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Corn stover dry matter loss effects variability for biofuel conversion facility and
technology sustainability. This research seeks to understand the dynamic mechanisms
of the thermal system, organic matter loss, and microbial heat generation in corn stover
storage operations through system dynamics, a mathematical modeling approach, and
response analysis to improve the system performance. This study considers epistemic
uncertainties including cardinal temperatures of microbial respiratory activity, specific
degradation rate, heat evolution per unit substrate degraded, and thermal conductivity
in corn stover storage reactors. These uncertainties were managed through calibration,
a process of improving the agreement between the computational and benchmark
experimental results by adjusting the parameters of the model. Model calibration
successfully predicted the temperature of the system as quantified by the mean absolute
error, 0.6◦C, relative to the experimental work. The model and experimental dry matter
loss after 30 days of storage were 5.1% and 4.9 ± 0.28%. The model was further
validated using additional experimental results to ensure that the model accurately
represented the system. Model validation obtained a temperature mean absolute relative
error of 0.9 ± 0.3◦C and dry matter loss relative error of 3.1 ± 1.5%. This study
presents a robust prediction of corn stover storage temperature and demonstrates that
an understanding of carbon sources, microbial communities, and lag-phase evolution in
bi-phasic growth are essential for the prediction of organic matter preservation in corn
stover storage systems under environment’s variation.

Keywords: microbial heat, organic matter loss, corn stover, bi-phasic growth, microbial respiratory activity,
storage reactor, model calibration, model validation

INTRODUCTION

Corn stover has long been recognized as a bioresource to reduce the United States’ (U.S.)
dependence on foreign oil (Graham et al., 2007) and the primary feedstock for ethanol and other
potential biofuels such as butanol (Qureshi et al., 2010; Green, 2011). One of the significant
challenges of corn stover-derived biofuel is the variability of the feedstock, particularly in the
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carbohydrate content of biomass, with consequences in the
biofuel yields and economics (Kenney et al., 2013). For instance,
moisture content beyond 25% can contribute to dry matter losses
equal to or greater than 20% due to microbial degradation of
carbohydrates in storage (Kenney et al., 2013; Wendt et al., 2018).
Moisture contents from 15–20%, on the other hand, have lower
dry matter losses effects in biomass storage and reduce safety
risks such as self-ignition (Rentizelas et al., 2009). This feedstock
variability of corn stover has been demonstrated to be highly
sensitive in metrics of sustainability such as life-cycle net energies,
carbon dioxide emissions, and the cost of biofuels (Kim and Dale,
2005; Spatari et al., 2005; Baral et al., 2017, 2018). The effects
of environmental factors in the corn stover properties such as
moisture, temperature, and dry matter loss have been researched
in field and laboratory studies (Wendt et al., 2014, 2018; Essien
and Richard, 2018; Wang et al., 2019). These previous research
efforts have demonstrated that the microbial heat resulting
from degradation of carbohydrates plays a role in the corn
stover thermal system and organic matter losses. However, the
dynamic mechanisms between changes in the environment and
the microbial kinetics in corn stover are not understood.

Many researchers have investigated microbial kinetics in
composting processes (Rosso et al., 1993; Hamelers, 2004; Kulcu
and Yaldiz, 2004; Richard and Walker, 2006; Richard et al., 2006;
De Guardia et al., 2008; Lin et al., 2008). Others have studied
kinetics in anaerobic digestion of corn stover and microbial
heat evolution from glucose degradation in soil (Kimura and
Takahashi, 1985; Li et al., 2016). Calorimetric research of soil
microbes showed that changes in microbial growth, glucose
depletion as an energy source, and the evolution of heat are
proportional and can all be described as a sigmoidal curve
characteristic of Monod equation (Monod, 1949; Kimura and
Takahashi, 1985). As a result, the microbial heat evolution
curve can express the maximum specific growth rate or specific
degradation rate of the substrate because of microbial respiratory
activity. Experimental results in soil, for instance, determined an
average heat evolution of 1287 ± 52 KJ.mol glucose−1 (Kimura
and Takahashi, 1985). External sources of temperature, oxygen,
and moisture content, however, have been demonstrated to
control the maximum specific growth rate of microorganisms
(Hamelers, 2004). One of the most comprehensive studies is
a cardinal temperature model with inflection that describes
the mathematical representation of maximum specific growth
rates in the optimal and suboptimal range of temperatures
from various thermophilic, mesophilic, and psychrophilic strains
grown in different media (Rosso et al., 1993; Richard and
Walker, 2006). Based on the cardinal temperature model with
inflection model, the cardinal temperatures for Escherichia coli
are a minimum temperature of 4.9◦C, an optimum temperature
of 41.3◦C, and a maximum temperature of 47.5◦C. Likewise,
multiple linear regression has been used to describe the
mathematical representation of the half-saturation coefficient
of oxygen as a function of temperature and moisture in
composting, ranging from −0.67 to 1.74% O2 expressed in
a volume percentage (v/v%) (Richard et al., 2006). Lastly,
hydrolysis kinetic constants of corn stover (1-mm sieve material)
in anaerobic digestion is reported at values from 0.04 to 0.17
d−1. The cardinal temperatures of microbial growth, moisture

in suboptimal conditions, and hydrolysis and heat evolution per
unit substrate kinetics have not been researched in aerobic corn
stover storage environments.

