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The Mongolian gerbil (Meriones unguiculatus), a well-known "multifunctional"
experimental animal, plays a crucial role in the research of hearing, cerebrovascular
diseases and Helicobacter pylori infection. Although the whole-genome sequencing of
Mongolian gerbils has been recently completed, lack of valid gene-editing systems for
gerbils largely limited the further usage of Mongolian gerbils in biomedical research.
Here, efficient targeted mutagenesis in Mongolian gerbils was successfully conducted
by pronuclear injection with Cas9 protein and single-guide RNAs (sgRNAs) targeting
Cystatin C (Cst3) or Apolipoprotein A-II (Apoa2). We found that 22 h after human
chorionic gonadotropin (hCG) injection, zygote microinjection was conducted, and the
injected zygotes were transferred into the pseudopregnant gerbils, which were induced
by injecting equine chorionic gonadotropin (eCG) and hCG at a 70 h interval and
being caged with ligated male gerbils. We successfully obtained Cst3 and Apoa2 gene
knockout gerbils with the knockout efficiencies of 55 and 30.9%, respectively. No off-
target effects were detected in all knockout gerbils and the mutations can be germline-
transmitted. The absence of CST3 protein was observed in the tissues of homozygous
Cst3 knockout (Cst3-KO) gerbils. Interestingly, we found that disruption of the Cst3
gene led to more severe brain damage and neurological deficits after unilateral carotid
artery ligation, thereby indicating that the gene modifications happened at both genetic
and functional levels. In conclusion, we successfully generated a CRISPR/Cas9 system
based genome editing platform for Mongolian gerbils, which provided a foundation for
obtaining other genetically modified gerbil models for biomedical research.

Keywords: Mongolian gerbils, CRISPR/Cas9, gene knockout, Cystatin C, Apolipoprotein A-II

INTRODUCTION

Mongolian gerbils (Meriones unguiculatus), belonging to the muridae family of rodentia, originated
in the steppes of Mongolia and have been used as laboratory animals for about 80 years. They are
beneficial for modeling various human diseases due to their unique features in cerebral vascular
development, metabolism, pathogeny, epilepsy and auditory etcetera (Lay, 1972; Zhu et al., 2007).
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For instance, Mongolian gerbils are widely used for studying
circle of Willis (CoW) variations and cerebral ischemia, as their
types and incidence of CoW variations are similar to humans,
and their single carotid artery ligation induced-stroke models
are more effective and reproducible than those in other animals
(Du et al., 2011, 2018; Martinez et al., 2012). A hereditable
spontaneous diabetic gerbil line established by us previously
presented moderate hyperglycemia, hyperinsulinemia, obesity
and diabetic pathophysiological lesions revealing gerbil’s value
in studying diabetic pathogenesis (Boquist, 1972; Li et al.,
2016). What’s more, the susceptibility and disease progression
of Helicobacter pylori (H. pylori) in gerbils is highly comparable
to that in humans making gerbils advantageous for studying
H. pylori-related gastropathy (Rieder et al., 2005; Wei et al.,
2010; Noto et al., 2016). Recently, the whole-genome sequencing
of Mongolian gerbils and Psammomys obesus (P. obesus) has
been completed (Hargreaves et al., 2017; Zorio et al., 2018),
which provided a referential database for future genome
editing programs of such organism. However, no gene-editing
Mongolian gerbil models have been reported before, which
limited the further usage of Mongolian gerbils in biomedical
research. Therefore, it is essential to establish an effective genome
editing platform in Mongolian gerbils.

The clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein 9 (Cas9) is a revolutionary
gene editing tool (Ma et al., 2014). By employing a single guide
RNA (sgRNA) chimera consisting of a fusion between crRNA and
tracrRNA and Cas9 protein, it generates targeted DNA double-
strand breaks (DSBs) and nonhomologous end joining (NHEJ)-
induced imperfect repair, which accounts for unintended
nucleotide insertions/deletions (indels) and subsequent gene
knockout (Jinek et al., 2012; Jiang and Doudna, 2017; Shen
et al., 2017). CRISPR/Cas9 has prominent versatility, efficiency,
simplicity and sequence-specificity over other gene editing tools,
and has been widely used in many organisms (Ruan et al., 2017),
suggesting that CRISPR/Cas9 system can be a valid tool for
generating gene knockout Mongolian gerbils.

Cystatin C (CST3), as the most important secreted cysteine
inhibitor, is extensively distributed in human organs and body
fluids, and functions in a variety of physiological processes, such
as proenzyme degradation and regulation (Seronie-Vivien et al.,
2008). A series of clinical investigations and in vitro studies
also reveal its role in tumorigenesis, cardiovascular and kidney
diseases (Shi et al., 1999; Odutayo and Cherney, 2012; Leto et al.,
2018). Recently, CST3 has also emerged as a potential neuron
protector in neurodegenerative diseases like Alzheimer’s disease
(AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis
(ALS) (Mathews and Levy, 2016; Zou et al., 2017; Watanabe
et al., 2018). In our inbred strain of ischemia-prone Mongolian
gerbils, Cst3 was identified as one of the differential expression
(DE) genes, which may link with different types of CoW (Li
et al., 2015). We also found that CST3 was involved in vascular
development by modulating endothelial cell proliferation and
migration (Li et al., 2018). However, the roles of CST3 in many
physiological and pathological processes, especially the roles in
brain protection, have not been fully clarified by using gene-
edited animal models.

