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Background: There is a great demand for convenient and quantitative assessment of
upper-limb traumatic peripheral nerve injuries (PNIs) beyond their clinical routine. This
would contribute to improved PNI management and rehabilitation.

Objective: The aim of this study was to develop a novel surface EMG examination
method for quantitatively evaluating traumatic upper-limb PNIs.

Methods: Experiments were conducted to collect surface EMG data from forearm
muscles on both sides of seven male subjects during their performance of eight
designated hand and wrist motion tasks. All participants were clinically diagnosed as
unilateral traumatic upper-limb PNIs on the ulnar nerve, median nerve, or radial nerve.
Ten healthy control participants were also enrolled in the study. A novel framework
consisting of two modules was also proposed for data analysis. One module was first
used to identify whether a PNI occurs on a tested forearm using a machine learning
algorithm by extracting and classifying features from surface EMG data. The second
module was then used to quantitatively evaluate the degree of injury on three individual
nerves on the examined arm.

Results: The evaluation scores yielded by the proposed method were highly consistent
with the clinical assessment decisions for three nerves of all 34 examined arms
(7× 2 + 10× 2), with a sensitivity of 81.82%, specificity of 98.90%, and significate linear
correlation (p < 0.05) in quantitative decision points between the proposed method and
the routine clinical approach.

Conclusion: This study offers a useful tool for PNI assessment and helps to promote
extensive clinical applications of surface EMG.

Keywords: clinical assessment, peripheral nerve injury, surface electromyography, non-invasive examination,
machine learning
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INTRODUCTION

The term peripheral nerve injuries (PNIs) refers to a clinical
condition caused by ischemia-reperfusion or damage of the
peripheral nerves, that include torso and limb sensory, motor,
and nerve autonomic dysfunction. Among PNIs, traumatic
upper-limb PNI is relatively common (occurring on the upper-
limb after a penetrating injury, crush, stretch, ischemia, or
other traumatic injuries) (Noble et al., 1998; Campbell, 2008).
People with traumatic upper-limb PNI usually suffer from
sensory disturbance, dyskinesia, muscle atrophy in the control
area of the damaged nerves, and have a reduced quality
of life (Selecki et al., 1982). For example, those with radial
nerve injury typically suffer from a weakness of the wrist and
finger extensor muscles and show carpoptosis (Sallomi et al.,
1998). The evaluation of upper-limb PNI has great importance
for clinical treatment and rehabilitation guidance, as well as
social and judicative significance. For insurance claims, as an
example, the amount of compensation depends on the degree of
disability following the PNI. Especially in judicial expertise, the
resultant degree of the PNI is an important basis for sentencing
who causes the PNI.

Currently, the clinical evaluation of peripheral nerve
injury relies primarily on clinical history, clinical symptoms,
and physical/neurological examination (Aminoff, 2012;
Zeidenberg et al., 2015). Clinical symptoms usually include
neuromuscular physiology state, special body posture,
motor and sensory function, and reflex issues (Sallomi
et al., 1998). More objective information can be obtained
by physical/neurological examination. In previous studies,
many diagnostic methods have been successfully used for
PNI evaluation, such as invasive/needle electromyography
(EMG) examination, MRI, and high-resolution ultrasonography
(HRU) (Sunderland, 1968; Chang et al., 2019). Direct imaging
with MRI or HRU is successful in clearly and accurately
demonstrating neural integrity. Moreover, invasive/needle
EMG can detect nerve integrity by neuromuscular activities.
Through electrical stimulation, the evoked motor unit
action potentials (MUAPs) are recorded to reflect potential
abnormality according to nerve conduction velocity, EMG
amplitude, and other signal morphological features (Robinson,
2000). However, all these methods rely on invasive/painful
protocols or specialized equipment to be manipulated by
clinical professionals, which is a rigorous condition that
hinders their pervasive applications. The strong subjectivity
of the examiners involved in the interpretation of the
examination results is another problem. Therefore, a
convenient and practical protocol along with an automatic
expert system involving intelligent data processing and
machine learning algorithms is required for quantitative
and objective PNI evaluation.