State-of-the-art kinetic models of composting are mostly
inductive, governed by a data-oriented approach, including first-
order kinetic reactions and multiplicative environmental factors
that change growth and microbial respiratory activity using
composting rates (Hamelers, 2004). Heat transfer and water
vapor transfer models used to predict temperature and moisture
in biomass, on the other hand, are deductive or mechanistic,
relying not only on data but also on the laws of physics
(Hamelers, 2004; Bedane et al., 2011, 2016). These existing
heat transfer and water vapor transfer models have successfully
represented the physics in biomass, ignoring the connections
such as the dynamic response of input heat in the growth of
microorganisms. For instance, a two-dimensional model based
on Fick’s diffusion equation, and the governing heat balance
equation have been demonstrated to predict heat and moisture in
woody biomass (Bedane et al., 2011). Furthermore, water vapor
transport has been effectively predicted in a model with pore and
surface diffusion as a lumped parameter at a variety of relative
humidity percentages, from 10 to 90% (Bedane et al., 2016).
Experiments at laboratory and field scales have illustrated the heat
in corn stover storage systems’ biological and physical processes,
including microbial heat, conductive, convective, and radiative
heat transfer (Wendt et al., 2014, 2018). The individual heat
evolution processes, both microbial and physical, and coupling
mechanisms of heat in the thermal system of corn stover,
are still unknown.

This research seeks to understand the dynamic mechanisms
of the thermal system, organic matter loss, and microbial heat
generation in corn stover storage through system dynamics,
a mathematical modeling approach of systems, and response
analysis to improve the system performance (Ogata, 1998).
Aleatory and epistemic uncertainties must be considered
and differentiated in the construction of the mathematical
model (Oberkampf et al., 2004a). This study finds epistemic
uncertainties, including the specific degradation rate, cardinal
temperatures of microbial growth, thermal conductivity, and
heat evolution per unit substrate degraded. We deal with
these uncertainties through calibration, a process of improving
the agreement between the computational and benchmark
experimental results by adjusting the parameters of the
model (Trucano et al., 2006). To assess that the model
accurately represents the system, we measure the agreement
between computational and a variety of experimental results
through validation (Oberkampf and Barone, 2006). This
study systematically assesses the predictive capability of a
system dynamic corn stover storage reactor through model
calibration and validation.

EXPERIMENTAL AND COMPUTATIONAL
METHODOLOGIES

To understand the dynamic mechanisms of microbial heat in
aerobic corn stover storage, we must evaluate the predictive
capability of the dynamic lumped thermal system following a
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systematic validation and calibration of the computational model
with the experimental data from the corn stover storage reactors.
Figure 1 illustrates the validation, calibration, and prediction
approach (Oberkampf and Barone, 2006) applied to the corn
stover thermal model. In this approach, first, we obtain the
input quantities to develop the computational model from the
experimental work in the corn storage reactors. Second, we
compare the validation metric, which is system temperature
and substrate, of the computational and experimental results
to measure the accuracy of the model. Third, we establish an
engineering decision based on the expected accuracy of the
model, where a feedback loop is taken for additional calibration
to reduce the error of the model relative to the experimental data.
Lastly, we evaluate the predictive capability of the model with a
blind computational prediction of additional corn stover storage
reactor operating conditions. For an extensive study of validation,
calibration, and prediction approach, see references: (Oberkampf
et al., 2004a; Oberkampf and Barone, 2006). The next sections
describe the methodologies of the experimental work in the corn
storage reactors, computational dynamic lumped thermal system,
and the validation, calibration, and prediction process.

Corn Stover Storage Reactor
Experiments
The laboratory-scale corn stover storage reactors studied in
this research are located at Idaho National Laboratory, loaded
with corn stover harvested in Hardin County, Iowa, in October
2018. The storage reactors consist of four replicates, and each
reactor has a total volume of 100-L and a 76-L working volume.
A complete description of the design and operation of the storage
reactors can be found in: (Wendt et al., 2014; Bonner et al., 2015)
and is illustrated in Figure 2.

The loaded biomass was compressed at 3.9 kPa at five 300 s
intervals. Moisture content was determined by collecting five
representative samples and drying at 105◦C for 24 h in a
Shel Lab forced air oven (Sheldon Manufacturing, Cornelius,
OR, United States). Additionally, water exiting the reactors was

collected and measured using a condensing column cooled with
a solution of water and propylene glycol. To allow biomass drying
during storage, we controlled the airflow by mass flow controllers
(Brooks Instruments, Hatfield, PA, United States). The airflow
rates in reactors 1 and 2 were 0.25 standard liters per minute
(slpm) and 1.0 slpm in reactors 3 and 4. Airflow rates of 0.25
and 1.0 slpm were selected because they demonstrated significant
differences in the microbial activity in corn stover storage systems
(Wendt et al., 2014). Corn stover biomass was stored for 34 days
in reactors 1 and 2 and 11 days in reactors 3 and 4.

Each reactor contained four resistance temperature detectors
(RTDs) and 15 K-type thermocouple wires (Omega Engineering,
Norwalk, CT, United States) placed throughout the biomass
to measure temperature. Circulating water surrounded each
reactor jacked set to offset the internal temperature by −0.5◦C,
controlled through a feedback loop between a Labview (National
Instruments, Austin, TX, United States) control interface and
the RTDs. Corn stover and water jacket temperatures data were
collected and exported to a text file every minute from the RTDs
and every 5 minutes from the thermocouples.