Mongolian gerbils have the tendency to develop diabetes
(Boquist, 1972; Vincent et al., 1979). Recently, we have established
a spontaneous diabetic gerbil inbred strain after a 10-year
selective breeding (Li et al., 2016). By using our diabetic
models, Apolipoprotein A-II (Apoa2) was identified as a DE
gene in skeletal muscle (Guo et al., 2020). APOA2 is the
second most common component of high-density lipoproteins
(HDL), stabilizes HDL by suppressing their remodeling by
lipases (Warden et al., 1993). The polymorphism of Apoa2
is related to lipid metabolism, obesity and atherosclerosis
in human (Zaki et al., 2014; Lai et al., 2018). Low-density
lipoprotein (LDL) is the main cholesterol carrier in both
human and gerbils, whereas HDL is the major lipoprotein
and functional cholesteryl ester transfer protein (CETP) is
absent in mice (Maiga et al., 2014), revealing that Mongolian
gerbils may be a proper model to study functions of
lipoprotein, such as APOA2. However, the precise role of
APOA2 in metabolism, especially in gerbil metabolism, has
not been clarified.

In the present study, we reported the first successful strategy
for CRIPSR/Cas9-mediated gene editing in Mongolian gerbils,
and produced Cystatin C (Cst3) knockout and Apolipoprotein
A-II (Apoa2) knockout gerbils with high efficiency.

MATERIALS AND METHODS

Animals and Ethics
All experimental and animal program management in this
study was consistent with the guidelines of the Capital
Medical University Animal Experiments and the Experimental
Animals Management Committee and the Animal Research:
Reporting of in vivo Experiments guidelines (Kilkenny et al.,
2010). The study protocol was approved by the Animal
Experimental and Experimental Animal Ethics Committee of
the Capital Medical University (AEEI-2017-032). The closed
colony and the ischemia-prone inbred Mongolian gerbils
used in this study were domesticated and cultivated in
laboratory animal facilities of Capital Medical University with
a humidity of 40–65%, a temperature of 22 ± 4◦C and a 12L:
12D light cycle.

Preparation of sgRNAs
sgRNAs targeting different genes were designed according
to the Feng Zhang’s online protocol1. A specific sequence
complementary to the sticky end of BsaI was added to the
sgRNA sequences, and the Oligo DNA synthesis primers
were obtained by chemical synthesis (Supplementary
Table S1). A pair of oligonucleotides for each sgRNA was
annealed and cloned into BsaI sites of pX330 expression
vector (Addgene plasmid ID: 42230). To obtain transcription
templates, sgRNA sequences were amplified from sgRNA-
pX330 expression vector by using specific primers
(Supplementary Table S2). After sequencing, sgRNAs
were transcribed by using mMESSAGE mMACHINE R© T7

1http://www.genome-engineering.org/crispr/
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FIGURE 1 | The procedure of embryo manipulation in generating CRISPR/Cas9-induced gene knockout gerbils. The morphology of the fertilized eggs of gerbils after
hCG injection 17 h (A), 20 h (B) and 22 h (C), respectively. The tray for detecting gerbil mating vaginal plus (D). The mating rates after natural cages at different
timepoints (E). The numbers of progeny after different numbers of fertilized eggs were transferred into recipient gerbils (F). The numbers of live offspring/the numbers
of transferred fertilized eggs (G). The optimized experimental operation flow chart (H).

ULTRA Transcription Kit (Invitrogen, AM1345, United States)
and purified by MEGAclearTM Transcription Clean-Up
Kit (Invitrogen, AM1908). The purity of sgRNAs was
confirmed by RNA concentration measurement and RNA
electrophoresis.

Superovulation and Preparation of
Foster Mothers
According to our previous reports (Tang et al., 2015),
6–8-week-old female closed colony Mongolian gerbils were
superovulated by intraperitoneal injection of 10 IU equine
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chorionic gonadotropin (eCG) (Ningbo Second Hormone
Factory, China) at 4 pm to 5 pm on the first day and followed
by injection of 10 IU human chorionic gonadotropin (hCG)
(Ningbo Second Hormone Factory) at 2 pm to 3 pm on the
fourth day, and then were mated with fertile males. Embryos
from oviducts were collected at 19 h after caging. Ten-week-
old female closed colony gerbils were mated with ligated
males to produce pseudopregnant foster mothers. What’s more,
trays were used here to examine the copulation plugs after
mating in gerbils.

