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The hypothesis of modular control, which stands on the existence of muscle synergies
as building blocks of muscle coordination, has been investigated in a great variety of
motor tasks and species. Yet, its role during learning processes is still largely unexplored.
To what extent is such modular control flexible, in terms of spatial structure and temporal
activation, to externally or internally induced adaptations, is a debated issue. To address
this question, we designed a biofeedback experiment to induce changes in the timing
of muscle activations during leg cycling movements. The protocol consisted in delaying
the peak of activation of one target muscle and using its electromyography (EMG)
envelope as visual biofeedback. For each of the 10 healthy participants, the protocol
was repeated for three different target muscles: Tibialis Anterioris (TA), Gastrocnemius
Medialis (GM), and Vastus Lateralis (VL). To explore the effects of the conditioning
protocol, we analyzed changes in the activity of eight lower limb muscles by applying
different models of modular motor control [i.e., fixed spatial components (FSC) and
fixed temporal components (FTC)]. Our results confirm the hypothesis that visual EMG
biofeedback is able to induce changes in muscle coordination. Subjects were able to
shift the peak of activation of the target muscle, with a delay of (49 ± 27◦) across
subjects and conditions. This time shift generated a reorganization of all the other
muscles in terms of timing and amplitude. By using different models of modular motor
control, we demonstrated that neither spatially invariant nor temporally invariant muscle
synergies alone were able to account for these changes in muscle coordination after
learning, while temporally invariant muscle synergies with adjustments in timing could
capture most of muscle activity adaptations observed after the conditioning protocol.
These results suggest that short-term learning in rhythmic tasks is built upon synergistic
temporal commands that are robust to changes in the task demands.
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INTRODUCTION

Understanding how the central nervous system (CNS)
orchestrates muscle coordination is a fundamental step to
deepen our knowledge in the mechanisms underlying movement
generation, motor skill acquisition, and motor adaptation to
externally induced perturbation. According to the hypothesis
of muscle synergies, the CNS manages muscle redundancy by
means of functional units, namely, muscle synergies or modules,
which are recruited in time by a reduced set of activation
signals (Torricelli et al., 2016). In the last 20 years, increasing
experimental evidence has been supporting this hypothesis for
a great variety of motor tasks (Ivanenko et al., 2004; Clark et al.,
2010; Gonzalez-Vargas et al., 2015).

Motor adaptation and learning have been widely studied in
humans by means of computational models, with the aim of
describing the modification of the internal models to new or
changing environments (Krakauer and Mazzoni, 2011; Wolpert
et al., 2011). The muscle synergies framework has been recently
proposed as a general model for describing these processes under
the muscle coordination point of view. Berger et al. (2013)
provided evidence for the modular organization of motor control
using a virtual upper limb reaching task paradigm, showing that
adaptation to rotations in the force fields that are incompatible
with previously acquired modular structures led to significantly
lower learning rates. This study highlighted the existence of a
flexible structure upon which fast adaptation was achieved by
tuning the recruitment of fixed modules. Sawers et al. (2015) have
explored the acquisition of new motor behaviors, showing that
more complex skills are typically associated with a higher number
of modules. De Marchis et al. (2013b) have explored the short-
term learning mechanisms in a novel pedaling paradigm using
visual biofeedback of pedal force. They showed that short-term
motor learning could be accounted for by the use of baseline
synergies plus a few additional ones. Jacobs et al. (2018) analyzed
the re-organization of muscle coordination during adaptation
to walking in a powered ankle exoskeleton. They showed that
subjects adapted the temporal activation patterns during the
adaptation phase, keeping unaltered the pre-existing synergies
both in number and spatial composition. Modular motor control
models have also been explored during visuomotor adaptation
tasks, highlighting that a complete adaptation to visuo-motor
distortions can be achieved by tuning the recruitment of a set
of fixed spatial synergies. Gentner et al. (2013) proved that
adaptation to a 45◦ visuo-motor rotation, applied during upper
limb isometric virtual reaching tasks, was reached after few
trials through a rotation of the recruitment of a set of fixed
baseline spatial muscle synergies. A similar experiment by De
Marchis et al. (2018) explored whether the same adaptation
mechanism was present when the visuo-motor perturbation was
applied to only a portion of the workspace, highlighting that a
different recruitment of the same baseline spatial synergies led
to the same full biomechanical adaptation when the order of the
perturbations was changed.

Most of these studies hypothesized a unique control model
based on the temporal tuning of a set of spatially fixed muscle
synergies within the synchronous muscle synergies model. To

our knowledge, no study has explored the possibility of using
alternative models to explain the neuromotor reorganization, e.g.,
assuming invariant temporal activation patterns, time-varying
muscle synergies, and space-by-time synergies (d’Avella et al.,
2003; Ivanenko et al., 2005; Cappellini et al., 2006; Delis et al.,
2018). In our opinion, exploring these models is a necessary
step to identify those which can better describe the effects of
learning/adaptation processes on muscle coordination in both
subject- and task-specific way (Safavynia and Ting, 2012).

In this work, we investigated the effects on muscle
coordination when learning new pedaling tasks. We asked
subjects to accomplish one functional goal: changing the
activation timing of one target muscle. To do so it is necessary to
alter the usual muscle activation pattern for pedaling, therefore
requiring a learning/adaptation mechanism to generate muscle
patterns with the novel activation timing yet still capable of
accomplishing the task in a functional way. Subjects were
provided with a visual feedback of the sEMG envelope of one
target muscle at the end of each pedaling cycle. This was used
as a visual representation of an internal variable that is directly
related to the motor output and indirectly representative of
the underlying motor control strategies. The experiment was
designed to test two main hypotheses (see Figure 1):

(1) Task feasibility hypothesis: The paradigm based on
electromyography (EMG) timing biofeedback can
successfully lead to the desired changes in the target muscle
timing. This hypothesis stands on the assumption that the
required changes in muscle activation are biomechanically
compatible with the execution of the highly constrained
pedaling task, and we here test the hypothesis that this kind
of visual feedback can be used by the subject for changing
the EMG timing in real time.