Gas chromatography was used to measure the concentration
of O2, N2, and CO2 in the reactors’ off-gas with an Agilent 490
Micro GC (Santa Clara, CA, United States). Gas samples were
initially collected each hour along with a sample of ambient air,
and the data were exported to a spreadsheet, where they could
be analyzed daily. As the biomass degradation rate decreased,
reaching a quasi-steady CO2 production, sample frequency was
decreased from one to 6 h. We assumed glucose oxidation is
a suitable representation in these experiments, calculated from
the CO2 data and the empirical formula (Porges et al., 1956) to
estimate dry matter loss as follows:

C6H12O6 + 6O2 → 6CO2 + 6H2O+Heat

CH2O+O2 → CO2 +H2O+Heat

The corn stover temperatures measured in storage reactors
and substrate degradation calculated from CO2 data were
used for validation and calibration of the system dynamic

FIGURE 1 | Validation, calibration, and prediction of corn stover storage reactor dynamic thermal system. Adapted from Oberkampf and Barone (2006).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 July 2020 | Volume 8 | Article 777

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00777 July 9, 2020 Time: 20:45 # 4

Quiroz-Arita et al. Corn Stover Storage Reactor Model

FIGURE 2 | Operational illustration of the laboratory reactor system. (a) LabView control interface and data logging. (b) Gas chromatograph. (c) Heated water
circulator. (d) Vapor condenser. (e) Reactor loaded with biomass in operation. (f) Mass flow controlled gas supply (Wendt et al., 2014; Bonner et al., 2015).

model. For modeling purposes, the corn stover temperature,
ambient temperature, loading dry matter mass, airflow rates, and
moisture uncertainties are small and are treated as deterministic.
The initial conditions of these model inputs are summarized
in Table 1.

System Dynamics Formulation
The system temperature of the corn stover storage reactor is
an essential metric to the model because of its effects on the
respiration of the microorganisms and in the organic matter
degradation (Kimura and Takahashi, 1985; Rosso et al., 1993;
Richard and Walker, 2006; Richard et al., 2006). To understand
the thermal parameters that influence thermal conditions and,
therefore, microbial respiratory activity, we developed a lumped
thermal system model (Palm, 1983; Ogata, 1998; Incropera et al.,
2007; Quiroz-Arita et al., 2020). The model of the corn stover

TABLE 1 | Model inputs for dynamical formulation.

Parameter Reactor 1 Reactor 2 Reactor 3 Reactor 4

Initial corn stover
temperature (◦C)

10.6 12.9 13.8 13.5

Ambient temperature (◦C) 24.2 24.3 24.0 23.5

Loading dry matter (g) 6456 7080 7071 7290

Air flow rate (cm3.min−1) 365 347 1265 1209

Initial moisture content (%) 30.86 29.86 28.99 29.15

Final moisture content (%) 15.46 16.93 18.01 18.38

Storage time (days) 34.7 34.1 10.7 10.7

storage reactor considers microbial heat evolution, conductive
heat transfer, convective heat transfer, evaporation, and the bulk
thermal capacitance of the corn stover biomass. An energy
balance was carried out using a single thermal node, assuming
a thermally homogeneous reactor, and the resulting ordinary
differential equation was solved numerically. This dynamic
thermal model is described in the following sections.

Microbial Heat Evolution
Heat evolution is associated with an increase in biomass growth
and substrate depletion (Kimura and Takahashi, 1985). As
described in section “Corn Stover Storage Reactor Experiments,”
we calculated substrate degradation from the experimentally
measured CO2 and the empirical formula of glucose used
for validation and calibration of the system dynamics model.
Substrate degradation modeling has been proposed as a first-
order differential equation for composting processes, including
multiplicative environmental factors that change the biological
response (Hamelers, 2004):

dS
dt
= −ks · f (T) · f (M) · (S0 − S) (1)

Where S is the substrate, S0 the initial substrate conditions, ks
the substrate decay rate, f (T) the temperature factor, and f (M)
the moisture factor. f (T) was computed from Eq. (2) (Rosso
et al., 1993; Richard and Walker, 2006), describing the substrate
decay rates in the optimal (Topt) and suboptimal (Tmax, Tmin)
range of temperatures (T) of the growth phases in the stored
corn stover. Topt, Tmax, and Tmin were treated as epistemic
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uncertainties, as described in section “Validation, Calibration,
and Prediction.” f (M) was computed from the Monod Eq. (3),
assuming a linear drying rate of corn stover moisture content
(M) presented in Table 1 during storage. The 25% value in
Eq. (3) corresponds to M at half the maximum specific growth
rate, determined from dry matter loss experiments conducted
at 20, 25, 30, 36, and 50%.

f (T) =
((T− Tmax) · (T− Tmin)2)

((Topt − Tmin) · ((Topt − Tmin) · (T− Topt)

−(Topt − Tmax) · (Topt + Tmin − 2 ∗ T)))

(2)

f (M) =
M

(0.25+M)
(3)

Substrate degradation, microbial growth, and heat can be
described as a sigmoidal curve characteristic of Monod equation
(Monod, 1949; Kimura and Takahashi, 1985). Therefore, CO2
and microbial heat are proportional to the substrate degraded in
the corn stover storage reactor. Anaerobic digestion modeling
strategies have described hydrolysis and biogas as a first-order
differential equation, including a conversion coefficient from
the substrate to product (Vavilin et al., 2008; Quiroz-Arita
et al., 2019). CO2 and microbial heat (Qm), therefore, were
computed from Eqs. (4) and (5). The conversion coefficient
(yCO2) from the substrate to CO2 is 1.44 g CO2/S, calculated
from the experiments described in section “Corn Stover Storage
Reactor Experiments.” The conversion coefficient from the
substrate to microbial heat (ym), was treated as an epistemic
uncertainty described in section “Validation, Calibration,
and Prediction.”