Microinjection and Embyro Transfer
For cytoplasmic injection, sgRNA (50 ng/µL) and Cas9 protein
(32 ng/µL) (NEB, M0386T, United States) was diluted and mixed
by ddH2O without ribozyme. 3–7 pL solutions were injected
into an embryo cytoplasm. The injected embryos were cultured
in M2 medium (Sigma-Aldrich, M7167, United States) at 37◦C
in 95% humidified air and 5% CO2 over 0.5 h. The embryos
with normal morphology were transferred into the oviduct of a
pseudopregnant Mongolian gerbil. The foster mothers naturally
delivered and raised their pups.

Analysis of Offspring Genotypes
DNA was extracted from pup’s ears by a phenol chloroform
extracting method. PCR was performed by using DreamTaqTM

Hot Start Green PCR Master Mix (Thermo Fisher Scientific,
K9021, United States) in accordance with the following
conditions: pre-denaturation at 95◦C for 5 min; 35 cycles
of denaturation at 95◦C for 30 s, annealing at 60◦C for
30 s and extension at 72◦C for 1 min; 72◦C for 7 min
with gene specific primers (Supplementary Table S3).
PCR products were analyzed by Sanger sequencing. The
PCR products which harbor mutations were subcloned
into a pMD19-T vector using pMD19-T Vector Clone Kit
(Takara, 6013, Japan). Each subcloned vector was analyzed by
direct sequencing.

Preparation of the Anti-Mongolian Gerbil
CST3 Polyclonal Antibody
Total RNA was extracted from Mongolian gerbil brain and
reversely transcribed into cDNA. The coding domain sequence
(CDS) region of Mongolian gerbil Cst3 was amplified by
forward primer “5′-ATGGCTAGCCCACTACGATCC-3′” and
reverse primer “5′-TTAAGCGCTTTTGCAGCTGGA-3′”. The
DNA was ligated to the pMD19-T vector for TA cloning and
sequencing. The sequence of Cst3 CDS region was subjected
to codon optimization, in vitro synthesis, enzyme digestion
and vector ligation, and then the in vitro expression vector
of SUMO-CST3 was obtained. The recombinant SUMO-CST3
protein was induced to express with 1 mmol/L isopropyl
β-D-Thiogalactoside (IPTG) at 37◦C for 12 h. Then the
protein was purified following the inclusion body protein
purification process and harvested at a concentration of
6.0 mg/mL. A rabbit was immunized with the purified
recombinant CST3 protein four times to obtain an anti-CST3
polyclonal antibody.

Western Blotting Analysis
Total protein was extracted using a tissue protein extraction
kit (CWBio, CW0891M, China) containing protease inhibitors
(PMSF) (CST, 8553S, United States) and quantified by PierceTM

Rapid Gold BCA Protein Assay Kit (Thermo Fisher Scientific,
A53225). Protein lysates were separated by 15% SDS-PAGE at
120 V and electrotransferred to 0.22 µm nitrocellulose blotting
membranes (PALL, 66485, United States) at 70 V for 2 h. After
blocking in 5% non-fat milk (BD, 232100, United States) for
1 h, the membranes were incubated with the anti-Mongolian
gerbil CST3 polyclonal antibody or the anti-GAPDH antibody
(CST, 5174, United States) overnight at 4◦C. After washes
and incubation in 1:5000 dissolved secondary antibodies for
1 h at room temperature, the membranes were visualized
using PierceTM ECL Western Blotting Substrate (Thermo Fisher
Scientific, 32106) and scanned by Gel DocXR System in Bio-Rad
Laboratories (Bio-Rad, United States).

Analysis of Off-Target Sites
To assess the site-specific cleavage in Cas9/sgRNA-mediated
mutant gerbils, the potential off-target sites were searched
in the whole Mongolian gerbil genome2 and were selected
based on the following rules: (1) the sequences had no more
than four mismatches to the sgRNAs, (2) the protospacer-
adjacent motif (PAM) sequences were NGG or NAG. And
we scored the potential off-target sites by using algorithms
from CasFinder3 (Aach et al., 2014) (Supplementary Table S4).
A higher score meant the sites had more chance to bind
with Cas9–sgRNA complexes. Ten sites with the highest scores
were amplified from all founders. The primers were listed
in Supplementary Tables S5, S6. PCR was performed in the
following conditions: pre-denaturation at 95◦C for 5 min; 35
cycles of denaturation at 95◦C for 30 s, annealing at 60◦C for 30
s and extension at 72◦C for 1 min; 72◦C for 7 min. PCR products
were analyzed by Sanger sequencing.

Establishment of Cerebral Ischemia
Animal Model and Assessment of
Neurological Deficits
Ten to twelve, 12–16-week-old Cst3 knockout (Cst3-KO)
homozygous gerbils (half males and half females) and their
wild type (WT) controls were anesthetized by diethyl ether,
respectively. Unilateral common carotid artery ligation was
performed on all animals.