(2) Modular control hypothesis: The changes produced on the
target muscle are propagated to the other muscles, but this
change in muscle coordination does not imply a change of
the underlying modular structures. This hypothesis stands
on the assumption that short-term learning/adaptation
processes do not affect the existing modular control
schemes, as supported by previous studies. We tested the
following two complementary models:

(a) Fixed spatial components (FSC) model: The changes
in muscle coordination result from time invariant and
spatially fixed synergy vectors (spatial synergies, WFSC)
with flexible temporal activation coefficients [HFSC(t)].

(b) Fixed temporal components (FTC) model: The changes
in muscle coordination result from invariant temporal
components (temporal synergies, HFTC) with flexible
synergy vectors varying cycle-by-cycle [WFTC(t)].

MATERIALS AND METHODS

Experimental Protocol
Ten healthy subjects (two females and eight males), without
any known motor or neurological lesions, participated in the
experiment. Subject’s age was 25.1 ± 4.4 years (mean ± SD).
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FIGURE 1 | Schematic representation of the experimental setup, protocol, and data analysis.

The experiment was done in the facilities of the Neural
Rehabilitation Group of the Cajal Institute (Madrid, Spain),
Spanish National Research Council (CSIC). The experimental
procedures were approved by the Bioethical subcommittee of the
Ethical committee of CSIC (Spanish National Research Council,
reference 008/2016). The whole study was in accordance with the
principles of the Declaration of Helsinki.

Prior to the experiment, surface Ag/AgCl EMG electrodes
(TenderTrodeTM, Vermed, United States) were placed on eight
muscles of the subject’s dominant leg: Tibialis Anterioris (TA),
Soleus (SOL), Gastrocnemius Medialis (GM), Semitendinous
(ST), Biceps Femoris (BF), Vastus Lateralis (VL), Rectus Femoris
(RF), and Gluteus Medius (GluM). A reference electrode was
located on the wrist, in the same side of the dominant leg.
Such location was selected due to the lack of muscle activity
and no observable movement of the joint or cables during the
experiment. The electrodes were placed according to SENIAM
recommendations (Hermens, 2000). Adhesive tape was used
to fix the cables to the skin to minimize movement-induced
artifacts. The EMG activity was recorded at a sample frequency
of 1000 Hz using the wireless EMG amplifier “Trentadue” (OT
Bioelettronica, Torino, Italy). The appropriate placement of the
electrodes was verified by visually checking the resulting EMG
signals through the software interface.

Participants were sat on a chair and asked to pedal on
a recumbent cycling ergometer (MOTOmed VIVA2, Reck,
Germany) while looking at a computer screen displaying the
muscle activity of one muscle of the subject. Prior to the
experiment, both feet were fastened to the pedals of the ergometer
by means of straps provided by the system for this purpose.
The resistive load of the bicycle was adjusted to ensure visible
muscle activity during pedaling. The subject sat on a chair in a
comfortable position, with the trunk approximately vertical and
leaning on the backrest, while the hands were placed on the
handle of the ergometer.

The experiment consisted on three consecutive sessions, each
composed of seven cycling trials of 60 cycles each (see Figure 1,
lower panel). The first trial, named “PRE,” was used to obtain
a reference of muscle activity during self-selected speed to be
used afterward, during the biofeedback trials. After the PRE trial,
the subjects performed four consecutive trials in which they
received visual feedback on the EMG envelope of one muscle,
called target muscle. In these conditioning trials, labeled with
the prefix “COND,” the subjects were asked to delay as much as
possible the peak of muscle activity with respect to the reference
muscle activity recorded during the PRE trial. The visual feedback
was provided at the end of each pedaling cycle. No specific
indications on how to achieve the task goal were given, allowing
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the subjects to freely find their own neuromuscular strategy.
After the four conditioning trials, we tested the after-effects of
the conditioning experiment by means of two “POST” trials. In
the POST-1 trial, the subjects were asked to maintain the new
strategy learned during the four conditioning trials, but in the
absence of visual feedback. This trial has been designed to test
whether the subjects actually learned the conditioning process
induced by the visual feedback. In the POST-2 trial, also without
visual feedback, the participants were asked to perform a normal
pedaling movement, as done in the PRE trial. This trial has been
conceived to test the permanence of involuntary after-effects.
A final trial (WASH) was executed to ensure the elimination of
any residual effect of the trial on muscle activation, and to prepare
for the next experimental session. In this trial the subject was
asked to return to baseline (PRE) muscle patterns, with the help
of visual feedback.

The aforementioned protocol was executed three times, each
with a different target muscle. We chose the three target muscles
TA, VL, and GM, being them the dominant muscles for the three
muscle synergies found during pedaling tasks (Barroso et al.,
2014), i.e., presenting higher weight in one synergy and very low
weight in the other two synergies. A 2-min rest between trials
and a 5-min rest between sessions were used to avoid muscle
fatigue. The experiment lasted approximately 2 h per participant,
including donning and doffing. To measure the pedaling angle,
we integrated a custom-made magnetic encoder in the crank of
the ergometer, synchronized with the EMG amplifier and the
processing software. The encoder was calibrated in such a way
to obtain a 0◦ angle when the crank was in the bottom dead
center. The synchronized acquisition of EMG from the Trentadue
Amplifier, as well as the post processing was implemented in
Matlab R© 2010a.

Data Analysis
EMG Pre-processing
The raw EMG signal from all muscles was pre-processed online
at the end of each pedaling cycle, defined as the crank positioned
in the bottom dead center, pointing toward the ground (see
Figure 1). We used a second-order Butterworth bandpass filter
at 20–400 Hz to filter low-frequency motion artifacts and high-
frequency electromagnetic noise (Raez et al., 2006). We applied
a full-wave rectification and a low-pass filtering at 4 Hz to
obtain the basic set of EMG envelopes from each cycle. The
corresponding raw EMG data were stored for subsequent offline
processing. At the same time, the EMG envelope of the target
muscle was normalized in amplitude and displayed immediately
after each cycle to the user. To prepare for offline processing, the
set of non-normalized EMG envelopes obtained from each cycle
were amplitude-normalized to the median peak value across the
60 cycles of the PRE trial, then time-normalized on a 1-by-360
vector, and finally concatenated to obtain a 8-by-21,600 matrix
(M) of muscle envelopes (Hug et al., 2011).

Individual EMG Analysis
To test the first hypothesis (i.e., task feasibility), we analyzed the
individual changes in activation timing, shape, and amplitude
of the target muscles independently (see Figure 1, top panel).