dCO2

dt
= yCO2 · S (4)

dQm

dt
= ym · S (5)

Conductive Heat Transfer
Thermal conductivity governs the rate of heat dissipation in
the corn stover storage (Karki et al., 2015). Heat transport by
conduction was experimentally performed with a feedback loop
through a water jacket in the corn stover storage reactor, as
described in section “Corn Stover Storage Reactor Experiments”
Conductive heat transfer (Qk) is modeled as a function of the
thermal conductivity (K), the characteristic length (L), the heat
flux area (A), and the net temperature difference between the corn
stover and water jacket (T2 − T1) following Eq. (6) (Incropera
et al., 2007). The spatially distributed reactor’s temperatures
obtained from the 15 K-type thermocouple wires (section
“Corn Stover Storage Reactor Experiments”) demonstrate that
the heat is diffusing faster near the top flange of the reactor,
suggesting heat losses through the stainless-steel parts of the
reactor as illustrated in Supplementary Material. K and A,
therefore, are treated as epistemic sources of uncertainty, as
explained in section “Validation, Calibration, and Prediction.”
The value of L is 0.08 m. The water jacket temperature was
obtained from the experimental work as described in section
“Corn Stover Storage Reactor Experiments.” and the corn

stover temperature is numerically solved, as described in section
“Thermal Capacitance.”

Qk = −
K
L
· A · (T2 − T1) (6)

Convective Heat Transfer
Heat is also transported from the corn stover to the local
atmosphere through convective heat transfer (Palm, 1983;
Bergman et al., 2011). Convective heat transfer (Qh) is modeled
as a function of the net temperature difference between the corn
stover and the ambient temperature (T2 − T1) and a heat transfer
coefficient (hi) (Bergman et al., 2011):

Qh = −hi · A · (T2 − T1) (7)

hi (8) is estimated from the Nusselt number (Nux) (9), the
air thermal conductivity (k), and L. The Nusselt number is a
function of the Reynolds number (Re) and the Prandtl Number
(Pr) (10). The Prandtl number is a function of kinematic viscosity
(ν), thermal diffusivity (α) (11), thermal conductivity (k), fluid
density (ρ), and fluid specific heat (Cp). The Reynolds number
(12) is a function of the fluid velocity (u), L, and the kinematic
viscosity (ν) (Bergman et al., 2011).

hi =
Nux · k

L
(8)

Nux = 0.0296 · Re4/5
· Pr1/3 (9)

Pr =
ν

α
(10)

α =
k

ρ · Cp
(11)

Re =
u · L
ν

(12)

Evaporation Heat Loss
Thermal energy can be lost from the system through evaporation
(Incropera et al., 2007). For the case of the corn stover storage
reactor, evaporation losses were measured daily, and the rate (E)
was computed as the derivative of the condensate volume ( 1V

1t ) as
described in section “Corn Stover Storage Reactor Experiments.”
The specific enthalpy (h) due to evaporation was used in the heat
balance, 2257 kJ kg−1 evaporated water, to compute the thermal
energy loss:

E = −h ·
1V
1t

(13)

Thermal Capacitance
The thermal capacitance (Cth) of the corn stover biomass is
defined as the capacity of the system to store thermal energy
(Palm, 1983; Ogata, 1998). This characteristic is a function of
thermal properties of the system including density (ρ), volume
(V), and the specific heat (c(wet)):

Cth = ρ · V · c(wet) (14)

Corn stover density at sieve materials sizes of 2 mm, 4 mm,
and 8 mm are reported at 942, 954, and 832 kg.m−3, respectively
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(Karki et al., 2015). The uncertainty of density is assumed
negligible in the model. The volume of the corn stover storage
reactor is 0.074 m3. Previous authors have demonstrated that
the specific heat of woody biomass depends on temperature
(T) and M (Ragland et al., 1991). This dependence has
not been researched for corn stover. Therefore, we used the
relationship for dry wood biomass [c(dry) = KJ kg−1 K−1

] as
given by Eq. (15) (TenWolde et al., 1988; Ragland et al., 1991).
A correction factor term for the specific heat of wet wood
biomass [c(wet) = KJ.kg−1.K−1

] is recommended to account for
the energy absorbed by the wood-water bonds as given by Eq. (16)
(TenWolde et al., 1988; Ragland et al., 1991).

c(dry) = 0.1031+ 0.00386 · T (15)

c(wet) = [c(dry)+ 4.19 ·M]/(1+M)

+ (0.02355 · T − 1.32 ·M − 6.191) ·M (16)

Lastly, the thermal capacitance of stainless steel was
considered in the total thermal capacitance by assuming a
stainless-steel density of 7750 kg.m−3 and a specific heat of 480 J
kg−1 K−1. The stainless-steel volume (Vss) was treated as an
epistemic uncertainty.