After a 1 h ligation, the vertical grid experiment, which was
improved based on the climbing board test and the vertical pole
test (Yonemori et al., 1998; Bouet et al., 2007), was performed
here to evaluate the gerbil’s forelimb strength, grasping ability,
motion coordination and responsiveness. Place the gerbils on the
iron wire with a 0.5 cm spacing horizontally. After balancing for
10 s, the iron net was turned quickly to be vertical, and whether
the gerbil could fix its body on the wire net and whether it could
crawl was observed. If the gerbil could not catch the iron net and

2https://www.ncbi.nlm.nih.gov/assembly/GCF_002204375.1
3http://arep.med.harvard.edu/CasFinder/
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fell off within 20 s, it was recorded as “3 points;” if it fell within
20–40 s, it was recorded as “2 points;” if the gerbil could keep
itself on the iron net or could continuously crawl for more than
40 s, “0 point” was recorded.

The Zea-Longa method is widely used to measure neurological
deficits in middle cerebral artery occlusion-induced cerebral
ischemia models in mice and rats (Longa et al., 1989). However,
the phenotypes observed in unilateral common carotid artery
ligation-induced cerebral ischemia gerbils were progressively
more severe with the prolongation of ischemia time, and the
phenotypes were more variable, compared with those in mice
and rats (Ito et al., 2013). Therefore, to describe the severity
of the symptoms more accurately within 10 h after ligation in
gerbils, we established a “10-point evaluation method.” If one of
the following phenotypes (eyelid drooping, limb deflection, spin,
spin radius less than 3 cm, jump or excavation, turnover, loss of
consciousness, incontinence, death during 5–10 h, death within
5 h) occurs, we appended one point to the injury score, and the
higher the score is the more severe the disease is.

2, 3, 5-Triphenyl-Tetrazolium Chloride
Solution (TTC) Staining
TTC was conducted as reported previously (Chelluboina et al.,
2014). TTC was conducted as reported previously. Briefly, after
10 h of ligation and euthanasia by cervical dislocation, an intact
brain was quickly isolated, and frozen in −20◦C for 20 min,
and then cut into 2 mm thick brain slices along the coronal
position with blades. Next, the brain slices were placed into a
2% TTC solution (Solarbio, T8170), stained for 1 h at room
temperature, and fixed overnight by 4% paraformaldehyde at
4◦C. The ipsilateral brain slices were captured and analyzed by
Image J to calculate the infarct volumes.

Identification of the Anatomical Patterns
of CoW in Gerbils
The anatomical structures of the posterior communication artery
(PCoA) and the anterior communication artery (ACA) in WT
and Cst3-KO gerbils were observed under a stereoscope after
euthanasia and autopsy. According to the previous reports (Du
et al., 2006), all gerbils used here were identified absent of PCoA.
And the types of ACA were classified as complete, incomplete
(the left, the right or the bilateral ACAs were much smaller) and
absent (the left, the right or the bilateral ACAs were absent).

Metabolic Phenotyping of Apoa2-KO
Gerbils
Metabolic phenotyping of 12-week old Apoa2-KO gerbils were
analyzed. After 16 h of fasting, body weight and serum glucose
levels of Apoa2-KO gerbils were measured. After 16 h of fasting,
the animals were given D-glucose orally at 2 g/kg body weight to
test oral glucose tolerance test (OGTT). The blood glucose values
were measured using a glucometer (SANNUO, China).

Statistical Analysis
All data were expressed as "mean ± SEM." The differences of
CoW patterns between WT and Cst3-KO gerbils were analyzed

by the chi-squared test, and other data were analyzed by t-test
or the variance analysis with SPSS 21.0 software. p < 0.05
denotes statistically significant. All experiments were repeated
at least 3 times.

RESULTS

Embryo Transfer of Mongolian Gerbils
The reproductive characteristics of Mongolian gerbils, such as the
time of sexual maturity and the duration of estrous cycle and
gestation, are greatly different from those of mice (Nishino and
Totsukawa, 1996; Chen et al., 2014; Gonzalez, 2016; Yoshida et al.,
2016; Vidal and Filgo, 2017). And resulting from monogamy
and strong aggressiveness, death often occurs when heterosexual
gerbils mate. Thus, it is challenging for embryo manipulation
of Mongolian gerbils. To establish the CRISPR/Cas9 system in
gerbils, we first developed the procedure of embryo manipulation
in gerbils. We previously proved that the best superovulation
protocol was to inject 10 IU eCG and hCG at a 70 h interval
(Tang et al., 2015). Here, the timepoint of microinjection was
assessed by identifying the appearance of pronucleus. 17 h after
hCG injection, the pronucleus of zygotes began to appear, the
proportion of zygotes with pronucleus increased to 80% at 20 h
after hCG injection, and the proportion peaked (about 90%) at
22 h after hCG injection (Figures 1A–C). Thus, the optimal
timepoint for microinjection in Mongolian gerbils was set at 22 h
after hCG injection.