Compared with invasive EMG examination, surface EMG
(sEMG) is an alternative approach that detects neuromuscular
activities from the skin surface in a non-invasive manner.
The electrode placed over the skin surface is not as selective
as that of the invasive needle. Therefore, the sEMG signal
appears in interference patterns due to the superposition of

a large number of MUAP waveforms. This is the primary
reason for restricting clinical applications of the sEMG. To
take advantage of its non-invasive feature, many studies have
focused on the sEMG examination of various neuromuscular
diseases, including spinal cord injury (Sherwood et al., 1996;
Alexander et al., 2009), stroke (Kallenberg and Hermens, 2009;
Li et al., 2017), cerebral palsy (Steele et al., 2015; Tang et al.,
2015; Cappellini et al., 2016), ALS (Zhang et al., 2013a),
dysphagia, and odynophagia (Vaiman and Eviatar, 2009). Its
advantages in both non-invasive and ease of operation make it
suitable for long-term and repetitive PNI monitoring, especially
toward home or community rehabilitation. In addition, besides
the nerve integrity, the sEMG was reported to have the
capability to evaluate motor functions, which is also of great
importance for PNI assessment and management. Moreover,
the fast operation property of the surface EMG approach
can facilitate early judicial intervention to PNI cases for
grassroots police, without waiting for transfer to the clinician or
forensic experts.

Based on the above considerations, in this study, we proposed
a novel framework for evaluating upper-limb traumatic PNIs
using surface EMG. To our knowledge, this is the first attempt
to apply the sEMG to the assessment of traumatic upper-
limb PNI. The proposed method includes intelligent signal
processing and machine learning procedures, which provide a
new automatic and objective solution for the PNI assessment. We
expect that these advances will help to expand the usability of
PNI evaluation from routine medical diagnosis to many special
occasions, such as home or community rehabilitation guidance
and judicial intervention.

MATERIALS AND METHODS

Subjects
Seven subjects with upper-limb PNIs (labeled as S1–S7, all
males, age: 24 ± 6.6 years, mean ± standard deviation, range
17–34 years) and 10 age- and gender-matched healthy control
subjects (C1–C10, age: 22 ± 4 years, range 17–29 years,
male) were recruited for data collection experiments in this
study. The study was approved by the Medical Ethics Review
Committee of The First Affiliated Hospital of Anhui Medical
University. Inclusion criteria for patients include: (1) experience
of a unilateral PNI caused by trauma, at either the radial
nerve, median nerve, or ulnar nerve. Subjects with simultaneous
injuries of multiple nerves were also included when; (2) at least
6 months had passed since the onset of the injury; (3) the
patient was in a stable condition with all wounds healing; and
(4) there was no history of any neuromuscular disease, except
the injury. Written consent was obtained from all subjects before
the experiments.

All patients were tested through a clinical, electrophysiological
examination on their radial nerves, median nerves, and the ulnar
nerves using needle EMG. This approach routinely reported
a three-graded degree of injury for each nerve on both sides:
“−” indicates no injury; “+” indicates mild injury; and “++”
indicates severe injury (likely involving nerve rapture). Detailed
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TABLE 1 | Physical information and clinical assessment decisions for all subjects with peripheral nerve injuries.

ID # Age range (year) Gender Side of the injury Clinical assessment decisions

Left Right

Ulnar Median Radial Ulnar Median Radial

S1 26–30 M L ++ − − − − −

S2 31–35 M R − − − + + +

S3 16–20 M L − − ++ − − −

S4 16–20 M L ++ ++ − − − −

S5 31–35 M L − − ++ − − −

S6 16–20 M R − − − ++ ++ −

S7 21–25 M L − + − − − −

“−” indicates health; “+” indicates an injury; “++” indicates a severe injury

information of all the patients and their clinical examination
reports are shown in Table 1.

Experiments
Fourteen surface EMG sensors were used to collect data from
three hand muscles and four forearm muscles on both sides of all
subjects. Each EMG sensor has two round electrode probes, with
a 3-mm diameter for each probe and an 8-mm center distance
between them, constituting a single-differential surface EMG
data recording channel. The hand muscles include the abductor
pollicis brevis (APB) muscle, the first dorsal interosseous (FDI)
muscle, and the abductor digitiminimi (ADM) muscle. On
each side of the forearm, four sensors were placed around the
circumference of the forearm, at a position of 25% of the entire
distance from the elbow to the wrist. These were equally spaced
and placed over the ulnar side, the anterior side, the radial side,
and the posterior side of the forearm, mainly targeting the ulnar
flexor carpi, long palmar, extensor carpi radialis, and extensor
of fingers, respectively (Figure 1). Considering the complicated
structural distribution of the forearm muscles and their possible
cross-talks, activities from a variety of nearby muscles could
also be sensed. Since these muscles were innervated by the
three nerves tested in this study, their surface EMG activities
were intentionally included for the following analysis. After the
skin preparation with medical alcohol, each surface EMG sensor
was firmly attached to each targeted muscle/position, with its
electrode pair along the direction of muscle fibers. As a reference,
a round electrode was placed on the right arm fossa cubitalison.