The timing analysis was performed using circular statistics
(Batschelet, 1981; Fisher, 1996) on the population of the peaks
of the EMG envelopes of each trial. We computed the mean
direction for circular data for each population of 60-peak timings,
according to the following equations:

A =
60∑
i=1

cos θi (1)

B =
60∑
i=1

sin θi (2)

θ̄ = tan−1
(
B
A

)
(3)

where θi represents the timing of the peak of a single cycle,
expressed in radians, and θ̄ is the resulting mean direction. Delay
was calculated as the difference between the mean direction of
each trial and the mean direction of the PRE trial.

The shape similarity (SS) was computed by applying a circular
cross correlation Cxy, as described by the following equation:

SSxy =
Cxy√∑360

i=1 x
2
i
∑360

i=1 y
2
i

(4)

where Cxy is the non-normalized circular cross-correlation at lag
zero, x denotes the EMG envelope of the current cycle, and y
denotes the mean EMG envelope of the PRE trial.

The amplitude analysis was performed by calculating the
difference in amplitude between each peak and the PRE trial,
according to the following equation:

Ax =
max {x} −max{y}

max{y}
(5)

where x is the EMG envelope of the current cycle and y is the
mean envelope of the PRE trial.

Muscle Synergy Analysis
To test the second hypothesis (i.e., modular control), we assessed
the ability of the FSC and FTC models to explain the variance
of the measured EMG. The FSC model had fixed synergy vectors
(W) and variable activation coefficients (H). The activation of the
kth muscle at time t can be defined according to the following
formulation:

Mkt =

S∑
i=1

WkiHit (6)

where S is the number of synergies and T is the number of time
points. In this model, the fixed structure is constituted by the
spatial synergies W, a K times S matrix named WFSC from now
on, while H is continuously varying in time.

The FTC model had fixed H and variable W, and the activation
of the kth muscle, at the nth sample of the cth pedaling cycle, can
be described as in the following:

(Mkn)c =

S∑
i=1

(Wki)cHin (7)
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FIGURE 2 | (A) Calculation of the muscle synergy vector (W) and activation coefficients (H) from the PRE training set. (B) Reconstruction of the EMG envelopes (M)
from the PRE trial, considering the cycles excluded from the training set. (C) Reconstruction of the EMG envelopes (M) from the POST-1 testing set, using fixed W
(FSC model) or fixed H (FTC model). An extended version of the FTC model consisted in shifting the H vectors until the best VAF is obtained.

in this latter model the fixed component is constituted by the
temporal synergies H, an S times N matrix named HFTC from now
on, while W varies from cycle to cycle.

For both models (see Figure 2) the 60 pedaling cycles of
each trial were split into a 30-cycle training set, and a 30-cycle
testing set. The 30 cycles were randomly selected from the 60-
cycle pool. For each trial of each subject, the training set was
used to extract the muscle synergy vectors WFSC (FSC model) or
the temporal components HFTC (FTC model) using the standard
non-negative matrix factorization (NNMF) algorithm (Lee and
Seung, 1999). The testing set was used to obtain the matrix of
reconstructed EMG (MREC) using non-negative reconstruction
(NNR). NNR consists in the application of the standard NNMF
algorithm, either by fixing spatial component (W) extracted from
the training set and varying the matrix of activation coefficients
(H), or vice versa, according to the following multiplicative
update rule (the equation below considers the case of fixed W and
varying H):

Hrc = Hrc
(WT

PREM)rc

(WT
PREWPREH)rc

(8)

where r (row) and c (column) denote the single components of
the matrices taken into account, T denotes the transposed matrix,
and H is the reconstructed activation coefficients matrix (HREC).

For both FSC and FTC models, the number of synergies S
was chosen as the smallest number able to exceed the 90% of
variance accounted for (VAF) (Clark et al., 2010) on synergies
extracted from the training set. In order to partially compensate
for potential effects of the different number of degrees of freedom

between the two models, we performed the whole analysis by
down-sampling the original data so to obtain H and W data
matrices with dimension N-by-S, being N = 8 the number of
muscles in the FSC model and N = 18 the number of time points
in the FTC model (chosen as the minimum number of points able
to preserve the shape of the temporal commands). In this way,
we obtained a comparable number of degrees of freedom in the
sub-dimensional structures in the two models.

Fixed spatial components (FSC) model
To test the FSC model (see Figure 2), we applied NNR using the
fixed set of muscle synergies extracted from the PRE training set
(WFSC_PRE, see Figure 2A) and updated H at every algorithm
iteration to obtain the reconstructed muscle activations from
the testing sets of both PRE (MPRE_FSC, see Figure 2B) and
POST-1 (MPOST_FSC, see Figure 2C) trials. The goodness of
the reconstruction with WFSC_PRE was assessed with the VAF
resulting from the application of NNR.

Fixed temporal components (FTC) model
To test the FTC model, we applied NNR using the set of
temporal components HFTC_PRE extracted from the PRE training
set (Figure 2A) to reconstruct the testing set of the PRE and
POST-1 trial, respectively (Figures 2B,C). We applied NNR as
done for the FSC model, but maintaining H fixed and updating
W at every algorithm iteration, obtaining the reconstructed
muscle activations MPRE_FTC and MPOST_FTC, respectively. An
extended version of the FTC model (MPOST_FTC_DELAY ) was
further tested by reconstructing MPOST with all the possible time
shifted versions of the components of HFSC_PRE (FTCDELAY )
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independently. This approach allowed us to test whether the
muscle coordination in POST-1 was explained by a simple time
shift of the original components (i.e., without alterations in
the shape of the temporal commands). In this latter model,
an optimal set of delays of the temporal components was
found as the one leading to the higher reconstruction VAF of
the POST-1 trial.

FSC and FTC models validation
In order to validate the consistency of the tested models
(FSC, FTC, and FTCDELAY ), we built a surrogate dataset to
define the statistical level of chance when fitting the EMG
data. For the FSC model, for each subject and trial, we
applied NNR to a surrogate version of the extracted WFSC_PRE,
constructed by randomly shuffling the muscle components of
each synergy vector of WFSC_PRE. This surrogate version of the
synergy matrix corresponds to an anatomical disruptor, leading
to synergy vectors that only maintain their Euclidean norm
with respect to the original ones. For each subject, trial, and
biofeedback condition, 100 reconstructions of MPOST via NNR
were applied with 100 different surrogate versions of WFSC_PRE
(WSURR), leading to 100 VAF values expected from unstructured
synergy vectors.

