ ↓ ↓

Surface osteoblast density p̃ − ↑ − − −

Osteoblast migration speed κdiff − − − − −

Excitatory switch model configuration.

Network-independent rate of osteoblast

differentiation

λ ↑ − ↑ − ↑

Network-dependent rate of osteoblast

differentiation

γ ↑ − ↓ − ↑

Rate of dendrite growth α ↑ − ↑ ↑ ↑

Inhibitory switch model configuration.

Network-independent rate of osteoblast

differentiation

λ ↑ − ↓ − ↑

Network-dependent rate of osteoblast

differentiation

γ ↑ − ↓ − ↑

Rate of dendrite growth α ↓ − ↑ ↑ ↑

In the leftmost column, we list parameters that are to be increased. We use the notation

that (↑) denotes an increase, (↓) denotes a decrease and (−) signifies no change.

Decreasing the parameters in the leftmost column will reverse the directions of the arrows.

experiments, we have suggested how measurable quantities link
to underlying mechanisms.

The model proposed has some limitations, one could suggest
many improvements to the model to improve our idealization
of the osteocyte network; we discuss some of these below.
Additionally, one might also want to consider the inclusion
of chemical species representing proteins of interest, and the
inclusion of osteoclasts to incorporate bone resorption. However,
our model acts as a first step toward mathematically modeling
osteocyte network formation, and avoids making overly specific
assumptions on underlying mechanisms.

We now comment on how various aspects of our model
compare to biological reality.

3.1. General Implications for Cancerous
Bone Growth
A number of previous mathematical models have examined
osteocyte density, but none of them have explored network
structure. Graham et al. (2013), Moroz et al. (2006), and
Wimpenny and Moroz (2007) give ordinary differential
equation (non-spatial) models for cell populations; these include
osteoblast, osteoclast, and osteocyte populations. Existing
models of healthy bone remodeling (homeostasis) include
spatiotemporal models (Ryser et al., 2009, 2010; Buenzli et al.,
2012), but do not explicitly include osteocyte generation; these
models have been adapted for the cancerous regime in Ryser
et al. (2012). For TGFβ targeted therapy, modeling approaches
have been used to optimize the treatment window of application
(Cook et al., 2016). Mechanical focused methods capturing
stresses and strains on the bone have also been explored (Rejniak
and Anderson, 2011; van Oers et al., 2014). A general continuum
modeling approach was also proposed in Buenzli (2015).

Ourmodel-derived results show that osteocytes are either over
differentiated (excessive dendrite growth) or underdeveloped
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TABLE 3 | Model parameters, see Appendix E for more details.

Parameter name Symbol and value Units References

General parameters

Osteoblast diffusion constant κdiff = 4.5× 10−5 mm2day−1 Araujo et al., 2014

Domain size Ly = 0.5, Lz = 0.04. mm −

Bone secretion rate parameter η = 7.27× 10−5 mmday−1 Araujo et al., 2014

Dendrite growth shape parameter β = 25× 10−3 mm Hannah et al., 2010

Bone secretion shape parameter ι = 15× 10−3 mm Araujo et al., 2014

Traveling wave parameters

Traveling wave speed (rate of bone formation) ν̃ = 0.656 µmday−1 Araujo et al., 2014

Mean number of osteocytes in contact with single osteoblast 〈k̃〉Ob = 1 (Appendix E.6) No units Kamioka et al., 2001

Osteoblast surface density p̃ = 6× 103 mm−2 Buenzli et al., 2014

Osteocyte density q̃ = 2.375× 104 mm−3 Buenzli and Sims, 2015

Model dependent parameters (see section 2.1).

Dendrite growth scale parameter α (model dependent) day−1 −

Network-independent osteoblast differentiation scale parameter λ (model dependent) day−1 −

Network-dependent osteoblast differentiation scale parameter γ (model dependent) day−1 −

(diminished dendrite growth). Additionally, we show that the
osteocyte number density tends to decrease.

With experimental data that gives information on network
structure (e.g., transmission electron microscopy, India ink
histology stains), one should be able to approximately measure
at least 2 of 3 quantities: the number of osteocytes present
(quantitative estimate); whether the osteocytes are over-
differentiated or underdeveloped (qualitative estimate); and
finally the density of dendrites (quantitative estimate). Therefore,
we should be able to compare a pathological bone slide to a
(healthy) control slide and determine differences between: the

osteocyte number density (q); the mean osteocyte degree (〈k̃〉Ot);
and the density of dendrites (M̃).

Furthermore, our model also makes testable predictions in
regards to:

a.) If all 3 quantities (osteocyte number density, mean osteocyte
degree, and dendrite area) have increased (resp. decreased),
this corresponds to either: osteoblasts on the bone surface
producing too little (resp. too much) osteoid when compared
healthy bone; or that the rate of dendrite growth has increased
(resp. decreased) in the excitatory switch model configuration.

b.) If the osteocyte number density has increased (resp.

decreased) with an opposing decrease (resp. increase) in 〈k̃〉Ot
or M̃, then this must correspond to the rate of dendrite growth
changing but in the inhibitory switch model configuration.

c.) If the osteocyte density increases (or decreases), but the mean
osteocyte connectivity remains constant, our model suggests
this relates to a change the rate of osteoblast differentiation.