During the experiment, subjects were seated in a comfortable
chair with their arms relaxed on a height-adjusted table. Each
subject was instructed to perform eight tasks from the initial
relaxation/rest state: ulnar deviation, clenching fist, stretching
hand, bending of the wrist with external rotation of elbow
joint and perform radial deviation, abducting the index finger,
abducting the little finger, and bending of the wrist with internal
rotation of elbow joint (Figure 2). Subjects were asked to perform
these tasks with both arms/sides simultaneously. Subjects were
instructed to perform each task with a maximal voluntary
contraction (MVC) and to hold it as stably as possible for at
least 3 s. In this study, the MVC represented a condition when
the subject performed muscle contractions with maximal efforts.

FIGURE 1 | Electrode placement for surface EMG data recording.

Although the actual muscle contraction strength/force was not
precisely measured during the experiments, the surface EMG
recordings were real-time monitored, and the subjects were
encouraged to produce as high level of EMG intensity/amplitude
as possible during their task performances, so as to ensure the
quality of MVC. To gain a sufficient amount of data, each task
was repeated at least three times in one trial. To avoid mental
and muscular fatigue, sufficient rest was allowed between two
consecutive trials.

Surface EMG data were recorded for every task with a
custom-made data acquisition system supporting up to 128 EMG
channels. This system has been validated and successfully applied
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FIGURE 2 | Illustration of eight designated motion tasks.

in various neuroscience and engineering studies involving
electrophysiological data recording (Tang et al., 2015, 2018). Each
recorded EMG channel was amplified by a two-stage amplifier
with a total gain of 52dB, band-pass filtered at 16–610 Hz, and
subsequently converted into digitalized data with an 18-bit A/D
converter. The sampling rate for each channel was set to 1 kHz.
All recorded data were transferred into a laptop computer via a
USB cable for off-line analysis in the Matlab (The Mathworks,
MA, United States) environment with customized programs.

Data Preprocessing
Each channel of surface EMG was pre-processed by a zero-
lag fourth-order Butterworth band-pass filter at 20–500 Hz to
eliminate low-frequency motion artifacts and high-frequency
interferences. If necessary, a set of second-order notch filters
at the 50-Hz power line interference and its harmonics
were also applied.

The recorded EMG data showed three muscular activity bursts
corresponding to three repetitions of each task in one trial. This
phenomenon was mainly observed from the seven EMG channels
for the tested arm performing the tasks. A data segment of 3-
s EMG activity was selected for each muscular activity burst,
and thus three data segments were produced for each task. The
EMG signals in the form of seven channels in each data segment
were further divided into a series of non-overlapping analysis
windows with a window length of 100 ms. We chose such a
windowing approach to produce a sufficient number of data
samples, while these windows were not overlapped to maintain
the diversity of resultant data samples. Finally, 90 analysis
windows/samples were obtained for each tested arm performing
each task. These analysis windows were also considered as basic
data samples in the following feature extraction and pattern
classification analyses.

A great many studies have been performed for developing
features to characterize the raw surface EMG data for a pattern
classification purpose (Phinyomark et al., 2012). Among these,
Hudgins’ time-domain (TD) features (Englehart and Hudgins,
2003), autoregressive (AR) model coefficients (Zeng et al., 2019),
and time-dependent power spectrum descriptors (TD-PSDs)
(Altimemy et al., 2016) have been popularly used and achieved

successful applications. Some studies also believe that there is
little difference in the effectiveness of these features in practical
use (Li et al., 2016). According to some pre-tests for these features
and their combination, the set of four TD features was used in
our study, including the mean absolute value (MAV), waveform
length (WL), number of zero-crossings (ZC), and number of
slope sign changes (SSC). Its reported effectiveness in surface
EMG pattern recognition was another reason for adopting the
TD feature set (Zhang et al., 2017). The four TD features were
calculated separately for each sample or channel.

Subsequent data analysis consisted of two modules: Module
I makes the judgment about whether the tested arm is affected
by PNI. On this basis, if any nerve injury was judged, Module
II evaluated injury degrees of three individual nerves (the radial
nerve, median nerve, and ulnar nerve) by quantitative scores.
Figure 3 illustrates the framework for traumatic upper-limb PNI
assessment using surface EMG data processing.

Module I: Arm Injury Judgment
This module was designed to make a brief judgment on whether
any nerve is injured in the tested arm. Therefore, it was applied to
solve a general two-class problem: normality or injury. Given the
data recorded from the tested arm executing all tasks, the tested
arm could be judged as being injured as long as an exception (with
respect to the normality) was presented anytime and anywhere (at
any channel during the performance of any task).