The surrogate data analysis for the FTC model was performed
by constructing a Fourier based surrogate version of the temporal
commands HFTC_PRE. A Fourier transform was applied to each
HFTC_PRE component (Matlab “fft” function), and a surrogate
version in the frequency domain was built by randomly shuffling
the phase components of the Fourier transform, while keeping its
modulus unaltered (Faes et al., 2004). The surrogate version of
the temporal-component matrix was then calculated by applying
the inverse Fourier transform, in order to obtain a temporal
command with the same modulus of the Fourier transform,
but shuffled phases. This led to temporal components with an
altered morphology and main peak position in the time domain,
induced by the phase shuffling. For each subject, trial and
biofeedback condition, 100 reconstructions of MPOST via NNR
were applied with 100 different surrogate versions of HFTC_PRE
(HSURR) leading to 100 VAF values expected from phase distorted
temporal commands.

The surrogate data analysis for the FTCDELAY model was
carried out in the same way as for the FTC model, with the
only difference that, for each subject, biofeedback condition and
synergy, each of the 100 surrogate versions of HFTC_PRE was time
shifted by all the possible time-shifts along the pedaling cycle
(HSURR_DELAY ). In this way, we checked whether a potential good
reconstruction of MPOST via the FTCDELAY model could derive
from a probable shape matching of a quantity with the same
frequency content with respect to the original one (i.e., there is a
high probability that among all the possible shifts of the surrogate
temporal commands, some of them lead to a good reconstruction
of MPOST).

For the previously described approaches to build surrogate
data WSURR and HSURR for each subject, trial and biofeedback
condition, the significance threshold VAFTH_SURR level was set as
the 95th percentile of all the obtained surrogate VAF values. For
the FTCDELAY model, this significance threshold was calculated

over the set of the best performing HSURR_DELAY for each subject
and biofeedback condition, corresponding to the delay leading to
the highest reconstruction VAF.

Statistical Analysis
A PRE-POST comparison was carried out in terms of pedaling
cadence (PC) for the three biofeedback conditions (TA, VL, and
GM), by using a paired Wilcoxon signed rank test, in order to
check whether any difference in muscle activation and timing
could be ascribed to a mismatch in PC.

For each subject, the significance of time delays with respect to
the PRE trial has been tested applying the Watson–Williams test
for circular data (Fisher, 1996). The same test was used to verify
the similarity of time delays across all subjects, for each muscle
and feedback session. Circular statistics were performed using
the Circular Statistics Matlab Toolbox (Berens, 2009). To test
the significance of the difference in amplitude of the EMG peaks
between each trial and the PRE trial, we used a paired-sample
t-test. The circular cross correlation with respect to the PRE
trial was tested with the Mann–Whitney–Wilcoxon test (Matlab
function “ranksum”). This test was applied after checking the
non-normality of these distributions. To assess the significance
of the VAF values obtained via NNR on the PRE and POST-1
trials and those obtained using the surrogate data, a Wilcoxon
signed rank test was applied. The test was used to compare the
obtained VAFREC_PRE, VAFREC_POST , and VAFTH_SURR values for
each subject, biofeedback condition, and trial. The significance
level of the p-value has been set to 0.05 in all aforementioned tests.

Moreover, for each biofeedback condition (TA, VL, and GM),
VAF reconstruction values emerging from the different models
were compared among trials using ANOVA test with models
(FSCPRE, FTCPRE, FSCPOST , FTCPOST , and FTCPOST_DELAY ) as
factors. In case of significant effect, post hoc analysis was carried
out with Bonferroni correction.

We performed an additional PRE–POST-1 comparison of the
modular structures emerging from the FSC and FTC models
(i.e., time varying cycle-by-cycle H for the FSC and cycle-by-
cycle varying W for the FTC). The H emerging from the FSC
models were compared in terms of circular cross-correlation, as
explained in Section “Individual EMG Analysis” for the single
EMG data, so as to obtain an SS index and a delay. The W
emerging from the FTC model were compared between PRE
and POST-1 in terms of normalized scalar product to check
their similarity. A further comparison between the FSC and the
FTC models was conducted on the emerging synergy matrices
W (fixed in the FSC model and varying in the FTC model), in
order to check whether similar spatial muscle synergies act as a
base for the different modular control models. This comparison
was carried out in terms of cosine similarity between homologous
pairs of synergies.

RESULTS

No statistically significant difference in PC was observed
between the PRE and POST-1 trials for all the analyzed
biofeedback conditions (PCPRE_TA = 66.1 ± 5.9 r/min,
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PCPOST_TA = 67.1 ± 8.4 r/min, PCPRE_VL = 68.7 ± 5.3 r/min,
PCPOST_VL = 66.1 ± 8.6 r/min, PCPRE_GM = 65.9 ± 10.3 r/min,
PCPOST_GM = 66.3 ± 10.7 r/min), so that any PRE–POST-
1 difference in muscle activation and timing is not a
cadence-driven effect.

Effect of Biofeedback on Target Muscles
The delay between the POST-1 and PRE trial for TA, VL, and
GM muscles across all subjects were 56.3 ± 27.0, 48.6 ± 27.2,
and 42.2 ± 30.4 (mean ± SD) respectively, as shown in Table 1.
Eight out of 10 subjects showed statistically significant changes
in all target muscles. Two subjects (highlighted in light gray
in Table 1) failed to significantly change the timing on at least
one target muscle.

Most of the subjects preserved the shape of EMG envelopes
across the experiment. This is demonstrated by the high values
of cross correlation between POST-1 and PRE trials, with mean
values between 0.89 (TA) and 0.95 (VL) and standard deviation
below 0.09. In some isolated cases, we observed lower similarities
due to a change from a typical Gaussian-like shape to a double-
peak waveform. This happened either in the PRE or POST-1 trial,
but was never present on both trials. Figure 3 shows results on
one representative subject (Subject 3) in terms of mean EMG
envelopes, difference in delays (orange shaded area), and changes
in amplitude (gray shaded area).