Next, we optimized the strategy for preparing foster mothers.
Given that gerbils’ copulation plugs fall off easily, trays were
used to examine the vaginal plugs of gerbils (Figure 1D). After
mating with a male, the vaginal plug number of each female
ranged from 1 to 5 (was usually 3–4) per night (data not
shown). Notably, the natural mating rate was less than 10%
within the first 3 days (0–64 h), but this rate increased to
47.62% on the fourth day of cohabitation (88 h) (Figure 1E and
Table 1). Meanwhile, the mating rate of gerbils treated with 10
IU eCG and hCG was 57.69%, while 5 IU or 7.5 IU eCG/hCG
injection only caused 16.67% (1/6) and 0 (0/3) couples to mate,
respectively (Table 1). No significant differences were found
between the pup numbers of the foster mothers with natural
estrus and with hormone-induced estrus (data not shown). And
litter sizes increased with the increasing number of transferred
embryos. When 20–22 embryos were transferred, the offspring
number was about 5, close to that of naturally-mating gerbils
(Figures 1F,G).

Taken together, the optimal procedure of superovulation
and embryo transfer for generating CRISPR/Cas9-induced gene
knockout gerbils was as follows: 6-week-old female gerbils were
injected with10 IU eCG /hCG at a 70-h interval, then were caged
with males. Zygotes were collected at 17 h after hCG injection
and microinjection was performed at 22 h after hCG. To prepare
pseudopregnancy gerbils, 10–12 week-old female gerbils were
caged with ligated males after injection with 10 IU eCG /hCG at a
70 h interval. The vaginal plug was checked by a tray, and 20–22
fertilized eggs were transferred into a unilateral fallopian tube of
a foster mother (Figure 1H).
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TABLE 1 | The comparison between hormone-induced and natural mating rates
in gerbils.

eCG
doses

hCG
doses

Cohabitation
time

Mating rates

Hormone-induced
mating

5 IU 5 IU 16 h 16.67% (1/6)

7.5 IU 10 IU 16 h 0 (0/3)

10 IU 10 IU 16 h 57.69% (15/26)

Natural mating 16 h 5.88% (1/17)

40 h 10% (1/10)

64 h 0 (0/9)

88 h 47.62% (10/21)

Generation of Cystatin C Knockout
(Cst3-KO) and Apolipoprotein A-II
Knockout (Apoa2-KO) Gerbils by
Cytoplasmic Microinjection of sgRNA
and Cas9 Protein
In order to construct gene knockout Mongolian gerbils, we
designed sgRNAs targeting gerbil Cst3 and Apoa2 gene, because
of their essential roles in multiple physiological and pathological
processes (Basiri et al., 2015; Mathews and Levy, 2016; Lai et al.,
2018; Leto et al., 2018). Two sgRNAs pairs targeting Cst3 or
Apoa2 in gerbils were designed by Feng Zhang’s online protocol,
respectively (Figures 2A, 3A). 50 ng/µL sgRNA and 32 ng/µL
Cas9 protein was microinjected into the cytoplasm of fertilized
eggs of Mongolian gerbils. As shown in Table 2, the survival
rates of the injected zygotes were 81.3% (80.5–88.1%), which
were comparable to those in mice and hamsters (Fan et al.,
2014; Harms et al., 2014). The gene editing efficiencies in Cst3-
KO and Apoa2-KO gerbils were 55% (11/20) and 30.9% (17/55),
respectively, similar with those in mice (50%), rats (29–53%)
and hamsters (14.3–88.9%) (Fan et al., 2014; Guan et al., 2014;
Harms et al., 2014).

Cst3 gene of 11/20 pups was mutant after injection of
Cas9 and sgRNA Cst3-E1-2 (Figure 2A). Sanger sequencing
showed that Cas9/Cst3-E1-2 sgRNA targeted exon 1 of Cst3,
and resulted in deletions of 2, 6, 11, or 39 nucleotides (fetuses
with a 6-bp or 39-bp deletion died before birth) (Figures 2B,C
and Supplementary Figure S2). All the Cst3 mutations were
transmitted to offspring by mating with the ischemia-prone
inbred gerbils (Figure 2D). The 2 bp or 11 bp deletion of Cst3
was predicted to cause the truncation of the protein, which can
reduce its length to 72 aa or 69 aa, respectively (Figure 2E). To
confirm the absence of CST3 at protein levels in the Cst3-mutant
gerbils, a rabbit anti-Mongolian gerbil CST3 polyclonal antibody
was produced first, and a single band at the predicted molecular
weight revealed its specificity (Supplementary Figures S3A,B).
Western blotting showed that CST3 expression decreased in
the heterozygous gerbils and was completely absent in Cst3-KO
homozygous gerbils (Figure 2F).

17/55 pups were genetically modified after injection of
Cas9/sgRNA Apoa2-E2-2 (Figure 3A). Sanger sequencing
showed that Cas9/Apoa2-E2-2 sgRNA targeted exon 2 of Apoa2,

and resulted in deletions of 3, 5, 10, 15, 29, or 30 nucleotides
(Figure 3B and Supplementary Figure S4). Their genotypes
were summarized in Figure 3C (fetuses with a 5-bp, 10-bp or
30-bp deletion died before birth). All Apoa2 mutations can be
germline-transmitted by mating with our closed group gerbils
(Figure 3D). The amino acid sequences expressed by different
Apoa2 mutations were predicted. Except for the 15 or 30 bp
deletion, all other genotypes exhibited premature termination
and produced truncated proteins (Figure 3E). In summary,
we successfully generated a CRISPR/Cas9 protocol for genome
editing in Mongolian gerbils firstly.