For each tested arm of a subject, a total of 8 (tasks) × 90
(samples per task) × 7 (channels per sample) × 4 (features
per channel) features were extracted, from which only a few
features needed to be selected (because the majority were believed
to carry irrelevant or redundant information). It was assumed
that discriminative information associated with the nerve injury
could be examined from a specific location, which represents a
combination of an examined muscle and a task corresponding
to the muscle function. Thus, a feature selection procedure was
conducted to choose a subset of features from the entire set of 224
(8 motions× 7 channels× 4 features) different kinds of features.
Here, the 90 samples were viewed as 90 repetitive measures of
each kind of feature. To determine the best feature subset, Fisher’s
class separability index (FCSI) (Englehart, 1998) was employed as
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FIGURE 3 | The framework for evaluating injury degrees of three individual nerves on the forearm in the proposed method.

the discriminant measure, which is described as:
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where a and b represent the indices of two different classes (injury
or normality), and c represents the number of different classes.
Generally, a higher value of FCSI indicates a higher degree of
class separability. This feature selection algorithm is able to rank
the features in descending order of their FCSI values and make it
practical to choose a subset of features with top N FCSI values as
being the most discriminative features (Wang et al., 2016).

After the feature selection, an N-dimensional feature vector
was formed for each sample, and there were 90 samples for each
tested arm. A conventional linear discriminant classifier (LDC)
was used for classification between normality and injury (Smola
et al., 2000; Webb, 2003; Zhang H. et al., 2013) because of its
satisfactory performance and high practicability for surface EMG
classification (Englehart et al., 1999). The implementation of the
LDC is to construct a linear classifier by modeling the within-
class density of each class as a multi-variant Gaussian distribution
(Mika et al., 1999). For each tested arm, the classifier produced
90 decisions corresponding to its 90 samples. If 95% of these
samples had a decision of nerve injury, we, therefore, identified

a nerve injury for the tested arm; and otherwise, the tested arm
was identified to be normal. Specifically, both arms of any subject
with SCI were tested independently.

A leave-one-out cross-validation scheme was used to train
the classifier and then to make a judgment of nerve injury for
the tested arm. The data from all arms except one arm were
used for determining the selected feature subset and training the
classifier. Therefore, the data from the remaining arm were used
for testing. This procedure was repeated 34 times (34 arms in total
were tested in the experiments) so as to ensure each arm’s data
were considered as the testing dataset once. The performance
of nerve injury judgment was evaluated by accuracy, which was
defined as the percentage of correctly identified arms to all the
arms tested in this study. Specifically, we intentionally adjusted
the number N of selected subset features from 1 to 10, and
N was finally determined to be two due to its optimal and
satisfactory performance.

Module II: Evaluation of Injury Degree for
Each Nerve
Given the decision of nerve injury from Module I, this module
was designed to further evaluate the degree of the injury
for individual nerves in the tested arms. Three nerves were
considered in each tested arm: the ulnar, medial, and radial
nerves. To determine their degrees of injury, we had to consider
anatomical knowledge, including their dominated muscles and

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 July 2020 | Volume 8 | Article 795

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00795 July 15, 2020 Time: 17:9 # 6

Tang et al. EMG Assessment of Upper-Limb PNIs

muscle functions (Selecki et al., 1982; Noble et al., 1998). In detail,
the ulnar nerve function can be represented by the EMG channel
from ADM muscle during the performance of the task ulnar
deviation (UD); the median nerve function is related to the EMG
channel from APB muscle during the performance of the task
radial deviation (RD); and the radial nerve function is associated
with the EMG channel from the APB muscle and the radial side
muscle (RM) during the performance of the task RD. Therefore,
the examination of any individual nerve relied on the data from
the corresponding channel/muscle and the corresponding task.
The degrees of injury of these nerves were evaluated from three
different aspects, including neural control command delivery
to produce voluntary EMG signals, the presence of abnormal
involuntary EMG activity, and comparison between arms on both
sides of one subject.

We applied an accumulation deduction system to quantify
the degree of injury evaluation for each nerve. Initially, each
nerve has 10 points, indicating no injury and its intactness.
Any phenomenon associated with a nerve injury revealed by
the following three-aspect evaluation approach is marked by
a deduction of points. The number of deducted points varies
across reported phenomena, indicating different injury degrees.
The point of one nerve can be deducted into 0, representing the
severest injury and the least function.

Step 1: Examination of Sufficient Voluntary EMG
Activities
The generation of sufficient EMG activities during voluntary
muscle contractions is a good indication of an intact motor
command delivery pathway. Such EMG generation capability
might be affected by the PNI due to the hampered delivery
of motor commands, further contributing to impaired motor
function (Noble et al., 1998; Campbell, 2008). The examination
of voluntary EMG mainly relied on the detection of its onset and
offset during the performance of the designated task. Therefore,
in our study, a routine approach for EMG onset/offset detection
was employed and modified accordingly.