The analysis of the amplitudes (see Table 2) reveals that in
the great majority of cases, the amplitude of EMG envelopes
increased. The normalized amplitude difference for the target
muscles TA, VL, and GM was 2.86 ± 1.15, 0.87 ± 0.47,
and 2.40 ± 1.10, respectively. Figure 4 provides a compact
representation of the mean delays and amplitude gains across
all subjects. In this figure, it is also visible how the WASH trial
(indicated as “W”) were in general effective to wash out the
learning effects and make the EMG envelopes return to their
initial conditions.

TABLE 1 | Effectiveness of the biofeedback on the target muscles, expressed as
the delay of the EMG envelopes between the POST-1 trial and PRE trial.

Subject # TA (mean ( SD) VL (mean ( SD) GM (mean ( SD)

1 12.09 ± 28.6 12.6 ± 19.0* −2.2 ± 39.0

2 78.1 ± 22.8* 65.3 ± 32.5* 88.8* ± 41.3*

3 43.1 ± 21.4* 40.2 ± 26.1* 64.3* ± 17.2*

4 146.5 ± 44.5* 43.9 ± 33.6* −158.0 ± 34.5*

5 48.1 ± 23.4* 68.8 ± 13.5* 61.4 ± 10.6*

6 82.3 ± 17.8* 71.4 ± 18.4* 66.6 ± 30.1*

7 −1.6 ± 46.0 −22.5 ± 36.7 80.5 ± 66.5*

8 14.4 ± 25.7* 43.3 ± 33.0* 47.8 ± 15.4*

9 29.6 ± 18.7* 36.0 ± 20.8* 77.5 ± 24.1*

10 110.2 ± 21.3* 127.1 ± 38.7* 94.9 ± 25.0*

Mean ± SD across
all subjects

56.3 ± 27.0 48.6 ± 27.2 42.2 ± 30.4

Values are expressed in degrees (◦) and report circular mean ± circular
standard deviation. Statistically significant values are indicated with an asterisk
(p-value < 0.05 in the Watson–William parametric test). Only values from target
muscles are reported.

The scatter diagrams of Figure 5 show the relation between
time delays and changes in amplitude for the 10 subjects.
Results show a positive correlation between significant changes in
amplitude and in time in the target muscles (diagonal subplots).

Interaction Between Target and
Non-target Muscles
Table 3 shows the comparison between the behavior of the
target and the non-target muscles, for each subject and feedback
session. We observed a general trend across subjects. When TA
is the target muscle (session 1, first column for each subject),
VL shows a similar positive delay with respect to the PRE
trial, whereas GM shows an opposite, i.e., anticipated, activation.
When VL is the target muscle (session 2, second column), TA
shows a slight (not significant) positive relationship with VL.
GM shows a more independent behavior, reporting both positive
and negative delays across subjects. During the feedback of GM
(session 3, third column), TA shows a positive correlation with
GM, whereas VL appears to behave independently, showing very
heterogeneous trends.

Synergy Analysis
By extracting muscle synergies from the training set for each
subject, the dimensionality of the PRE and the POST-1 trials was
three for all subjects, biofeedback conditions, and models (FSC
and FTC), according to the VAF > 90% criterion, as shown in
Figure 6. The grand average muscle activation across subjects
for all the recorded muscles is shown in Figure 7, for each
biofeedback condition.

Trial by Trial Extraction of Temporal and Spatial
Synergies
Before testing the FSC and FTC models, we extracted synergies
from all the trials (PRE, COND1-4, POST1-2, WASH) via
NMF application, in order to characterize learning during
the conditioning trials or the presence of any after-effects in
the POST-2 and WASH trials. This was measured in terms
of similarity between the W extracted at each trial and the
corresponding one extracted at the PRE trial, for each subject
and biofeedback condition. Figure 8 reports the evolution of this
parameter along the trials. No clear monotonic learning curve
is present. An abrupt change in the synergy structure is visible,
especially W2 in the TA and GM feedback condition, starting
from the first conditioning trial. No clear after-effect is present,
as in POST-2 and WASH trials the similarity with the synergies
extracted at the PRE trials is consistently higher than 0.8.

Comparison Among Modular Control Models
When testing the FSC model, we found that all the PRE trials
were successfully reconstructed using WFSC_PRE obtained from
the training set (Figure 9, FSCPRE), with a VAF value higher than
90%. However, POST-1 trials reconstructed with WFSC_PRE lead
to VAF values lower than those obtained with FSCPRE (p > 0.05)
and even not different from the value expected from unstructured
spatial components WFIX_SURR (p > 0.05), meaning that the FSC
model is not valid to describe this learning task.
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FIGURE 3 | EMG envelopes from one representative subject (Subject 3) across trials. Rows represent the three muscles TA, VL, and GM. Columns represent the
three different experimental sessions, each considering a different muscle for visual biofeedback (target muscle). Each curve represents the mean profile of the 60
normalized EMG envelopes of one trial. Trials correspond to the following color code. Bold black: PRE trial. Thin gray: COND 1–4 trials. Orange: POST-1. Dotted
black: POST-2. Black and orange circles represent the mean peaks of the envelopes of the PRE and POST-1 trials, respectively. The width of the shaded orange
area represents the mean delay between PRE and POST-1 trials (whose values are presented in Table 1). The height of the gray area represents the mean value of
the amplitude difference (whose values are presented in Table 2).

When testing the FTC model (see Figure 9), the
reconstruction of the M testing set of the PRE trial by using
HFTC_PRE led to VAF values typically higher than 90%, and with
a value significantly higher than that expected from unstructured
temporal commands HFIX_SURR (p < 0.05). However, for
the reconstruction of the POST-1 trial, HFTC_PRE led to a
significantly lower VAF as compared to the PRE trial, indicating
that an unchanged temporal structure was not able to represent
the observed changes in muscle coordination between PRE and
POST-1. However, a significantly higher reconstruction VAF,
comparable with that of the PRE trials of both FSC and FTC
models, was obtained when using the FTCDELAY model (see
Figure 9, FTCDELAY ).