Energy Balance and Dynamic Thermal Simulation
The heat balance (qth) was computed by considering Qm, Qk, Qh,
and E following Eq. (17). The time history of the corn stover
storage temperature (18) is numerically calculated using the
Dormand–Prince (RKDP) method in Matlab R© at a variable time
step for reactors 1 through 4. The theory of the RKDP numerical
analysis method can be reviewed in Prince and Dormand (1981).

qth = Qm + Qk + Qh + E (17)

dT
dt
=

1
Cth
· qth (18)

Validation, Calibration, and Prediction
The predictive capability of the system dynamics model is
evaluated using the dataset gathered at the corn stover storage
reactor, as described in section “Corn Stover Storage Reactor
Experiments.” The temperatures of the corn stover and dry
matter losses were used to quantify the error between model
and experiment for the system dynamics model. The error of the
system dynamics model, temperature and substrate, is quantified
as the difference between each experimental data point (Yi) and
the value of the model at each time step [f (x)i] (19) (Oberkampf
et al., 2004b). The dynamic thermal model error was quantified
by the mean absolute relative error (20). The predicted dry matter
loss relative error is quantified from Eq. (21) at quasi-steady state.

error = f (x)i − Yi (19)

Mean Absolute Relative Error = 1/n ·
n∑

i=1

∣∣f (x)i − Yi
∣∣ (20)

Relative error =
(∣∣Y − f (X)

∣∣ /Y) · 100 (21)

The parameters of the storage reactor system are calibrated
using the data from reactor 2. Calibration was performed

to estimate epistemic uncertainties, including the cardinal
temperatures of microbial growth, the heat evolution per
unit substrate degraded, substrate decay rate, heat flux
area, and stainless-steel volume. These parameters, the
baseline, and bounds values are summarized in Table 2.
The parameters were simultaneously calibrated by minimizing
the error of the model concerning the experimental data
based on a cost function (22) using the Levenberg–Marquardt
algorithm to solve the non-linear least-square problem with
a parameter tolerance of 1e−6 in Matlab. For an extensive
theory of the Levenberg–Marquardt algorithm, see reference:
(Moré, 1978).

Cost Function =
∑

error2 (22)

These calibrated parameters were then used for model
validation using the model input data (Table 1) from reactors
1, 3, and 4 (Oberkampf et al., 2004b; Ferson et al., 2008; Roy
and Oberkampf, 2011). The propagated uncertainty in the overall
system includes the uncertainty in inputs from the validated
system dynamics model (Roy and Oberkampf, 2011).

TABLE 2 | Parameters, baseline, and bounds for the system dynamics model
calibration.

Parameter Baseline Lower bound Upper bound

Topt (◦C) 41.3 35 55

Tmin (◦C) 4.9 0 20

Tmax (◦C) 65 55 75

ym (J.g−1) 10 0 Infinite

kd (s−1) 8.9e−6 0 Infinite

K (W.m−1.K−1) 9 6 14

A (m2) 0.6 0.29 0.975

Vss (m3) 0.01 0 Infinite

FIGURE 3 | Reactor 2 experimental carbon dioxide and calculated cumulative
substrate degraded calculated from empirical glucose formula demonstrating
a bi-phasic growth curve in the system.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 July 2020 | Volume 8 | Article 777

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00777 July 9, 2020 Time: 20:45 # 7

Quiroz-Arita et al. Corn Stover Storage Reactor Model

FIGURE 4 | Reactor 2 substrate degraded calibration of system dynamics
model. The model inputs are 347 cc.min−1 airflow rates, 30% initial moisture
content, 17% final moisture content, 24◦C ambient temperature. The initial
model condition is 7080 g. The relative error is 2.0%.

RESULTS AND DISCUSSION

The results of this research are synthesized into three
components. First, we present the results of the epistemic

uncertainties calibration in the microbial system dynamics
model, compare the substrate degraded results gathered from the
experiments in the storage reactor 2, and discuss the relevance of
understanding the cardinal temperatures in the bi-phasic growth
in corn stover. Second, we present the results of the epistemic
uncertainties calibration in the dynamic thermal model, compare
the thermal results gathered from the experiments in the storage
reactor 2, and discuss the implications of the laboratory-scale
model in the development of field-scale storage models. Lastly,
we validate the system dynamics model to evaluate predictive
capability under different operating conditions. The temperature
and substrate degraded error of the model is assessed for the
storage reactors 1, 3, and 4. We discuss the importance of
developing a better understanding of the microbial communities
and biomass characteristics in the development of system
dynamics models.

Model Calibration Estimated the
Epistemic Uncertainties in Bi-Phasic
Microbial Substrate Degradation and
Heat Generation in Corn Stover Storage
This section presents the calibration results of the substrate
degradation model using the dataset gathered from reactor 2.
Figure 3 illustrates the experimental CO2 measured through
gas chromatography and the cumulative substrate degraded,
calculated from the empirical glucose formula. Corn stover

FIGURE 5 | Reactor 2 calibrated cardinal temperatures for two growth phases. The first growth phase optimum, minimum, and maximum temperatures are 46.7,
4.4, and 73.6◦C. The second growth phase optimum, minimum, and maximum temperatures are 38.5, 5.1, and 63.6◦C.
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storage in reactor 2 exhibited a bi-phasic microbial growth,
demonstrated through CO2 spikes at 0 and 11 days, and
the bi-phasic exponential curve in the substrate degraded. Bi-
phasic or diauxic growth was defined by Monod (1949) and
Chu and Barnes (2016) as a bi-phasic exponential growth and
intermitted lag-phase in cultivating media with two carbon
sources. Monod, for instance, identified this bi-phasic growth in
E. coli cultures with glucose and lactose media, where he observed
the strain utilized lactose as a secondary carbon source after
complete glucose depletion. The identification of the microbial
communities, chemical characterization, and fractionation in the
corn stover used in our experiments is beyond the scope of this
study. While kinetics is widely researched in the literature for
composting, our research is the first calibrating microbial kinetics
parameters of two growth phases in corn stover storage, including
the cardinal temperatures, decay rate, and heat evolution per unit
glucose degraded through a system dynamics model.