The examination of voluntary EMG activities was only
performed on specific combinations of the EMG channel/muscle
and task, which were designated above. Given a specific channel
of EMG recorded during task performance in one trial, this
examination included five steps: (1) Calculate the signal energy
defined as the square of signal amplitude and filter it with a sliding
window averaging using a window length of ten samples (the
current sample plus nine previous samples); (2) Define an energy
threshold as 5-times the quiescent baseline energy; (3) Detect
the onset as the time of signal energy climbing up across the
threshold; similarly, detect the offset as the time of signal energy
falling below the threshold; (4) Calculate the voluntary EMG time
duration by the offset time minus the onset time; and (5) Produce
a decision for this examination: normality or abnormality when
the duration time was more than 3-s or not, respectively.

The examination outcomes of sufficient voluntary EMG
activities have to be expressed as quantitative deduction points
according to the accumulation deduction system. Table 2
clearly describes items for nerve injury judgment under various
conditions. These items for revealing whether an individual

TABLE 2 | The relationship between PNI decisions on individual nerves and
different conditions.

Conditions Injury Decisions

APB muscle
in RD task

RM muscle
in RD task

Radial nerve Medial nerve

o o none none

o x injury none

x o none injury

x x injury none

ADM muscle in UD task Ulnar nerve

o none

x injury

nerve was injured or not were derived from anatomic knowledge
regarding the muscle nerve innervation relationship and
corresponding neuromuscular functions. According to Table 2,
the nerve injury decision can be made, and the nerve with a
decision of injury gets−5 points in this aspect of the examination.

Step 2: Detection of Involuntary EMG Activities
The appearance of involuntary EMG has often been reported
and is considered a typical pattern of abnormal EMG activities
after nerve injury. These involuntary EMG activities can be
grossly divided into two cases that can be detected via surface
EMG. One case is spontaneous EMG activities, mainly appearing
as spontaneous fasciculation potentials sporadically distributed
within the quiescent baseline when the muscle is supposed to be
relaxed. The fasciculation potential is regarded as an abnormal
EMG pattern due to denervation of motor units or a group of
muscle fibers in the examined muscle (de Carvalho and Swash,
1998). The detection of spontaneous fasciculation has been a
gold-standard criterion for the diagnosis of amyotrophic lateral
sclerosis (Chen and Zhou, 2014), while its occurrence has also
been reported in PNI (Hermens et al., 1984). The other is
spastic muscular activities, appearing as the fact that the muscle
failed to be voluntarily relaxed, but its motor units continue to
discharge repetitively to produce a series of relatively larger action
potentials. Although spastic activities can only be attributed to
the hyper-activity of upper motor neurons (muscle spasticity
seldom occurs after PNI), its electrophysiological appearance in
EMG data is very similar to that of spontaneous fasciculation
potentials. Therefore, we used the same approach to detect either
of them. Such involuntary EMG activity was evidently the case
(i.e., spontaneous fasciculation potentials) in this study.

The approach for the detection of involuntary activity
consisted of four steps: (1) Calculate the signal energy, which is
regarded as the square of amplitude; (2) Filter the signal energy
curve using a smoothing window length of 10 data points, where
any sporadical spike (i.e., an involuntary action potential) was
identified as a peak; (3) Detect these peaks by selecting data points
with the top 3% filtered energy values. If more than one peak was
located within a window of 10 ms, only the largest was regarded
as the peak; (4) Confirm these sporadic peaks by comparing each
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peak with nearby data points in a time deviation of 40 ms beside
the peak. If the peak was 20-times larger than any of the nearby
data, this peak could be confirmed. Any signal segment with more
than one detected sporadic peak was regarded to be abnormal in
terms of carrying involuntary EMG activities.

The examination outcomes of involuntary EMG activities have
to be expressed as quantitative deduction points according to the
accumulation deduction system. We used the same Table 2 to
transfer examination outcomes to decisions of injury on three
examined nerves. According to Table 2, any nerve with a decision
of injury gets−5 points in this aspect of the examination.