For each biofeedback condition, the ANOVA test highlighted
a significant effect of the model used to reconstruct the testing

dataset. Post hoc analysis revealed that the VAF reconstruction
value obtained via the FTCDELAY model in the POST-1 trial is
significantly higher than the one obtained with the FCTPOST and
FSCPOST , and it is not different from the VAF reconstruction
values obtained on the PRE testing set via the FTCPRE and FSCPRE
models for all the biofeedback conditions. Overall, the FTC model
with optimal delay reached significantly higher reconstruction
quality values when compared to the FSC and FTC models (see
Figure 9, right panel).

Validation of the FTCDELAY Model
The FTCDELAY model properly captured the changes in muscle
coordination observed in the POST-1 trial. This reconstruction
was higher than that obtained by the surrogate data for the
FTCDELAY model, obtained by applying all the possible time shifts

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 July 2020 | Volume 8 | Article 800

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00800 July 13, 2020 Time: 15:30 # 9

Torricelli et al. Coordination Underlying Learning in Cycling

to the surrogate version of the temporal commands HFTC_PRE
(Figure 9). This makes the FTCDELAY model the only one
able to explain the changes in muscle coordination for all the
biofeedback conditions.

The synergy vectors shown in Figure 10 (lower panel)
obtained from HFTC_PRE show substantial adjustments in the
POST-1 trial (FTCDELAY model), with cosine values among
homologous pairs of synergy vectors reported in Table 4. In
particular, the GM and TA biofeedback with the FTCDELAY model
determine a significant change in the structure of one synergy
vector (W2), while few differences are present under VL feedback,
indicating a tendency toward the preservation of the spatial
components for this specific biofeedback condition.

DISCUSSION

Effectiveness of EMG Biofeedback
Results confirm our first hypothesis (task feasibility),
demonstrating that conditioning exercises based on EMG
biofeedback can promote changes in muscle timing during
cycling. Most of the subjects (eight out of 10) were able to adjust
the timing of muscle activation of all target muscles by means of
a simple visual representation of the EMG envelope presented
at the end of each pedaling cycle (Table 1 and Figure 3). In
contrast, subjects showed a very heterogeneous behavior in

TABLE 2 | Effect of the conditioning biofeedback on the amplitude of the EMG
envelopes.

Subject # TA (mean ( SD) VL (mean ( SD) GM (mean ( SD)

1 1.74 ± 1.03* 0.10 ± 0.31 0.22 ± 0.31*

2 4.94 ± 3.06* 0.16 ± 0.34* 0.82 ± 0.61*

3 0.57 ± 0.29* 1.81 ± 0.66* 2.15 ± 0.83*

4 1.26 ± 0.76* 0.87 ± 0.33* 5.12 ± 1.51*

5 4.10 ± 1.04* 1.10 ± 0.50* 3.86 ± 0.95*

6 3.78 ± 1.18* 0.98 ± 0.47* 2.86 ± 1.21*

7 3.49 ± 1.40* 0.30 ± 0.25* 0.14 ± 0.80

8 2.29 ± 0.97* 1.37 ± 0.52* 2.10 ± 0.91*

9 3.48 ± 1.03* 1.38 ± 0.67* 3.81 ± 2.39*

10 2.95 ± 0.75* 0.64 ± 0.70* 2.89 ± 1.54*

Mean ± SD across
all subjects

2.86 ± 1.15 0.87 ± 0.47 2.40 ± 1.10

Values indicate the difference in peak amplitude between the POST and PRE
trial, normalized with respect to the PRE trial mean amplitude (e.g., a value of
1 corresponds to a change in amplitude of 100%, meaning that the amplitude
of POST peaks populations was two times the mean amplitude of the PRE trial).
Statistically significant values are indicated with an asterisk (p-value < 0.05 in the
t-test). Only values from target muscles are reported.

terms of magnitude of the delays, suggesting that the adaptation
strategy is strongly subject-specific (Figures 4, 5). However, as
shown in Figure 5, we found that a significant change in delays

FIGURE 4 | Delays and amplitude difference of the peak of EMG envelopes with respect to the PRE trial, across the 10 subjects. Rows represent the three muscles
TA, VL, and GM. Columns represent the three different experimental sessions, each considering a different muscle for visual biofeedback. Bars represent the mean
delays across subjects in degrees (scale shown on the right side). Solid lines represent the gain of the amplitude difference (scale shown on the left side). The vertical
lines represent the standard deviation across subjects.
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is, in most subjects, accompanied by a significant increase in the
amplitude of EMG envelope. It is unclear whether this is due to
a physical (i.e., biomechanical) or a neural mechanism. Given
the nature of the task, in which subjects were required to focus
only on the timing while performing the cycling task, a change
in the amplitude could be simply explained by the adoption of a
different strategy. The shape of the EMG envelope in the target
muscles did not change, with a Gaussian-like waveform in most
cases, with some exceptions, in which the waveform presented
double-peaks; this behavior could be due to compensation
strategies, either related to the previously mentioned sub-optimal
strategy or to a change in the biomechanical requirements during
the pedaling cycle. When analyzing the behavior of non-target
muscles, we observed significant time shifts in most cases. These
results partly support our second hypothesis (modular control),
showing that a change in one muscle activity is not limited to
the target muscles, but involves the other muscles not used in
the biofeedback loop. The direction of changes, either positive
or negative, shows also some general trends (see Table 3).
We observed a clear positive correlation between TA and VL,
meaning that a positive delay in one of these two muscles is
accompanied by a similar change in the other one. In contrast,
GM seems to have a more independent behavior, in particular
with respect to VL. Instead, VL and TA show a contradictory
relationship depending on the muscle used for the biofeedback.
These adjustments in timing in the non-target muscles are likely
due to biomechanical constraints for the proper accomplishment
of the pedaling task, in order to maintain an adequate stiffness
at the lower limb joints in different parts of the pedaling cycle.
However, this aspect needs to be further explored through the
measurement of pedal forces and the calculation of the joint
torque profiles with inverse dynamics.