Figure 4 presents the calibrated substrate degraded predicted
by the model and compared to the experimental dataset in
the storage reactor 2. Model calibration estimated 50.1% of
the substrate degraded by the first growth phase, and the
remaining 49.9% by the second growth phase. The calibrated
lag stage of the second growth phase is 11.2 days. The
model results are consistent with the bi-phasic growth curve
demonstrated in the experiments, supported by Monod and Chu
and Barnes (Monod, 1949; Chu and Barnes, 2016). To accomplish
the agreement between model and experimental results, we
assumed moisture and temperature are the environmental factors
controlling the microbial respiratory activity and substrate decay
rate as previously studied in composting processes by others,
including Hamelers (2004); Richard and Walker (2006), and
Richard et al. (2006). This modeling strategy using dimensionless
environmental factors that control microbial growth in dynamic
thermal and biomass systems were successfully demonstrated in
predictive algal biomass models by Quiroz-Arita et al. (2020). We
computed the dimensionless moisture factor from experiments
at moisture content varying from 20 to 50% and Monod equation
(Supplementary Figure S1), where values of one represent ideal
conditions for biological activity that increase dry matter losses,
and values of zero representing inhibition of biological activity,
thus reducing dry matter losses. The cardinal temperatures for
the dimensionless temperature factor are epistemic uncertainties
in our model. Rosso L. identified a minimum temperature of
4.9◦C, an optimum temperature of 41.3◦C, and a maximum
temperature of 47.5◦C temperatures for Escherichia coli (Rosso
et al., 1993). We used these temperatures as the baseline
values for calibration, except for the maximum temperature
assuming a baseline temperature of 65◦C for thermophiles
in an uncertain range from 55 to 75◦C as supported in
extensive studies of these microorganisms by Brock, T.D. (Brock,
2012). Figure 5 illustrates the calibrated cardinal temperatures
for the two growth phases, one representing best microbial
respiratory activity and dry matter loss conditions and zero
representing inhibition.

The dimensionless temperature factor demonstrates that the
system temperature dynamically controls microbial respiratory
activity and substrate decay rate during storage. Figure 6

illustrates the dynamic response of the temperature factor in
reactor 2. At time zero corn stover is at 13◦C, near suboptimal
temperatures for the microbial respiratory activity, 4 and 5◦C in
this study for the first and second growth phases, respectively,
resulting in slow respiration and substrate decay rates. Microbial
respiration results in substrate oxidation and heat, elevating the
temperature in the system near-optimal conditions, 47 and 39◦C
in this study, increasing microbial respiration rates, substrate
decay rates, and heat. As additional microbial heat elevates
the system temperature, we approach inhibiting conditions, 74
and 64◦C in this study, which results in a reduction of the
system temperature. Table 3 presents the calibrated cardinal
temperatures and substrate decay rates for the two growth phases
in the corn stover storage reactor 2. The verification of these
calibrated microbial kinetics parameters is beyond the scope
of this research and can change under different environmental
conditions. Figure 7 shows that the cumulative dry matter
loss and microbial heat generation curves are consistent with
sigmoidal growth curves, as demonstrated by Kimura and
Takahashi (1985) in calorimetric studies of soil microbes.

FIGURE 6 | Dynamic response of microbial activity due to variations in the
thermal system. The environmental temperature (dimensionless) factor
represent ideal conditions for growth and organic matter loss as a value of 1.
Values of zero represent inhibiting conditions that reduce microbial growth and
dry matter loss. The model describes how environmental factors change
through time.

TABLE 3 | Calibrated parameters for two growth phases.

Parameter Growth phase 1 Growth phase 2

Topt (◦C) 46.7 38.5

Tmin (◦C) 4.4 5.1

Tmax (◦C) 73.6 63.6

kd (s−1) 7.6e−6 8.3e−6

ym (J g−1) 9.7 9.7

K (W m−1 K−1) 10.1 10.1

A (m2) 0.6 0.6

Vss (m3) 0.01 0.01
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FIGURE 7 | The model illustrates the dynamics of dry matter loss and microbial heat evolution. The sigmoidal microbial heat governs the temperature rise in the
system. Microbial activity and heat itself are dynamically controlled for the system temperature.

Experimental and model dry matter losses are 4.9 ± 0.28%
and 5.1% as calculated from the fraction of substrate degraded
of the original corn stover. Heat evolution per unit substrate
degraded is an epistemic uncertainty in our model. Heat per unit
substrate with other epistemic microbial kinetic parameters is
calibrated to minimize the integrated error by comparison of the
model to experiment substrate degraded. Our calibration process
provided a heat evolution per unit substrate degraded value of
9.7 J.g−1, three orders of magnitude lower than values obtained
by Kimura and Takahashi (1985) in soil with a glucose substrate.
Environmental factors can control heat evolution, including
moisture, carbon sources, and microbial and engineered feedback
temperature itself. A better understanding of the initial and final
organic matter characteristics and rigorous data collection of
water vapor with CO2 can improve the validation of microbial
heat in future upgrades of our model.