Step 3: Calculation of Muscle Activation Ratio
Between Both Sides
Given the side dependency of PNI, an intra-subject bilateral
comparison was an important indicator that helps to overcome
potential cross-subject variability. It was especially useful in
certain cases to reveal PNI abnormality when the above
two aspects of examination failed to report any abnormality.
The bilateral comparison was performed to reveal potential
abnormality at the individual nerve level. We calculated the
average of four features mentioned above for three segments in
each trial (the four statistics were calculated from the signal in
an entire segment instead of 90 analysis windows). To eliminate
the influence of individual differences, we calculated the ratio of
both sides (subjects were asked to perform these tasks with both
arms/sides simultaneously in the experiments). For example, this
ratio for the WL of APB muscle in the motion task RD was
calculated as:

R_WL_APB_RD =
WL_APB_RD on the left side

WL_APB_RD on the right side
(2)

These ratios were supposed to be within 0 and 1. To ensure the
ratio between 0 and 1, if any ratio was greater than 1, its reciprocal
was used instead. Similarly, to evaluate a corresponding nerve
injury, a ratio was just calculated for any designated combination
of muscle and task. Table 2 was also used to determined which
nerve is injured based on the abnormality determined by the
ratio. For an individual nerve, the calculated ratio had to be
expressed as quantitative deduction points according to the
accumulation deduction system. As a result, some minus points
(from 1 to 5 minus points) were applied to an injured nerve.
Table 3 lists the different degrees of the nerve injury quantified
by the minus points according to the ratio in this aspect of
the examination. Please note if both the APB muscle and the
RM muscle reported abnormality during the motion task RD
performance (Table 2), the more severely affected muscle was
adopted for evaluating the radial nerve injury (Table 3).

The proposed accumulation deduction system, consisting of
the above three aspects, was used to quantify the degree of injury
of each nerve. Initially, each nerve has 10 points, and no points
were further deducted after reaching a 0 score. According to the
three-grade clinical assessment, we also predefined three grades
with our 10-point scale: the 10 points indicated no injury and
its intactness, 7–9 points indicated a mild injury, and 0–6 points
indicated a severe injury.

Performance Evaluation
The validity of the proposed method for evaluating traumatic
upper limb PNI was demonstrated by comparing the evaluation
decisions of the routine clinical assessment and the proposed
evaluation framework. We calculated the sensitivity, specificity,
positive predictive value, negative predictive value, and Youden’s
index for the proposed method, given the clinical assessment
decisions as to the ground truth. The above indexes were
described as:

sensitivity =
TP

TP+ FN
× 100% (3)

specificity =
TN

FP+ TN
× 100% (4)

positive predictive value =
TP

TP+ FP
× 100% (5)

negative predictive value =
TN

FN+ TN
× 100% (6)

Youden′s Index = sensitivity+ specificity− 1 (7)

where TP represents the number of injured arms/nerves correctly
diagnosed as injured, FP represents the number of healthy
arms/nerves wrongly diagnosed as injured, FN represents the
number of injured arms/nerves wrongly diagnosed as healthy,
and TN represents the number of healthy arms/nerves correctly
diagnosed as healthy.

We also performed a series of regression analyses to
compare the injury degree of each nerve between the clinical
assessment approach and the proposed method. The three-grade
clinical assessment decisions (“−”, “++”, “++”) were expressed
quantitatively as 0, −1, and −2. The regression analyses between
clinical assessment decisions and our evaluation points were
conducted for each nerve. The level of statistical significance
was set to p < 0.05 for all analyses. All statistical analyses were
completed using SPSS software (ver. 16.0, SPSS Inc., Chicago,
IL, United States).

RESULTS

Classification Results Between Arm
Nerve Normality and Injury
Figure 4 shows the results for general arm injury identification
for all subjects with PNIs. The proposed method yielded almost
the same decisions as to the clinical assessment, except for the
left arm of subject five. For healthy subjects, both sides of all
ten healthy subjects were correctly determined to be normal and
healthy. Therefore, when evaluating the performance of Module
I in the proposed method, the sensitivity, specificity, positive
predictive value, negative predictive value, and Youden’s index
are 85.71, 100, 100, 96.43, and 85.71%, respectively.
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TABLE 3 | Deduction points according to the ratio.

Ratio(r) 0.25 < r ≤ 1 0.20 < r ≤ 0.25 0.15 < r ≤ 0.20 0.10 < r ≤ 0.15 0.05 < r ≤ 0.10 0 < r ≤ 0.05

Deduction points 0 −1 −2 −3 −4 −5

FIGURE 4 | The pie graph of evaluation decisions and clinical assessment decisions for both arms of subjects with PNIs. The left and right arms of S1–S7 were
represented by a 25.71–degree fan and a fan in dark indicated that any PNI is identified on that arm.

Evaluating Injury Degrees of Individual
Nerves
Evaluation Results of Each Step
The results of injured arms in each step, including the detection
of voluntary EMG signals and involuntary EMG activities for
selected muscles and motions, and the range of selected features’
ratio, are shown in Table 4.