Spatial vs. Temporal Muscle Synergies
When testing the “modular control” hypothesis under the muscle
synergy perspective, we observed that the modification in the
individual muscle timing can be explained by some invariant
modular control structures. Spatially fixed muscle synergies (FSC
model) extracted during the PRE trial cannot account for the
variability of the muscle activity from all the conditioning trials,
indicating that learning a new strategy within the same task
implies some reorganization of the spatial structure. In particular,
changing the timing of a single muscle through biofeedback does
not lead to coherent modification of the timing or amplitude
of the original synergist muscles. Nevertheless, this learning
task can be well explained by a modular control model with
FTC shifted by an optimal delay (FTCDELAY model). Under this
hypothesis, a set of fixed temporal commands represents the
variables that the CNS keeps fixed during a learning process,
by adjusting only their timing and by differently weighting the
contribution of each muscle to the overall coordination event-
by-event. This latter model explains the learning task explored
in this study, suggesting that an overall temporal invariance
underlies a learning process. Preserving such a structure implies
that the full-time course of the temporal recruitment throughout
the cycle is maintained during the whole learning process.
From a control point of view, this preservation of the temporal
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FIGURE 5 | Scatter diagrams of time delays vs. difference in amplitude. Dots represent mean values from individual subjects. The orange circle indicates the mean
value across subjects. Vertical and horizontal lines indicate the standard deviations of amplitude and delay, respectively. Lines in orange indicate means significantly
different form zero (t-test, p = 0.05).

components is in line with existing theories of neural control
of rhythmic tasks organized around a set of central pattern
generators, shared across different tasks and adjusted in time
to reflect different biomechanical requirements (Ivanenko et al.,
2003, 2004; Cappellini et al., 2006). In general, the FTC models
leads to a spatially variable structure, different from the one
obtained through the FSC model. In particular, these adjustments
are not general and appear to be dependent on the target
muscle provided as biofeedback. However, this spatial alteration
is strongly evident only for the synergy W2 under TA and GM
feedback conditions, while W1 and W3 seem to preserve their
original spatial composition under all biofeedback conditions.
On the contrary, even though the FSC model does not account
for the changes in muscle coordination under VL feedback, this
condition has the tendency to preserve the spatial composition,
as indicated by the higher similarity among the emerging
spatial components.

When describing motor adaptation and motor learning within
the muscle synergies framework, the modification in the module
composition is in line with the hypothesis that the spatial (W)
and temporal (H) parts of the modular organization sub-serve
different neural mechanisms. Modifications to the temporal
commands (H) can be used by the CNS for quick adjustments
and corrections to already existing motor programs to adapt
to external perturbation or to face different biomechanical

demands. Instead, synergies (W) show a more slowly varying
structure, whose change would imply a kind of permanent
modification to the motor programs. This observation is in line
with (Kargo and Nitz, 2003), showing that the tuning to already
existing synergies allows for faster skill learning and with (Berger
et al., 2013) showing that adaption to virtual surgeries is slower
when new synergies are required. However, in our study, we
found that after four conditioning trials, the subjects adjusted the
timing of the target feedback muscle, but in order to do this they
disrupted part of the spatial composition of muscle synergies,
while keeping unchanged the shape of the temporal commands
and adjusting their timing.

From the point of view of muscle coordination, the change
in muscle activation timing might reflect both mechanical and
neural constraints. Applying delayed muscle activation with
respect to the pedaling cycle (phase shift) could be a pure
biomechanical effect linked to changes in PC. This mechanism,
known as activation dynamics, delays muscle activation when
PC decreases in order to develop a constant force profile
along the pedaling cycle, thus compensating for the fixed
electromechanical delay of muscles (Neptune et al., 1997). In
this study, we did not measure pedal force profiles, but the
observed changes in cadence were not likely able to explain
a pure effect of the activation dynamics mechanism. We thus
assume that a neural component in the adjustment of timings
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FIGURE 6 | Variance explained by the extraction of a number of synergies from 1 to 8 (mean ± std across subjects), for different modular motor control models (FSC
and FTC) and trials (PRE and POST). Three modules lead to the VAF > 0.9 criterion for all the analyzed conditions. All the reported VAF values have been calculated
from synergies extracted from the training set.

was present during the learning process. From this point of view,
the use of factorization algorithms for identifying adaptation
strategies during this learning process could shed light on
some basic neural mechanisms used by the CNS to face new
biomechanical requirements; as a matter of fact, preserving a
part of the original modular control scheme during a short-
term learning process (either the spatial or the temporal part)
could reflect the existence of habitual coordination patterns
that leave aside any optimal control strategy (De Rugy et al.,
2012). The adoption of such a habitual rather than optimal
control scheme is further supported by the observed changes
in amplitude during the POST-1 trials, indicating a tendency
to find a solution which is good enough to face the current
change in biomechanical requirements. Despite the habituality
or optimality of the adopted motor control scheme, our task
can be considered as quasi-constrained from a kinematic point
of view, and the present experiment likely explores an extended
(even though not complete) set of possible force outputs; in this
scenario, the preserved modular control schemes are likely to be
of neural origin (Kutch and Valero-Cuevas, 2012).

Potential Applications in
Neurorehabilitation and Limitations
One of the main functional consequences of a neurological injury
is the reduced coordination complexity due to an incorrect
timing of muscle activation. Cycling training is a technique used

in neurorehabilitation to promote recovery of mobility-related
functions, such as muscle strength, spasticity, cardiopulmonary
function, and symmetry of movement (Katz-Leurer et al., 2006;
Lee et al., 2008; Tang et al., 2009). Recent studies have shown
that the combination of cycling exercises with visual and/or
afferent stimulation improved walking and postural functions in
neurological subjects (Ambrosini et al., 2011; Yang et al., 2014;
Barbosa et al., 2015). Previous studies have also shown that a
typical modular organization of cycling is present in healthy
and neurological subjects (Raasch and Zajac, 1999; Hug et al.,
2011; De Marchis et al., 2013a; Ambrosini et al., 2016; Barroso
et al., 2016) with mechanisms similar to those underlying walking
(Zehr et al., 2007; Barroso et al., 2014). These results provide
preliminary evidence on the ability of cycling-based treatments
to enhance the plasticity of the CNS, supporting its feasibility as
a possible substitute of gait training after a neurological injury.
Nevertheless, the effects of cycling-based training approaches on
muscle coordination are still largely unexplored.