Off-Target Analysis
CRISPR/Cas9 system may introduce off-target effects (Fu et al.,
2013; Wu et al., 2014). Because the Mongolian gerbil genome
was not added into the database of the off-target analysis websites
such as CasFinder. Here, we first developed algorithms referring
to CasFinder, and by using the algorithms we screened the
Mongolian gerbil genome. The sequences containing ≤ 4 bp
mismatches were considered as potential off-target sites, and the
indel events that occurred within 20 bp up-stream or down-
stream of the potential off-target sequences were considered as
off-target effects. Ten off-target sites with the highest scores
were amplified. PCR genotyping and Sanger sequencing showed
that no off-target effects were observed in the founders of both
Cst3-KO and Apoa2-KO gerbils (Supplementary Figures S5, S6).

Aggravated Brain Damage in Cerebral
Ischemic Gerbils of Cst3-KO Gerbils
CST3 has emerged as a potential neuroprotective and
angiogenesis function in neurodegenerative disease like AD, PD,
and ALS (Mathews and Levy, 2016; Zou et al., 2017; Watanabe
et al., 2018). The variation of CST3 expression level may link with
different types of CoW in our inbred strain of ischemia-prone
Mongolian gerbils (Li et al., 2015; Du et al., 2018). However,
whether CST3 is involved in CoW development and brain
recovery after cerebral ischemia are not fully understood. Here,
to verify the functional deficiency of CST3 in Cst3-KO gerbils
and to assess the role of CST3 in stroke, we ligated unilateral
carotid arteries of gerbils, and found that the brain infarct areas
of Cst3-KO gerbils (23.2 ± 1.91%) were significantly larger than
those of WT gerbils (15.6 ± 1.75%) by the TTC staining assay
(Figures 4A,B). CST3 deficiency also aggravated the neurological
function deficits and severely impaired the grip strength of
forelimbs (Figures 4D,E). On the other hand, Cst3 knockout did
not influence body weight and the anatomical patterns of PCoA
and ACA in gerbils (Figures 4C,F). Therefore, our data indicated
that CST3 was functional deficient in Cst3-KO gerbils and CST3
has brain protective effects on cerebral ischemia.

DISCUSSION

The whole-genome sequencing of Mongolian gerbils has been
recently completed (Zorio et al., 2018). However, no gene editing
of gerbils has been ever been reported. In the current study,
by optimizing the experimental procedures for microinjection,
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FIGURE 2 | Genotypic identification of Cst3-KO gerbils. The sgRNA sequences targeted to exon 1 of Cst3 (A). PCR amplification and agarose gel electrophoresis of
Cst3 gene (B), and their genotypes (C) of gerbil founders. The target sequences were highlighted in blue and the PAM sequences were highlighted in red. The
founders were mated with the ischemia-prone inbred gerbils, and the mutations were inherited by the F1 generation (D). CST3 amino acid sequences in wild type
(WT) Mongolian gerbils and the predicted amino acid sequences in Cst3 mutant gerbils (E). Western blotting was employed to measure the expression of CST3
protein in Cst-KO gerbils, and the purified recombinant CST3 protein with His tag was treated as a positive control (F).
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FIGURE 3 | Genotypic identification of Apoa2-KO gerbils. The sgRNA sequences targeted to exon 2 of Apoa2 (A). PCR amplification and agarose gel
electrophoresis of Apoa2 gene (B) and genotypes (C) of a part of gerbil founders. The target sequences were highlighted in blue and the PAM sequences were
highlighted in red. The founders were mated with closed group gerbils, and the mutations were inherited by the F1 generation (D). APOA2 amino acid sequences in
WT gerbils and the predicted amino acid sequences in Apoa2 mutant gerbils (E).
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TABLE 2 | The generation of the two knockout gerbils.

sgRNA sgRNA
concentrations

Cas9 concentrations Injected embryos Survival embryos
(% of injected

embryos)

Transferred
embryos

Live pups (% of
transferred
embryos)

KO (% of live
pups)

Cst3-E1-1 50 ng/µL 32 ng/µL 106 85 (80.2) 85 12 (14.1) 0 (0)

Cst3-E1-2 155 127 (89.1) 127 20 (15.7) 11 (55)

Apoa2-E2-1 42 37 (88.1) 37 5 (13.5) 0 (0)

Apoa2-E2-2 308 248 (80.5) 248 55 (22.2) 17 (30.9)