In terms of examining sufficient voluntary EMG activities, a
decision of normality was given for all examined muscles and
motions. Only the right ADM muscle of subject 6 in task UD was
found to be abnormal, so that 5 minus points were applied to the
ulnar nerve on the right arm of the subject.

When detecting involuntary EMG activities, an abnormality
was reported in three cases: the left ADM muscles in motion task
UD for both subject 1 and subject 4, and the left APB muscle of
the subject 4. No involuntary EMG activity was found for the
remaining muscles from all subjects. Therefore, corresponding
deductions points were applied to the ulnar nerve of subject 1
and the ulnar and medial nerves of subject 4.

When examining the difference between both arms, the
abnormality was found in most cases, and corresponding
deduction points were applied (Table 4).

Evaluation Points and Clinical Quantitative Results
Table 5 reports the final evaluation scores derived from the
proposed method and the clinical assessment decisions for
individual nerves on both sides of all subjects with PNIs.
Evidently, all healthy subjects were diagnosed as being “healthy”
on each nerve with full points using the proposed method. From

Table 5, we can conclude that the proposed method was mostly
consistent with the clinical assessment decisions.

Given the clinical assessment decision (injury or no injury) on
each nerve as the ground truth, it is also practical to calculate
the five metrics for evaluating the performance of the proposed
methods. When each of three individual nerves from both sides
of all subjects (including all healthy subjects and subjects with
PNIs) were considered independently, the sensitivity, specificity,
positive predictive value, negative predictive value, and Youden’s
index were 81.82, 98.90, 90, 97.83, and 80.72%, respectively.
Furthermore, the three-grade clinical assessment decision was
quantified by scores 0, −1, and −2. Thus, in a regression
analysis, the clinical assessment-derived evaluation scores and the
proposed method were correlated (p < 0.05) when data from
three nerves were pooled together. This was also true when data
from each individual nerve was used (p < 0.05).

DISCUSSION

This paper presents a framework for quantitative evaluation of
upper limb PNI using surface EMG signals in a cohort of subjects
suffering from upper limb PNIs on any of the ulnar nerves,
the median nerve, or the radial nerve. A protocol for surface
EMG recording and intelligent data analysis was efficiently used
as an examination tool for characterizing various neurological
diseases, such as ALS (Chen and Zhou, 2014), stroke (Li et al.,
2017), and cerebral palsy (Tang et al., 2015). In this study, we
aimed to develop a non-invasive examination tool for diagnosing
neurological diseases using surface EMG, which can be viewed
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TABLE 4 | Results of evaluating each nerve in each step of the Module II.

Evaluation step Muscle and task combination S1 S2 S3 S4 S5 S6 S7

L R L R L R L R L R L R L R

Step1: voluntary signal detection ADM in UD 0 / / 0 0 / 0 / 0 0 / −5 0 /

APB in RD 0 / / 0 0 / 0 / 0 0 / 0 0 /

RM in RD 0 / / 0 0 / 0 / 0 0 / 0 0 /

Step2: spontaneous fasciculation detection ADM in UD −5 / / 0 0 / −5 / 0 0 / 0 0 /

APB in RD 0 / / 0 0 / −5 / 0 0 / 0 0 /

RM in RD 0 / / 0 0 / 0 / 0 0 / 0 0 /

Step3: range of ratio ADM in UD −3 −3 −2 −3 0 0 0

APB in RD 0 −3 −4 −5 0 −5 −2

RM in RD 0 0 −1 0 0 0 0

“/” indicates “not applicable”.

TABLE 5 | Evaluation scores from both clinical assessment and the proposed method for all three examined nerves of all subjects.

Method Subject # Left Right

Ulnar Median Radial Ulnar Median Radial

Clinical Assessment 1 ++ − − − − −

2 − − − + + +

3 − − ++ − − −

4 ++ ++ − − − −

5 − − ++ − − −

6 − − − ++ ++ −

7 − + − − − −

The Proposed Method 1 2 10 10 10 10 10

2 10 10 10 7 7 10

3 8 10 6 10 10 10

4 2 0 10 10 10 10

5 10 10 10 10 10 10

6 10 10 10 5 5 10

7 10 8 10 10 10 10

The points marked with red indicate severe injury; The points marked with blue indicate mild injury; The points without any color indicate no injury or normality.

as the first attempt to apply this to the PNI population. Its
success not only facilitates PNI evaluation, but also promotes the
extensive clinical use of surface EMG.