In the proposed experimentation, we limited our study to
healthy people. Participants were asked to deviate from the
normal pattern of muscle activation and execute movement in
such a non-natural way, meaning that the resulting biomechanics
might have not been functional. Whether a similar approach can
be applied in a reverse fashion to restore coordination in people
with neurological lesions should be investigated. The results
obtained in this work let us hypothesize that, when disrupted
muscle coordination is present, changing the timing of activation
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FIGURE 7 | sEMG envelopes of all the recorded muscles for the each of the three biofeedback conditions, during the PRE and POST-1 trials. Data are represented
as (mean ± standard error) across subjects.
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FIGURE 8 | Cosine similarity between the synergies extracted from all the trials (COND1-4, POST1-2, WASH) and the homologous synergies extracted from the
PRE trial for each biofeedback condition (median ± MAD across subjects).

FIGURE 9 | Performance of the different models, i.e., FSC (fixed W), FTC (fixed H), and FTCDELAY (with the best performing surrogate), quantified in terms of variance
accounted for (VAF) on the PRE and POST-1 testing sets. All models have been created using the 30 cycles of the MPRE training set. Significance level was set
according to post hoc analysis (**p < 0.002, *p < 0.02) and Wilcoxon signed rank test (#p < 0.05).

of a single muscle can have a functional result. This aspect has
yet to be extensively explored, but it could lead to cycling-based
rehabilitation programs based on feedback of small subset of
internal variables.

A possible limitation of our study is the choice of visual
biofeedback modality. There are multiple ways in which
the feedback can be provided through visual indicators.
These span from minimal visual cues based on binary states
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FIGURE 10 | Upper panel: Optimal shift of the activation coefficients obtained by FTCDELAY model (orange line) to reconstruct the POST-1 trial, compared to the
original set of activation coefficients extracted by the PRE trial (black line). Lower panel: Synergy vectors obtained from the FTCDELAY model on the POST-1 training
set (orange bars), compared to those extracted on the PRE trial from the FTC model (black bars) and FSC model (blue bars).

TABLE 4 | Average cosine of the angle between W related to the FTC (A) and
FSC (B) model in the PRE trial and the corresponding homologous W emerging
from the FTCDELAY model in the POST-1 trial.

(A) TA VL GM

W1FTC/W1FTC_DELAY 0.86 ± 0.09 0.82 ± 0.13 0.77 ± 0.17

W2FTC/W2FTC_DELAY 0.61 ± 0.24 0.77 ± 0.23 0.54 ± 0.22

W3FTC/W3FTC_DELAY 0.85 ± 0.15 0.85 ± 0.13 0.78 ± 0.19

(B) TA VL GM

W1FSC/W1FTC_DELAY 0.88 ± 0.08 0.86 ± 0.14 0.79 ± 0.17

W2FSC/W2FTC_DELAY 0.61 ± 0.26 0.73 ± 0.26 0.38 ± 0.18

W3FSC/W3FTC_DELAY 0.85 ± 0.16 0.84 ± 0.12 0.78 ± 0.19

(Thompson and Wolpaw, 2015), to more complex feedback
modalities based on multiple biological signals (Barbosa et al.,
2015). We consider the EMG envelope a simple and sufficiently
meaningful descriptor on the user’s physiological activity, which
includes both time and shape information. To avoid the
concomitant representation of the amplitude information, we
decided to normalize the amplitude for each cycle, so that
the user always saw a peak with unitary value. In pilot trials,
this modality demonstrated to be more effective than including
absolute amplitude information. We did not test whether the
shape of the waveform was perceived as a distracting element.
We nevertheless decided to leave such information, because it
provided a qualitative indication of the correct execution of

the task. In the future, we should investigate new forms of
feedback such as those based on synergy analysis. For instance,
substituting the EMG envelope with the activation coefficient
from one synergy may be a feasible next step. One of the
questions that we want to answer with this approach is whether
“synergistic” feedback can produce better learning effects with
respect to single muscle activity feedback. A negative response
to this question will support the feasibility of this technique
in clinical based context, where minimal experimental setups
(one muscle instead of multiple muscle recording) can make the
difference. Conversely, the eventual demonstration of a better
effectiveness of the synergistic feedback will support the inclusion
of muscle coordination as a valuable biomarker during re-
learning approaches. These aspects are in our opinion relevant
and worth being investigated.

In our experiment, the task goal was to postpone the
peak of activation of the target muscle. Other task goals
such as anticipating the peak timing, the amplitude, or
accelerating/decelerating the movement in specific sub-phases
of cycling are other options that can be considered in future
studies. A main objective in this respect would be to develop
look-up tables able to match each learning strategy with the
resulting functional effects. The successful definition of these
look-up tables will enable the definition of subject-specific
rehabilitation programs. In this respect, it may be also interesting
to establish which are the functional boundaries of each task
goal, i.e., establishing to what extent can a subject change the
target variable according to the musculoskeletal (e.g., leg-pedal
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kinematic chain, muscle dynamics) or neural (e.g., reaction
time) constraints.

Even though different models of muscle coordination have
been tested, additional insights onto this pedaling learning task
could be provided by recording muscle activity from the non-
dominant leg, in order to highlight potential compensation
mechanisms adopted by the subjects. This can also be done by
recording pedal forces, in order to gather information on the
symmetry in task execution.

Future studies should possibly include the measurement of
the most relevant joint kinematics of the subjects, e.g., ankle,
knee and hip, together with the crank and pedal angle to have
complete information on the biomechanical effects induced by
this task. This may shed some light on the biomechanically
vs. neural implications of muscle synergy adjustments during
learning, which have not been specifically addressed by our work.

CONCLUSION

In this study, we showed that muscle coordination during
pedaling can be voluntarily changed through a conditioning
procedure based on EMG visual feedback on one single muscle.
We observed that changes in the target muscle timing are
consistently accompanied by changes in other muscles not
involved in the biofeedback loop. While changes in time and
amplitude are in general subject-specific, they appeared to be
correlated to each other, meaning that a shift in time is in
general associated with a change in amplitude. Under the muscle
synergy perspective, we showed that among the tested models,
i.e., spatially and temporally invariant components, the one based
on FTC (shifted in time) can better explain changes in muscle
coordination. These results demonstrate that some underlying
modular structures may be preserved even in the presence of
significant changes in individual muscles. Our results also suggest
that testing the effectiveness of only one of model (e.g., spatially
fixed as typically done in literature) over surrogate data is not
sufficient. Testing and compare alternative models may be key to
identify the biomechanical or neural implications of the obtained

results, especially for the applicability of synergy-based strategies
in neurorehabilitation.
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