FIGURE 4 | The deficiency of CST3 aggravated brain damage in cerebral ischemic gerbils. Brain infarct volumes were evaluated by TTC staining at 10 h after
unilateral carotid artery ligation in gerbils, n = 10–12 per group (A). And the proportions of infarct volume were calculated by image J (B). The body weight of the
Cst3-KO group and the WT group (C). The neurological deficit scores were assessed at 10 h after unilateral carotid artery ligation (D). The scores of the vertical grid
experiment, which was performed to evaluate the gerbil’s forelimb strength, grasping ability, motion coordination and responsiveness, were measured at 1 h after
unilateral carotid artery ligation (E). The percentages of each type of PCoA and ACA in WT and Cst3-KO gerbils (F), n = 20–21 per group. * and ** denote p < 0.05
and p < 0.01, respectively.

fertilized egg transfer, and recipient preparation, we successfully
obtained germline-transmitted Cst3-KO and Apoa2-KO gerbils
using a CRISPR/Cas9 system, and no off-target effects were
detected in all knockout founders. Interesting, to further assess
the functional deficiency of CST3 in Cst3-KO gerbils and to
determine the role of CST3 in stroke, the unilateral carotid
arteries of Cst3-KO gerbils were ligated and the animals showed
more severe brain damage and neurological deficits than WT
controls, indicating the validation of our knockout system in
gerbils and a neuroprotective role of CST3 in cerebral ischemia.

The reproductive physiology and behavior of Mongolian
gerbils is greatly different from that of mice and rats. Mouse
sexual maturity occurs at 6–8 weeks old, estrous cycle lasts for 4–5
days, and gestation period is 19–21 days (Gonzalez, 2016; Yoshida
et al., 2016; Vidal and Filgo, 2017). In contrast, gerbils don’t attain
sexual maturity until 10–12 weeks old, their sexual cycle lasts
for 4–6 days, and gestational period is 25–27 days (Nishino and
Totsukawa, 1996; Chen et al., 2014). Consistently, we previously
reported that the superovulation protocol for gerbils was to inject

10 IU eCG and hCG at a 70 h interval (Tang et al., 2015), longer
than that in mice. To avoid the formation of chimeric animals,
it is important to measure the time point that pronucleus occurs
(Sato et al., 2018). Mouse pronucleus is usually observed at 15–
20 h after hCG injection, while our study showed that pronucleus
formation in gerbils was at 17–22 h after hCG injection.

The preparation of receipt gerbils and embryo transfer is
another challenge. In gerbils, the mating time is uncertain and the
mating rates within the first 3 days was less than 20% after natural
cages. Norris and Adams (1981) reported that the copulation plug
in gerbils does not disappear until the next morning. But in our
gerbil line, vaginal plugs in 29/30 gerbils cannot be detected even
at 4 am in the next morning after cohabitation. Thus, the trays
were used to collect the dropped vaginal plugs, which indicates
successful mating. It is noticeable that the mortality of gerbils
after natural cages was about 10–20%, due to their monogamy
and strong aggressiveness. A previous study suggests that the
conception rates of gerbils increased by hormone injection
(Wu, 1974). Here we induced estrus in recipient females by
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hormone injection, which significantly increased the mating rates
and decreased the mortality in gerbils. In our study, the progeny
numbers were 5–7 after transferring 20–22 eggs into a receipt
gerbil, which was a suitable embryo transfer approach concluding
from its similar litter size to that after natural mating (Zhu
et al., 2007). Therefore, the optimized procedures of embryo
manipulation provided a basis for CRISPR/Cas9 gene editing in
Mongolian gerbils.

Here we generated gene knockout gerbils by microinjection of
Cas9 proteins and sgRNAs into the cytoplasm of fertilized eggs
of Mongolian gerbils, for Cas9 protein injection can mitigate off-
target effects to some extent, relative to Cas9 mRNA injection.
In our study, the survival rates of the microinjected eggs were
greater than 80%, indicating that the damage of microinjection
is negligible in gerbils. Our gene editing efficiencies in Cst3-
KO and Apoa2-KO gerbils were 55 and 30.9%, respectively,
similar with those in mice (50%), rats (29–53%), golden Syrian
hamsters (14.3–88.9%), monkeys (46.47%), and zebrafish (24.1–
59.4%) (Hwang et al., 2013; Fan et al., 2014; Ni et al., 2014;
Chen et al., 2015; Bakondi et al., 2016; Vejnar et al., 2016;
Ryu et al., 2019). Furthermore, the mutations can be germline
transmitted. CST3 was absent in Cst3-KO homozygous gerbils
at protein levels. Taken together, we successfully constructed
Cst3-KO and Apoa2-KO gerbils with different genotype using
CRISPR/Cas9 technology.