3.2. Implications for Zoledronate Treatment
Breast cancer is known to be osteolytic by promoting osteoclast
mediated bone destruction. When applied as a therapy for breast
cancer, the zoledronate treatment slows down bone resorption
(along with other effects, Polascik and Mouraviev, 2008). This
treatment is also associated with a recovery of osteocyte number
density, see Figure 1.

Changing the proliferation ability of osteoblasts in the
model changes the osteoblast surface density. This changes
the quantity of bone produced per unit time, but not
the network structure or steady state osteocyte density.
In our model, changing the process of osteoblast/osteocyte
maturation corresponds to changing either: the mechanism
behind osteoblast differentiation (parameters λ, γ ), or changing
the rate of dendrite growth (parameter α).

In breast cancer (BCa), osteocytes have fewer dendritic
connections to other osteocytes and osteocyte density is lower.
Therefore the mean osteocyte degree of connectivity is reduced.
To achieve a simultaneous decrease in osteocyte density and
mean osteocyte degree in the model, one would either have to:
decrease the rate of dendrite growth in an stimulatory switch
model configuration; or increase the rate of bone secretion
per osteoblast.

Given that the zoledronate treatment restores osteocyte
density, we propose that future studies investigate how
zoledronate acts on the osteoblast-to-osteocyte differentiation
pathway. If bone treated with zoledronate has a healthy osteocyte
network present, then one can assume zoledronate also targets
(and restores) the rate of dendrite growth. However, if bone
treated with zoledronate has a different network topology, one
can conclude the differentiation mechanism is targeted, i.e., the
network-independent or network-dependent rate of osteoblast
differentiation has changed.

3.2.1. Triggering Osteoblast Differentiation
During a bone remodeling event, the total number of osteoblasts
generated is far larger than the total number of new osteocytes
generated (Parfitt, 1994). Pazzaglia et al. (2014) have estimated
that only 1 in 67 osteoblasts become embedded in bone matrix
as osteocytes over the depth of a single osteocyte. In our model
using the steady state regime with the parameters from Table 3,
over a length-scale of 5µm approximately 1 in 50 osteoblasts
achieve terminal differentiation. The exact mechanisms behind
this process are still poorly understood; theymay involve physical
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processes such as burial by neighboring osteoblasts, or self-
burial (Franz-Odendaal et al., 2006). It has also been suggested
that subpopulations of osteoblasts are predestinated to become
osteocytes (Marotti et al., 1992), and that this selection may
be determined by the number of connections with osteocytes
(Kamioka et al., 2001).

One aspect ignored in our model is mechanotransduction. It
is known that mechanical loads and fluid flow sheer stress can
lead to greater dendrite growth (Zhang et al., 2006; Burra et al.,
2010). After now posing our model, a pertinent question then
remains as to the relative effect sizes between mechanical stimuli
and microenvironmental signaling.

3.2.2. Osteocyte Degree Distribution
In the steady-state traveling wave regime, one can show that
the node degrees of the osteocyte network are geometrically
distributed when using either the null model (see section 2.1.1),
or the switch-like proposed mechanism (see section 2.1.3). This
effect comes from the difference equation structure shown in
(23)–(25) in Appendix C.1.

In Kerschnitzki et al. (2013), a three-dimensional osteocyte
network was studied, the topology of this network includes
dendrites that do not connect to a second osteocyte, and
connections that link between multiple osteocytes. Additionally,
the nodes of their network included both osteocytes and
the branching points of dendrites. Thus the functional
communication network we studied is different from the
lacuno-canalicular pore network and does not account for
all types of communication redundancies that may exist.
To incorporate all possible redundancies would require the
inclusion of connections that do not connect to other nodes,
and connections that exist between multiple nodes. We have
some redundancy in our communication network in the
form of multiconnections (multiple connections between
two nodes). However in the limit of large networks, the
probability of a multiconnection occurring in our model
approaches zero. Even in the case of finite networks, this is

very unlikely to occur in the model as 〈k̃〉Ob, 〈k̃〉Ot = O(1).
Regardless of these model technicalities, it should be
noted that the degree distribution of the three-dimensional
scanned network in Kerschnitzki et al. (2013) was also
shown to be geometrically distributed as derived from
our model.

3.2.3. Orientation of Dendrites
It is clear from Figure 3 that we observe orientation of
connections between older osteocytes and younger osteocytes or
osteoblasts. This leads to an interesting question is as to whether
one can configure our model to modify this orientation.

In brief, our model has allowed us to mechanistically explain
osteocyte networks in the bone during bone remodeling and
explain how these networks are impacted by cancer. Our
approach identified, using experimental data, the parameters
that characterize find new biology and derive new parameters
A possible future direction in our work may be to modify
our model to explore the functional difference between lateral
connections, and connections perpendicular to the bone surface.

As osteocytes have coordinated deposition, one may be able
to explore whether coordinated terminal differentiation can
occur as a function of lateral connections, burying a group of
osteoblasts simultaneously.
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