The high sensitivity and specificity in Module I demonstrated
the feasibility of judging the gross arm injury as a two-
classification problem, which is the prerequisite to further
evaluation of injury degree for three nerves. The diversity
of forearm traumatic PNI conditions is a great challenge in
the design of this module. Therefore, a data-driven method
was applied for mining PNI-related information using machine
learning algorithms. Because of this, a general and gross
judgment on whether the tested arm was injured or not can
be made in this module. Unlike Module I (that uses a purely
data-driven approach), Module II is largely empirical, combining
anatomical and physiological knowledge. The itemized table and
an accumulation deduction system did provide a quantitative
evaluation of injury degrees of three individual nerves. The
experimental results show that the evaluation decisions of
the proposed method are highly consistent with the clinical

examination results, proving the feasibility and effectiveness of
the proposed method.

Some differences remain when comparing the results of the
proposed method and routine clinical assessment. One arm
injury (i.e., the left arm of subject 5) was wrongly judged to
be normal in Module I. In addition, there were multiple cases
showing slight differences in estimating nerve injury degrees
by Module II as compared to clinical assessment results. For
example, the left ulnar nerve of subject 3 had no injury by the
clinical assessment, but our method gave it a score of eight,
representing slight injury. One possible reason is the meticulous
quantification process of the proposed method, which uses the
more detailed ten grades than the routine clinical evaluation with
only three general grades. To make a comparison between these,
we had to roughly categorize the ten grades into three intervals.
Therefore, there is likely to be a loss of detailed information that
might account for differences in PNI evaluation. Given the rough
corresponding relation, however, a higher consistency between
the PNI evaluation results from both approaches was yielded
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when data from all subjects were pooled together. This was
also due to the large tolerance of the general three-grade scale.
The different mechanisms for PNI evaluation might also explain
some inconsistent decisions by these methods. The clinical,
electrophysiological examination focused on the integrity of the
nerve conduction pathway, while the proposed method involved
the evaluation of motor functions associated with the tested
nerves. Considering the complexity of neuromuscular mappings
in both anatomic and functional aspects, some ambiguities
or differences seem reasonable. Because of this, the proposed
PNI diagnosis method conformed to the physiological essence
of neuromuscular function, and the quantitative evaluation
decisions were found to be closer to the subjects’ motor
performance, which was a better reflection of the subjects’
ability during ADL.

It is worth noting that the proposed method using surface
EMG is not a substitute for the traditional clinical assessment
method, but it serves as a useful and complementary tool for
PNI evaluation. Furthermore, given the rapid development of
mobile sensing and computing technologies, miniaturized and
wearable devices make it easier to collect and analyze surface
EMG signals pervasively. The intelligent expert system built with
advanced signal processing machine learning algorithms makes
the diagnosis convenient and suitable for family and community
rehabilitation. These traits contribute to the management and
treatment of PNI. The universal adaptation of myoelectric
data recording and processing system can also benefit the
field of forensic identification. If this system is available, there
is no need to wait for a professional doctor or forensic
expert to give an opinion in the forensic appraisal, and this
approach can be easily operated by the grassroots police instead.
Thus, this enables early judicial intervention to PNI cases
and facilities the mediation of associated civil disputes. It is
of great significance for Chinese law enforcement officials to
quickly settle some issues with the aid of this convenient PNI
evaluation tool.

Although the involuntary EMG signal following PNI mainly
showed spontaneous fasciculations instead of spastic muscular
activities, the proposed detection method was designed according
to their same characteristics, which have been previously reported
(Zhang et al., 2013a,b). Thus, the proposed method could be
extended for spastic EMG detection and be applied to the
detection and quantitative evaluation of upper central nervous
system injuries.

It should be acknowledged that the relatively small sample size
remains the main limitation of the current study. As a result, a
relatively simple data analysis protocol was applied with a general
purpose of verifying the feasibility of the proposed framework
for quantitatively evaluating the nerve injury degree in traumatic
upper limb PNI. Therefore, some detailed information cannot

be considered or fully investigated in this study. For example,
hand dominance usually affects the motor performance of the
upper limb, and it was not considered due to the limited number
of recruited subjects. The validity of the current study relies on
the assumption that the effect of hand dominance is limited as
compared to the impact of PNI on upper-limb motor function,
which is regarded to be true in general cases. Through the cross-
validation strategy, the satisfactory performance of the proposed
method demonstrated its good generation and usability in actual
applications (to predict the degree of PNI for an unknown
subject). This finding, fortunately, confirms, in part, the limited
effect of the hand dominance on the PNI evaluation. However,
more data needs to be collected with an enlarged sample size
to promote the usability of the proposed method, and advanced
machine learning algorithms are required toward improved
performance of the PNI evaluation. All of these efforts are part
of our planned future work.
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