CRISPR/Cas9 system can lead to off-target mutations due
to the effect of mismatch tolerance in a sequence and position
dependent manner (Fu et al., 2013; Hsu et al., 2013). In mice,
off-target effects only occur in the sites that have one or two
base mismatches depending on their positions at the sgRNAs,
and do not occur in the sites with ≥ 3-base pair mismatches
(Yang et al., 2013). Therefore, by optimizing sgRNA design,
CRISPR/Cas9-induced off-targeting events in vivo are very rare
(Dong et al., 2019). Few off-target effects are discovered in
CRIPSR/Cas9-mediated gene-modified pig, monkey, Drosophila,
golden Syrian hamster, and goats (Hwang et al., 2013; Fan et al.,
2014; Guan et al., 2014; Ni et al., 2014; Vejnar et al., 2016).
Consistently, in the present study, no off-target effects were
detected in the Cst3-KO or Apoa2-KO gerbils. The possible
reason is that all predicted off-sites in our study had two or
more base pair mismatches, which dramatically reduced non-
specific Cas9 cleavage. Moreover, whether the sgRNA/Cas9-
independent genomic mutations occurred is still unclear, which
needs further investigations by employing the genome-wide,
unbiased method, such as genome-wide, unbiased identification
of DSBs enabled by sequencing (Guide-seq) and high-throughput
genome wide translocation sequencing (HTGTS) (Tsai et al.,
2015; Yin et al., 2018).

Cst3-KO mice are healthy and fertile, and grow at a normal
rate (Huh et al., 1999). Consistently, we had not found any
differences in body weight, development and fertility between
Cst3-KO and wild type gerbils. Recently, a protective role
of CST3 against neuronal damage is emerging. For instance,
CST3 increases neuron viability by inhibiting autophagy and
cathepsin B (Cat B) in Cu/Zn-superoxide dismutase (SOD1)-
mutant, or cytotoxicity-exposed neuroblastoma cell lines and
primary cultured motor neuronal cells (Tizon et al., 2010;

Watanabe et al., 2014). CST3 administration also promotes
neuronal survival and angiogenesis by increasing VEGF in PD
neurovascular units (Zou et al., 2017). CST3 maintains blood-
brain barrier integrity by regulating caveolin-1 expression after
stroke in mice. And CST3 deletion aggravated brain damage
after ischemia-reperfusion in mice (Olsson et al., 2004). Here,
to further analyze the phenotypes and to verify the functional
deficiency in Cst3-KO gerbils, we ligated unilateral carotid
arteries of gerbils. The Cst3-KO gerbils displayed more cerebral
ischemic areas and higher neurological damage scores than did
wild-type gerbils, indicating that CST3 was involved in post-
ischemic brain protection. Consistently, the inhibitor treatment
of Cat B and L, suppressing targets of CST3 (Melander et al., 2009;
Lopes et al., 2019), also reduces infarct volumes and improves
neurological deficits in cerebral ischemic rats (Xu et al., 2014).
In addition, both WT and Cst3-KO gerbils showed the absence
of PCoA, and no differences in the types of ACA, revealing
that CST3 null did not change the anatomy structures of PCoA
and ACA in gerbils. Therefore, our data indicated that CST3
alleviated post-ischemic brain damage. By testing a series of
behavioral experiments, we also found that the aging Cst3-KO
gerbils showed a decrease of social discovery and depression
trend (data not shown), indicating that CST3 may have multiple
protective roles in brain.

In the present study, Apoa2-KO gerbils had no significant
differences in body weight, blood glucose and glucose tolerance,
compared with controls (Supplementary Figures S7A–C). In
human, increasing APOA2 synthesis does not influence glucose
tolerance (Kalopissis et al., 2003). Apoa2 variants does not
link with type 2 diabetes susceptibility (Duesing et al., 2009).
However, Apoa2-KO mice display decreased blood glucose, HDL,
cholesterol and free fatty acid (FFA) (Weng and Breslow, 1996).
Apoa2 overexpressed mice display increased body weight, blood
glucose, HDL, cholesterol and FFA (Castellani et al., 2001),
revealing the inconsistency of APOA2 functions in gerbils and
mice. APOA2 also play different roles in human and mice
atherosclerosis. In human, increasing APOA2 synthesis decreases
the incidence of atherosclerosis (Kalopissis et al., 2003). Whereas,
Apoa2 overexpressed mice develop atherosclerotic lesions even
on a chow diet (Boisfer et al., 2002). The explanation of the
differences is probable that HDL is mice’s major lipoprotein, in
contrast low-density lipoprotein (LDL) is the main cholesterol
carrier in human and gerbils (Hegsted and Gallagher, 1967;
Maiga et al., 2014). And the particle size and antioxidant
properties of HDL and effects of high fat/high cholesterol diet in
mice are different from those in gerbils and human (Difrancesco
et al., 1990; Kalopissis et al., 2003). Taken together, gerbils may
be a preferable model to study lipid metabolism. And the high-
fat diet treatment and more detailed investigations in Apoa2-KO
gerbils are required in the future study.

In conclusion, we successfully constructed Cst3-KO
and Apoa2-KO Mongolian gerbils with efficient germline
transmission by using CRISPR/Cas9 technology. The
CRISPR/Cas9 system in gerbils provides a powerful tool
for researching biological characteristics of gerbils, expands the
use of gerbils as a model organism, and benefits for comparative
biological studies of rodents. Furthermore, due to the alternative
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advantages of gerbils for modeling various human diseases (Lay,
1972; Zhu et al., 2007), the gene-editing system also builds a basis
for researching human diseases using gerbil models.
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