Model Calibration Estimated the
Epistemic Uncertainties of the Corn
Stover Storage Thermal System
The thermal system consists of the microbial heat evolution
results discussed in section “Model Calibration Estimated the
Epistemic Uncertainties in Bi-phasic Microbial,” conductive heat
transfer, convective heat transfer, evaporation heat loss, and
capacitance of the system. System dynamics has been widely

researched for thermal systems, our research, however, is the
first applied to understand the dynamic mechanisms between
the physical environment and microbial kinetics in corn stover

FIGURE 8 | Reactor 2 temperature calibration of the system dynamics model.
The model inputs are 347 cc.min−1 airflow rates, 30% initial moisture content,
17% final moisture content, 24◦C ambient temperature. The initial model
condition is 12.9◦C. The mean absolute error is 0.6◦C.
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TABLE 4 | Model temperature and dry matter loss error.

Parameter Reactor 1 Reactor 2 Reactor 3 Reactor 4 Mean

Mean absolute
relative error (◦C)

1.2 0.6 1.1 0.8 0.9 ± 0.3

Experimental dry
matter loss (%)

4.6 5.0 3.5 3.8 4.2 ± 0.7

Model dry matter
loss (%)

4.7 5.1 3.4 3.6 4.2 ± 0.8

Dry matter loss
relative error (%)

2.2 2.0 2.9 5.3 3.1 ± 1.5

storage reactors, calibrating epistemic parameters for this specific
experiment. Figure 8 presents the calibrated system temperature
predicted by the model and compared to the experimental
dataset in the storage reactor 2. The system temperature
demonstrates the effects of the bi-phasic microbial heat
generation and substrate respiration rates discussed in section
“Model Calibration Estimated the Epistemic Uncertainties in
Bi-phasic Microbial.”

Epistemic microbial kinetic and physical parameters in
the system are calibrated to minimize the integrated error
by comparison of the model to experimental temperature.
The reactor’s spatially distributed temperatures demonstrated

that the heat is diffusing faster near the top flange of the
reactor, suggesting heat losses through the stainless-steel parts
of the reactor, convective heat transfer, and evaporation as
illustrated in Supplementary Multimedia Material. Table 3
shows the calibrated thermal parameters, including thermal
conductivity (K) and heat flux area (A) used in the conductive
heat transfer, and stainless-steel volume (Vss) used in the
thermal capacitance. Our calibration process estimated K, A,
and Vss of 10.1 W m−1 K−1, consistent with values reported
in the literature for stainless steel (Incropera et al., 2007),
and 0.6 m2 and 0.01 m3, physically possible for the storage
reactor dimensions. Supplementary Figures S6, S7 illustrate
other means of heat loss than heat diffusion, including the
convective heat transfer and the evaporation heat loss. We
obtained an experimental heat transfer coefficient of 2.2 W
m−2 K−1, in agreement with values used in natural convection
of gases reported in the literature, 2–25 W m−2 K−1 (Incropera
et al., 2007). Evaporation heat loss was experimentally computed
from the derivative of the condensate volume and the specific
enthalpy. Lastly, Supplementary Figure S8 illustrates the
specific heat of biomass. The values obtained in the model
are consistent with dry wood values, 1200–1500 J kg−1 K−1

(Ragland et al., 1991), 20% moisture content wood, 1700–
2300 J kg−1 K−1 (Ragland et al., 1991), and dry corn stover,
1395–1610 J kg−1 K−1 (Dupont et al., 2014). The biomass

FIGURE 9 | Reactor 1 temperature (top) and substrate degraded (bottom) validation of system dynamics model. The model inputs are 365 cc.min−1 airflow rates,
31% initial moisture content, 15% final moisture content, 24◦C ambient temperature. The initial model conditions are 10.6◦C and 6456 g. The temperature mean
absolute error is 1.2◦C, and the dry matter loss relative error is 2.2%.
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specific heat governs the capacity of corn stover to store
heat in the system.

Model calibration of the thermal system model reduced
the mean absolute relative error to 0.6◦C, calculated from
the transient error (Supplementary Figure S2). Each reactor
was surrounded with a circulating water jacket set to offset
the internal temperature by −0.5◦C, therefore, predicted
temperatures below this value could have negative implications
in thermal conductivity calculations. Supplementary
Figures S3, S4, for instance, illustrate time intervals during
storage where corn stover temperature is above the water jacket
temperature, expecting thermal diffusion from the corn stover
to the surrounding water jacket. However, model corn stover
temperatures in such time intervals that mispredict values
below the water jacket governed the diffuse of heat from the
water jacket to the corn stover. Supplementary Figure S5
illustrates these implications in the calculations of conductive
heat transfer, where positive values represent the sources of
errors in our model. The closed-loop feedback system controller
starts at temperatures above 20◦C. Therefore, heat diffusion
from the water jacket to the corn stover is expected during the
lag phase of microbial respiration, and heat diffusion from the
corn stover to the water jacket is expected in the log phase of
microbial respiration. The constraints of our model are because
of the temperature control strategy in the surrounding water
jacket. Under field storage conditions, however, such controlling

strategies are absent, and a better prediction of conductive heat
transfer between the ambient air and corn stover is expected.

Model Validation Demonstrated the
Predictive Capability of the Storage
Reactor System
The performance of the system dynamics calibrated model is
evaluated using a dataset not used for calibration, including
reactors 1, 3, and 4. Table 1 includes the model inputs, and
Table 3 presents the calibrated parameters used in model
validation. We quantified the error of the system responses,
temperature, and substrate degraded against the dataset gathered
from experiments in reactors 1, 3, and 4. Table 4 synthesizes the
system temperature and dry matter loss error quantification of
the model for reactor 2, used for calibration, and reactors 1,3, and
4 used for validation. The mean absolute relative error quantifies
the system temperature error, and the dry matter loss relative
error quantifies the system substrate degraded error.

Figure 9 illustrates the evaluation of the model using the
dataset of reactor 1, which was not used for calibration. The
calibrated model successfully predicted the temperature and
substrate degraded of the system, where the mean absolute
relative error is 1.2◦C, and the dry matter loss relative error is
2.2%. Reactor 1 presents the bi-phasic growth characteristics of
Reactor 2. Therefore, the substrate degraded fraction for each

FIGURE 10 | Reactor 3 temperature (top) and substrate degraded (bottom) validation of system dynamics model. The model inputs are 1265 cc.min−1 airflow
rates, 29% initial moisture content, 18% final moisture content, 24◦C ambient temperature. The initial model conditions are 13.8◦C and 7071 g. The temperature
mean absolute error is 1.1◦C, and the dry matter loss relative error is 2.9%.
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FIGURE 11 | Reactor 4 temperature (top) and substrate degraded (bottom) validation of system dynamics model. The model inputs are 1209 cc.min−1 airflow
rates, 29% initial moisture content, 18% final moisture content, 24◦C ambient temperature. The initial model conditions are 13.5◦C and 7290 g. The temperature
mean absolute error is 0.8◦C, and the dry matter loss relative error is 5.3%.

growth phase, and the lag stage of the second growth phase
estimated for reactor 2 is valid for reactor 1. This validation was
expected as both reactors 1 and 2 have similar initial conditions
and model inputs, and operated airflows at 356± 13 cm3.min−1.
Figures 10, 11 illustrate the evaluation of the model using
the dataset of reactors 3 and 4, with operated airflows at
1237 ± 40 cm3.min−1. Reactor 3 temperature mean absolute
error is 1.1◦C, and the dry matter loss relative error is 2.9%.
Reactor 4 temperature mean absolute error is 0.8◦C, and the
dry matter loss relative error is 5.3%. The calibrated model
successfully predicted the system temperature of reactors 3 and
4. However, the calibrated model has constraints to represent
the bi-phasic growth in the substrate degraded, which reached a
steady state in a shorter residence time than reactors 1 and 2. As a
result, the substrate degraded fractions for the two growth phases,
and the lag stage for the second growth phase obtained through
calibration in reactor 2, are not valid under higher airflow rates
used for reactors 3 and 4.

Although a robust predictive capability of the calibrated
model is demonstrated for the system temperature in reactors
1, 3, and 4, a higher degree of uncertainty in the substrate
degraded is observed under different environments in reactors
3 and 4. We assumed in our model two growth phases
represented by two differential equations, and the calibrated
kinetic parameters predicted the substrate degraded for reactors
1 and 2. For reactors 3 and 4, a single differential equation

and the kinetic parameters calibrated for the second phase
predicted the substrate degraded with relative errors of 2.9
and 5.3% but cannot accurately represent the bi-phasic growth
observed in the experimental data. The studies of the carbon
sources and microbial communities existing in the experiments
are beyond the scope of this research. Additionally, a better
understanding of aerobic corn stover storage systems requires a
more comprehensive study of the microbial response to electron
acceptor variation (O2) and lag-phase evolution. For instance, a
recent study of Chu and Barnes (2016) demonstrated tradeoffs
between adaptation and high growth rates in bi-phasic growth,
with longer lag-phase in environments where switching carbon
sources in less frequent and shorter lag-phase in environments
where switching carbon sources is more frequent. These findings
and the constraints observed in our system dynamics model
highlight the need to refine the model inputs, including the
existing carbon sources and microbial strains, and develop a
better understanding of lag-phase adaptation in corn stover
storage systems.

CONCLUSION

Calibration and validation of an aerobic storage reactor system
demonstrated an average predictive temperature mean absolute
relative error of 0.9 ± 0.3◦C and dry matter loss relative
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error of 3.1 ± 1.5%. The thermal and substrate degraded
models were calibrated using data set from reactor 2, and
the predictive capability was demonstrated using data sets
from reactors 1, 3, and 4. These models show that lumped-
parameters assumptions for thermal and substrate degraded in
corn stover storage reactors are well-founded. The constraints
of our model indicate the importance of developing a better
understanding of the initial and final carbon sources, and
rigorous data collection of water vapor with CO2 to validate
microbial heat. Additionally, model development under field
storage conditions is expected to contribute to a better prediction
of conductive heat transfer between the ambient air and
corn stover. Lastly, a comprehensive characterization of carbon
sources and microbial communities, and lag-phase study in corn
stover storage systems will expand the predictive capability of
the model under other spectrums in the environment. This
contribution will allow us to scale the model to field conditions
incorporating seepage, convective heat transfer under wind and
bale orientation, precipitation, evaporation, and radiation. Future
model development under field conditions will contribute to
engineering strategies to control microbial activity, minimize dry
matter loss, reduce variability for biofuel conversion facility, and
improve technology sustainability.
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